Cumulative disturbances to assess forest degradation using spectral unmixing in the northeastern Amazon - Université de Nantes
Article Dans Une Revue Applied Vegetation Science Année : 2019

Cumulative disturbances to assess forest degradation using spectral unmixing in the northeastern Amazon

Résumé

Question: Tropical forests are subject to disturbances by logging, gathering of fuelwood, and fires. Can degradation trajectories (i.e. cumulative disturbances events over a period of timer) be identified using remote‐sensing Landsat time series? Location: Paragominas (Pará, Brazil), a municipality covering 19,395 km² in the northeastern Amazon. Methods: We used Landsat annual imagery from 2000 to 2015 and spectral mixture analysis to derive time series of the fraction of soil (S), active photosynthetic vegetation (PV), and non‐photosynthetic vegetation (senescent) (NPV) indicators. Results: The NPV values over a 16‐year period revealed five different degradation trajectories (i.e., cumulative disturbances in space and over time): undisturbed forest, selectively logged forest (with a management plan), overlogged forest (no management plan), overlogged forest (charcoal production) and burned forest. The variance of NPV calculated per pixel over the same period is useful to map forest degradation over Paragominas municipality, highlighting the role of disturbance factors (logging, fuelwood gathering and fire). Conclusions: The fractional cover of NPV obtained from spectral mixture analysis can be used to differentiate degradation trajectories and to map forest degradation.
Fichier principal
Vignette du fichier
AVS_Paper_sans_renvois_new_fig.pdf (2.33 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

halshs-02171532 , version 1 (14-01-2025)

Licence

Identifiants

Citer

Ali Fadhil Hasan, François Laurent, François Messner, Clément Bourgoin, Lilian Blanc. Cumulative disturbances to assess forest degradation using spectral unmixing in the northeastern Amazon. Applied Vegetation Science, 2019, 22, pp.394-408. ⟨10.1111/avsc.12441⟩. ⟨halshs-02171532⟩
78 Consultations
0 Téléchargements

Altmetric

Partager

More