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Henri Sauvageot
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[1] From radar observations of rain fields at midlatitudes, a new physical model of rain
cells is proposed. It strives to describe optimally the rain rate horizontal distribution within
rain cells down to 1 mm h�1. The approach is similar to that of the well-known EXCELL
model. The mathematical definition of the model lies in the combination of a gaussian
function and an exponential one, the cells having an elliptic horizontal cross section. Due to
its hybrid structure, the new model has been named HYCELL. From a conceptual point
of view, the gaussian component describes the convective-like high rain rate core of the
cell, while the exponential component accounts for the surrounding stratiform-like low
rain rate spreading down to 1 mm h�1. The modeling of a rain cell with HYCELL then
requires the determination of seven parameters. The latter is obtained, cell by cell, by
solving a set of five fit-forcing equations completed by two continuity equations. The
fit-forcing equations involve radar parameters of integral nature which refer not only to the
rain cell geometry (area, ellipticity) but also to the rain rate R distribution inside the cell
(mean and root mean square values of R and gradient of R). Their analytical expressions are
derived from the model definition, while their values are forced to be those derived from
radar measurements. Using this method, thousands of rain cells identified from radar
observations in the regions of Bordeaux (southwestern France) and Karlsruhe
(southwestern Germany) have been modeled. Though both sites are at midlatitude, the
climatic contexts differ: oceanic for Bordeaux and continental for Karlsruhe. Results of rain
rate horizontal distribution modeling within cells using HYCELL and EXCELL are
compared. It is then suggested that the HYCELL model is a new tool which deserves to be
considered by system designers to compute propagation parameters. INDEX TERMS: 3354

Meteorology and Atmospheric Dynamics: Precipitation (1854); 3210 Mathematical Geophysics: Modeling;

3360 Meteorology and Atmospheric Dynamics: Remote sensing; 6964 Radio Science: Radio wave

propagation; KEYWORDS: propagation in rain, radar meteorology, rain modeling
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1. Introduction

[2] The telecommunication evolution for fixed satel-
lites depends on the users’ increasing need for accessing
to multimedia services. It results in the necessity to
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convey higher and higher data rates and, due to the
congestion of conventional frequency bands (L, S, C and
Ku-bands), compels to use of frequencies higher than
20 GHz. This frequency shift raises problems related to
the influence of the atmosphere, and notably of the
precipitation, on the electromagnetic propagation [Cas-
tanet et al., 2001; Lemorton et al., 2001].
[3] Now, in order to be attractive for users, operators

will have to offer an availability comparable to the one
usually reached by systems operating at lower frequency
bands, such as Ku-band, which can be done through the
implementation of Fade Mitigation Techniques [Castanet
et al., 2002a, 2002b]. That is the reason it is useful for
system designers to dispose of a thorough knowledge of
the rain field horizontal structure, so as to evaluate system
parameters such as attenuation, depolarization, and scat-
tering interference, to finally improve the service avail-
ability by optimizing the satellite resource management.
[4] On the one hand, the description of the rain field

horizontal structure is difficult due to its high space-time
variability, explaining the statistical nature of most of the
studies on the subject. Thus, for example, many authors
have developed empirical or statistical models of rain
cell size distribution based on radar measurements [Kon-
rad, 1978; Goldhirsh and Musiani, 1986; Crane, 1996;
Mesnard and Sauvageot, 2003].
[5] On the other hand, from meteorological studies,

more and more is known about the physical processes
which govern the structure of rain cells. Obviously, the
physical modeling of the latter would be very useful for
system designers having to predict, in a realistic way and
from a small number of parameters, single site attenu-
ation and joint statistics for a pair of paths required in the
design of space diversity systems and rain interference
coupling between two intersecting paths [e.g., Rogers,
1972; Lane and Stutzman, 1980; Crane, 1982; Crane
and Shieh, 1989]. Indeed, considering modeled cells -
that is cells described by a small number of parameters -
would allow to reduce considerably the computing time
and storage problems and also to multiply the system
simulations to optimally define the system parameters.
[6] In this context, Capsoni et al. [1987a, 1987b]

proposed to model the horizontal structure of rain cells
by the EXCELL model. According EXCELL, the rain
cells are of elliptic shape and the rain rate R within the
cells decays exponentially around a single maximum. In
its primary formulation, the EXCELL model was defined
and validated from radar observations at midlatitude
(Milan, Italy) of 6215 rain cells identified by thresh-
olding the rain fields at R = 5 mm h�1, so that the
validity domain of EXCELL is R � 5 mm h�1. When it
was devised, the EXCELL model met the requirements
of system designers to predict propagation parameters in
telecommunication applications at X and Ku-bands,
since the attenuation by rain rates lower than 5 mm h�1

is not very high for these frequency bands. That is the
reason why EXCELL was especially dedicated to the
description of the rain rate horizontal distribution within
the cells for R � 5 mm h�1.
[7] In other respects, when considering radar observa-

tions of rain fields, it becomes clear that important
information lays in areas over which the rain rate is
weaker than 5 mm h�1. Indeed, the probability of
occurrence of a rain rate higher than 5 mm h�1 is smaller
than about 10% at midlatitude [e.g., Sauvageot, 1994]. In
fact, neglecting these small rain rates leads to ignore not
only the rain cells stratiform spreading but also the high
percentage of cells with a peak rain rate lower than
5 mm h�1. Now, these rainy areas, due to their spatial
extent, play an important part in the attenuation endured
by radio links, especially at the high frequencies envis-
aged for the future satellite telecommunication systems.
Therefore, Paraboni et al. [1998, 2002] proposed an
extended version of EXCELL, applicable down to a zero
rain rate for use in low margin systems. The new
‘‘lowered’’ EXCELL model is not fully determinist
insofar as it involves a rain cell lowering parameter which
is statistical in nature, since deduced from the local
cumulative distribution function of the rainfall intensity.
[8] In the present paper, a new physical model of rain

cells is proposed, using an approach similar to that of the
EXCELL model. The new model lies on the combination
of a gaussian function and an exponential one. Its
physical foundations are explained in section 2. As for
the EXCELL model, it is defined, cell by cell, by forcing
appropriate cell descriptors of integral nature to be the
same as those obtained from the radar observations. The
modeling methodology is fully described in section 3.
From radar observations of rain fields in two regions both
at midlatitude but with different climates, more than
900,000 rain cells are modeled. Various comparative
results are given in section 4, showing the ability of the
new model to describe the rain rate horizontal distribution
within the cells, whatever their climatological belonging.

2. Rain Cell Definition

[9] In the studies of rain fields from meteorological
radar observations, authors refer to the terms ‘‘rain cell’’
or ‘‘rain area’’ to describe the patchy structure of the rain.
The term ‘‘Cell’’ seems to be preferred when there is an
explicit or implicit reference to the associate dynamic
structure as the cause of rain. When discussing the
structure of rain field without considering the peak
number inside the rain entities as a criterion of classifi-
cation, it seems more correct to use the term ‘‘rain area.’’
In the past, in the literature about the rain field structure in
relation with the radioelectric propagation, the above
distinction was not considered and the term ‘‘rain cell’’
was mainly used [Misme and Waldteufel, 1980; Crane,
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1982, 1996; Crane and Shieh, 1989; Capsoni et al.,
1987a, 1987b]. In the present work, focused on the
propagation problem, this convention is used, firstly not
to confuse the reader and, secondly, because we consider
mainly rain entities of small area and because, as will be
recalled below, most small rain areas have a single
maximum and thus deserve to be termed ‘‘cell.’’
[10] In the literature, rain cells have been defined

mainly in two ways. First, as the area interior to a
closed contour, down a local maximum (or peak) of the
reflectivity by 3 to 10 dB and surrounding this local
maximum [e.g., Konrad, 1978; Crane, 1996]. Secondly,
when analyzing the structural characteristics of a rain
field with respect to a rain rate threshold t, the rain cell
is defined as the area inside which the rain rate R � t
[e.g., Drufuca, 1977; Goldhirsh and Musiani, 1986].
The cell is continuous and, along the contour that
bounds it, the rain rate is equal to the threshold value
t. This study considers the second definition since its
aim is a rain cell modeling including the stratiform
component.
[11] As part of a rain cell modeling, the choice of the

physical model has to be carefully justified, for it has to
account for the rain cell shape and for the rain rate
horizontal distribution within the cell. From radar obser-
vations of rain field, many authors [Dennis and Fernald,
1963; Miller et al., 1975; Konrad, 1978; Goldhirsh and
Musiani, 1986; Tenorio et al., 1995; Sauvageot et al.,
1999] have considered that rain cells can be approxi-
mated to a circular shape. The diameter of the circular
cell of equivalent area is used as a characteristic measure
of the rain cell size.
[12] Pawlina and Binaghi [1995] and Féral et al.

[2000] questioned the validity of this approach and
proposed to describe the rain cell shape by its equivalent
ellipse, whose parameters are the major axis, the minor
axis, and the orientation angle. Whatever the threshold,
the results show that the rain cell orientation distribution
is uniform while the distribution of the rain cell ellipticity,
defined as the ratio of the minor to major axis, indicates
that the majority of the small cells are twice longer than
wide. Nevertheless, it can be observed that the ellipticity
of the rain cells tends to 1 as their size increases. There-
fore, whatever the threshold, rain cell horizontal cross
sections can be reasonably approximated by ellipses.
[13] Concerning the rain rate horizontal distribution

within the cells, many authors have divided the rain cell
population into two groups: the stratiform cells, charac-
terized by a slow decay of the rain rate from its maximum
(which is usually chosen less than 10 mm h�1), and the
convective cells, generating an area of heavy rain with
intensities higher than 10 mm h�1. Usually, convective
cells are surrounded by a stratiform area where the rain
rate is weaker. These basic considerations underline the
difficulty to model the rain rate horizontal distribution

within the cells by means of a single mathematical
function. Indeed, if an exponential function, as defined
by Capsoni et al. [1987b], accounts for the spatial extent
of the stratiform component, it is not always adapted to
the description of the rain rate horizontal distribution in
the convective part of the cell. Moreover, isolated punc-
tual maxima of the rain rate are not observed in nature. In
fact, radar observations show that, at all latitudes, the rain
rate horizontal distribution in the vicinity of the rain cell
peak does not decay as abruptly as what an exponential
function would describe but rather as what a gaussian one
would. As typical examples, Figure 1 shows the vertical
cross section of a convective storm cell, observed by an
S-band radar in southwestern France on 10 August 1996,
while Figure 2 displays the temporal evolution (hyeto-
graph) of the rain rate measured at the ground with a rain
gauge in the region of Niamey (Niger, Sahelian Africa)
on 03 September 1988. The rain cell in Figure 2 is part of
a squall line moving westward with a velocity v of about
60 km h�1 (the usual value in the sahelian area), in such a
way that the time scale t can be converted into horizontal
distance. These figures both underline the gaussian
character of the rain rate distribution in the vicinity of
the rain cell peak.
[14] Now, a gaussian function is not always able to

account for the surrounding stratiform component, which
suggests the modeling of the rain rate horizontal distri-
bution within the cells by combining a gaussian function
and an exponential one.
[15] However, the rain cell modeling by means of

unimodal functions would lead to consider that the rain
rate horizontal distribution within a cell is organized
around a single peak. Are all the rain cells single-
peaked? Of course they are not: it is well-known that
rain cells, especially when they are identified by thresh-
olding at values as weak as 1 mm h�1, can enclose
several subcells or secondary maxima. Figure 2 can be
seen as a typical example. Nevertheless, from radar
observations of rain fields in tropical and midlatitudes
areas, Mesnard and Sauvageot [2003] show that 95% of
the rain cells having an equivalent diameter smaller than
5 km - which represents the majority of the cells - are
single-peaked. Moreover, they show that, in average, the
relative frequency of the rain cell as a function of their
peak number p, that is NA(p), is well-approximated by
the power distribution:

NA pð Þ ¼ 0:71 p�2:77: ð1Þ

According to (1), both for tropical and midlatitude areas,
71% of the rain cells are single-peaked. For the
remaining 29%, a reasonable assumption is to consider
that, from a statistical point of view, among the
population of multipeaked cells, those inside which
several convective areas of comparable intensity coexist
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are rather infrequent, giving credibility to the rain cell
modeling by unimodal mathematical functions.
[16] To sum up, from the above discussion, it can be

concluded that (1) the rain cell shape can be approxi-
mated by an ellipse; (2) the rain rate horizontal distribu-
tion within the cells can be modeled by unimodal
functions; (3) the present paper proposes to define a
hybrid model, resulting from the combination of a
gaussian component and an exponential one.

3. Modeling the Horizontal Structure of

Rain Cells

3.1. EXCELL Model

[17] Capsoni et al. [1987b] proposed to describe the
horizontal structure of rain cells by considering an expo-
nential decay of the rain rate R around a single maximum
of R, with an elliptic horizontal shape. This is the well-
known EXCELL model according to which the analytical
expression of the rain rate horizontal distribution within a
cell is given in the horizontal plane (Oxy) by:

Rðx; yÞ ¼ RE exp �
x2

a2E
þ

y2

b2E

� �1=2
" #

for R � R2: ð2Þ

RE is the peak rain rate, aE and bE are the distances along
the axes (Ox) and (Oy) for which the rain rate decreases
by a factor 1/e with respect to RE (e.g., Figure 3b),
respectively. Let R2 be the minimum observed rain rate
value. It defines the validity domain of the EXCELL

model which, in its primary formulation [Capsoni et al.,
1987b], is R2 = 5 mm h�1. Awaka [1989] and
Goldhirsh [2000] arbitrarily extended the latter, assum-
ing R2 = 0.4 mm h�1. In the present paper, R2 will be
taken equal to the rain rate threshold t defined in

Figure 1. Vertical cross section (RHI) of a rain cell observed with an S-band radar in the region of
Lannemezan (southwestern France) on 10 August 1996.

Figure 2. Temporal evolution (hyetograph) of the rain
rate measured in the region of Niamey (Niger, Sahelian
Africa) on 03 September 1988.
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Section 2, with the value t = 1 mm h�1. This value is
chosen rather arbitrarily to trade off between the rain
cell with a significant rain activity and the stratiform
shapeless background. So, in the following, the validity
domain of EXCELL is supposed to be R � R2 with
R2 = 1 mm h�1.
[18] According to (2), a rain cell is thus fully described

by the determination of the three parameters RE, aE , and
bE. These three parameters can be obtained, cell by cell,
by forcing appropriate cell descriptors of integral nature
to be the same for the radar observations and for the
model [Capsoni et al., 1987b]. For each cell identified
from t = R2, a set of three fit-forcing equations has to be
solved (subscript r stands for radar measurement):

Ar ¼

Z Z

D

dxdy ¼ paEbE ln
2 RE

R2

; ð3Þ

Rr ¼
1

Ar

Z Z

D

Rðx; yÞdxdy

¼ 2RE 1�
R2

RE

� �

1þ ln
RE

R2

� �� �

= ln2
RE

R2

� �

; ð4Þ

er ¼
aE

bE
: ð5Þ

D is the domain occupied by the rain cell in the
horizontal plane with ordinate R = R2. Ar, Rr and er are
the area, the average rain rate, and the ellipticity of the
cell, respectively, determined from the radar observa-
tions. Therefore, RE is derived from the nonlinear
equation (4). Its value minimises the error with respect
to Rr while aE and bE are obtained from the exact
(analytical) resolution of (3) and (5).
[19] EXCELL has been widely applied to study tele-

communication link performance. However, it seems to

present some shortcomings. First, from a conceptual
point of view and as mentioned in Section 2, exponen-
tially peaked distributions of rain rate are not observed
in nature. Secondly, from a calculatory point of view, in
the case of high values of R, the associated value of RE

becomes unrealistic (cf. (4)). This is typically the case
for rain cells generating heavy rain rates over signifi-
cant areas (e.g., tropical rain cells but also deep con-
vective cells at midlatitudes). Capsoni et al. [1987b],
aware of this overestimation of RE, did not consider it
as a negative point, arguing for a compensation of the
underestimation of radar measured peak values, Rmax ,
due to the spatial averaging by the radar beam. Up to
now, radar maxima of reflectivity in rain fields have
never been shown to be significantly influenced by the
radar resolution. In fact, the statistical study of the rain
field characteristics from radar data does not show any
dependency on the distance from the radar, neither for
the rain rate parameters (notably Rmax) nor for the rain
cell size distribution [e.g., Nzeukou and Sauvageot,
2002] (among many others).
[20] Figures 3a and 3b show, as an example, the

observation of a rain cell by the meteorological radar of
Bordeaux (France) on 20/08/1996 at 08:00 UTC and its
EXCELL modeling, respectively. The rain rate threshold
is t = R2 = 1 mm h�1. Figure 3b underlines the limitation
of the model with respect to parameter RE. Indeed, if the
radar cell shows a measured peak value of Rmax = 30.33
mm h�1 (Figure 3a), its equivalent cell modeled by
EXCELL has a peak rain rate RE = 75.11 mm h�1, which
squares with an overestimation of about 147%. To over-
come these drawbacks, an improvement of the modeling

Figure 3a. Radar observation of a cell from the field of
Bordeaux on 20/08/1996 at 08:00 UTC. The threshold is
t = 1 mm h�1. The peak rain rate measured by the radar
is Rmax = 30.33 mm h�1.

Figure 3b. EXCELL modeling of the cell observed by
the radar of Bordeaux on 20/08/1996 at 08:00 UTC
(Figure 3a). R2 = t = 1 mm h�1, (RE, aE, bE) are the three
parameters of the model. RE = 75.11 mm h�1.
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of the rain rate horizontal distribution within the rain cells
is proposed using a hybrid approach.

3.2. HYCELL Model

[21] As part of a hybrid modeling, the present study
proposes to describe the rain rate horizontal distribution
within the rain cells by combining an exponential com-
ponent with a gaussian one (Figure 4), so that the
analytical expression of the rain rate distribution
becomes in the horizontal plane (Oxy):

Rðx; yÞ ¼ RG exp �
x2

a2G
þ

y2

b2G

� �� �

if R � R1;

¼ RE exp �
x2

a2E
þ

y2

b2E

� �1=2
" #

if R2 � R < R1:

)

ð6Þ

RG, aG and bG define the gaussian component and are the
peak rain rate and the distances along the axes (Ox) and
(Oy) for which the rain rate decreases by a factor 1/e with
respect to RG , respectively. RE, aE and bE define the
exponential component with similar signification as for
the gaussian component, as shown in Figure 4, where the
hybrid modeling parameters are represented in a vertical
plane passing by the Ox axis. R1 separates the gaussian
and exponential components. As the rain rate threshold
considered in the present paper is t = 1 mm h�1, the
domain of definition of the hybrid model is R � R2, with
R2 = 1 mm h�1. This model will be termed the HYCELL
model.

[22] As mentioned in Section 2, from a conceptual
point of view, the gaussian component is assigned to the
description of the convective area while the exponential
component accounts for the stratiform spreading of the
surrounding precipitation, so that excessively large val-
ues of RG with respect to the peak rain rate Rmax

measured by the radar are avoided. The HYCELL model
squares with the EXCELL model when R1 = RG = RE. It
is purely gaussian when R1 = R2.
[23] The EXCELL model definition lies on the compu-

tation of three parameters (RE, aE, bE), but the description
of the rain rate horizontal distribution within a rain cell by
the HYCELL scheme requires the determination of seven
parameters (RG, aG, bG, RE, aE, bE, R1). The latter are
obtained, cell by cell, by solving a set of five nonlinear fit-
forcing equations completed by two continuity equations.
[24] The fit-forcing equations involve radar parameters

of integral nature, which are therefore less space-resolu-
tion-dependent than a punctual parameter (as the rain rate
maximum value, for example). Their analytical expres-
sions can be derived from the HYCELL model definition
(6) (cf. Appendix A) while their values are forced to those
derived from the radar measurements. These integral
parameters are the area A, the ellipticity e, the mean R
and rootmean square Rrms values of R, and themeanG and
rms Grms values of the modulus of the horizontal gradient
of R. The fit-forcing equations of the HYCELL model are
given below. The derivation of the equations is given in
Appendix A. In these equations, subscript r indicates radar
measurement and D is the domain occupied by the rain
cell in the horizontal plane with ordinate R = R2.

Ar ¼

Z Z

D

dxdy ¼ paGbG ln
RG

R1

þ paEbE

� ln2
RE

R2

� ln2
RE

R1

� �

: ð7Þ

ArRr ¼

Z Z

D

Rðx; yÞdxdy ¼ paGbG RG � R1ð Þ

þ 2paEbE R1 1þ ln
RE

R1

� �

� R2 1þ ln
RE

R2

� �� �

:

ð8Þ

Ar R2
rms

	 


r
¼

Z Z

D

R2ðx; yÞdxdy ¼
p

2
aGbG R2

G � R2
1

	 


þ
p

2
aEbE R2

1 1þ 2 ln
RE

R1

� ��

�R2
2 1þ 2 ln

RE

R2

� ��

:

ð9Þ
ArGr ¼

Z Z

D

Gðx; yÞdxdy ¼

� IG RG

p1=2

2
erf ln1=2

RG

R1

� ��

�R1 ln
1=2 RG

R1

�

þ IE R1 1þ ln
RE

R1

� ��

�R2 1þ ln
RE

R2

� ��

; ð10Þ

Figure 4. Representation in the vertical plane passing
through the (Ox) axis of the HYCELL modeling. RG and
RE are the gaussian and exponential peaks, respectively.
aG and aE are the distances for which the rain rate R
decreases by a factor 1/e with respect to RG and RE,
respectively. R1 delimits the zones of gaussian and
exponential definition. R2 = 1 mm h�1.
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with IG = 4bGE
p
2
; 1�

a2
G

b2
G

� �1=2
h i

and IE = 4bEE
p
2
; 1�

a2
E

b2
E

� �1=2
h i

E is the elliptic integral of second kind and erf is the error
function.

Ar G2
rms

	 


r
¼

Z Z

D

G2ðx; yÞdxdy ¼
p

2

aG

bG
þ
bG

aG

� �

�

�

R2
G � R2

1 1þ 2 ln
RG

R1

� ��

þ
p

4

aE

bE
þ
bE

aE

� �

� R2
1 1þ 2 ln

RE

R1

� ��

�R2
2 1þ 2 ln

RE

R2

� ��

ð11Þ

Two supplementary equations are derived from the
continuity condition of the model for R = R1:

a2G ln
RG

R1

¼ a2E ln
2 RE

R1

; ð12Þ

b2G ln
RG

R1

¼ b2E ln
2 RE

R1

: ð13Þ

If e is the ellipticity of the rain cell of elliptic shape, (12) and
(13) give:

aE

bE
¼

aG

bG
¼ er: ð14Þ

Using (12), (13), and (14), (7) becomes:

Ar ¼ paEbE ln
2 RE

R2

¼ perb
2
E ln

2 RE

R2

: ð70Þ

From (7), (12), (13), and (14), equations (8), (9), (10), and
(11) can be rewritten:

Rr ¼ ln�2 RE

R2

ln2
RE

R1

ln�1 RG

R1

RG � R1ð Þ

�

þ 2R1 1þ ln
RE

R1

� �

�2R2 1þ ln
RE

R2

� ��

; ð80Þ

2 R2
rms

	 


r
¼ ln�2 RE

R2

ln�1 RG

R1

ln2
RE

R1

�

� R2
G � R2

1

	 


þ R2
1 1þ 2 ln

RE

R1

� �

�R2
2 1þ 2 ln

RE

R2

� ��

; ð90Þ

Gr ¼
4E

p

2
; 1� e2r
	 
1=2

h i

Arperð Þ1=2 ln
RE

R2

RG

p1=2

2
erf ln1=2

RG

R1

� ��

ln
RE

R1

� ln�1=2 RG

R1

þ R1 � R2 1þ ln
RE

R2

� ��

; ð100Þ

Ar G2
rms

	 


r
¼

p

2
er þ

1

er

� �

R2
G � R2

1 1þ 2 ln
RG

R1

� ��

þ
R2
1

2
1þ 2 ln

RE

R1

� �

�
R2
2

2
� 1þ 2 ln

RE

R2

� ��

:

ð110Þ

[25] Therefore, the determination of RG, R1, and RE

involves the resolution of a nonlinear system of four
equations with three unknowns. This system is, a priori,
overdetermined.On the onehand, the value ofRG is greater
than or equal to the peak rain rate Rmax of the radar cell,
defining a solution interval forRG:RG�Rmax.On theother
hand, R1 varies from R2 (purely gaussian model) to RG

(purely exponentialmodel), giving an interval of definition
forR1: R2�R1�RG .We proceed to a discretization of the
solution space, and the optimal values ofRG, R1, andRE are
determined numerically from (80), (90), (100), and (110) by
theminimizationofanerrorcriterionxdefinedas thesumof
theabsolutevaluesof the(normalized)errorswithrespect to
Rr, (Rrms)r, Gr, and (Grms)r, namely:

x ¼
RH

Rr

� 1

�

�

�

�

�

�

�

�

þ
Rrmsð ÞH
Rrmsð Þr

� 1

�

�

�

�

�

�

�

�

þ
GH

Gr

� 1

�

�

�

�

�

�

�

�

þ
Grmsð ÞH
Grmsð Þr

� 1

�

�

�

�

�

�

�

�

; ð15Þ

where subscripts r and H refer to radar measurements and
hybrid modeling, respectively.
[26] In the EXCELL model, the parameter RE is

obtained by solving (4), that is by minimizing the error
with respect to Rr. In the case of a purely exponential
HYCELL model (R1 = RG = RE), the determination of
RE results from the resolution of an equation system
minimizing the error not only with respect Rr, but also
with respect to (Rrms)r, Gr and (Grms)r. This methodo-
logical difference leads, even in the case of purely
exponential cells, to improving the modeling of the rain
rate distribution within the cells.
[27] One way to simplify the calculation is to remark

that from (11’), in the case of a hybrid scheme (R2 < R1 <
RG), RE can be expressed as a function of RG, R1, Ar, er,
and (Grms)r. This allows to reduce the number of unknown
parameters from three to two while constraining the
model to check (11’). Moreover, the optimal values of
RG and R1 can be obtained numerically, from (70), (80) and
(90), by minimizing x, which now reduces to:

x ¼
RH

Rr

� 1

�

�

�

�

�

�

�

�

þ
Rrmsð ÞH
Rrmsð Þr

� 1

�

�

�

�

�

�

�

�

þ
GH

Gr

� 1

�

�

�

�

�

�

�

�

; ð150Þ

(Grms)H being now strictly equal to (Grms)r by definition
of RE from (110). This methodological approach is the
one used in the present paper.
[28] As for {aG, bG, aE, bE}, they are deduced analyti-

cally from (7’), (12), (13), (14). Three cases have to be
considered according to the value of R1:
[29] 1) R1 = R2 (purely gaussian model):

b2G ¼
Ar

per ln
RG

R2

and aG ¼ erbG: ð16Þ
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[30] 2) R1 = RG = RE (purely exponential model):

b2E ¼
Ar

per ln
2 RE

R2

and aE ¼ erbE: ð17Þ

[31] 3) R2 < R1 < RG (hybrid model):

b2E ¼
Ar

per ln
2 RE

R2

; aE ¼ erbE; ð18Þ

and

b2G ¼
b2E ln

2 RE

R1

ln
RG

R1

; aG ¼ erbG: ð19Þ

4. Tests

4.1. Radar Data

[32] The data come from two meteorological radar, one
located at Bordeaux, in southwestern France, the other at
Karlsruhe, in southwestern Germany. Though both sites
are related to rain fields at midlatitude, the observations
differ due to the climatic context, oceanic for Bordeaux
and continental for Karlsruhe.
[33] The radar at Bordeaux, an S-band radar, is part of

the French operational radar network managed by Météo
France. It gives the spatial distribution of radar reflec-
tivity in the form of Constant Altitude Plan Position
Indicator (CAPPI) at 1.5 km above ground level, every
5 min. Measurements of reflectivities, corresponding to a
contiguous pulse volume sampled each 500 m in range,
were made over a circular area with a radius of 256 km.
The CAPPI radar scans, in polar coordinates, were
converted along a cartesian grid, with a uniform pixel
size of 1 
 1 km2. The data set contains 35286 CAPPIs,
acquired from January to December 1996.
[34] The radar at Karlsruhe is a C-band radar perform-

ing a volume scan of the atmosphere. In the present
paper the spatial distribution of radar reflectivity every
5 min in a horizontal plane, at 1.5 km above ground level
is used. The radar images of the ‘‘surface rain intensity’’
(SRI) result from the interpolation of radar observations
at various elevation angles. Here, the cartesian resolution
is 0.5 
 0.5 km2 and the domain observed is a circular
area with radius of 120 km. The data set contains 38583
SRIs acquired from January to December 1999. The
main technical characteristics of these two radars are
given in Table 1.
[35] All the CAPPI or SRI images including ground

clutter or melting layer echoes were removed from the

data set so that the used radar data only refers to rain
fields. At midlatitudes, the standard Z-R relation

Z ¼ 300 R1:5; ð20Þ

with the radar reflectivity factor Z in mm6 m�3 and the
rain rate R in mm h�1, is used to convert reflectivity
fields into rain rate fields.

4.2. Rain Cell Identification

[36] For all available radar images from Bordeaux and
Karlsruhe, each cell in the field is identified according to
an automatic contouring procedure. The rain rate thresh-
old t is 1 mm h�1. This value corresponds to a radar
reflectivity of 25 dBZ using relation (20). Then, cell by
cell, all the integral parameters required for the rain cell
hybrid modeling are computed.
[37] First, from a morphological point of view, the rain

cell area Ar is determined by counting the number of
rainy pixels. Each cell is approximated by its equivalent
ellipse whose geometrical features - major axis length,
minor axis length and orientation angle - are computed,
by minimization of the moments of inertia [Féral et al.,
2000], to finally obtain the cell ellipticity er.
[38] Secondly, as part of a textural approach, the

maximum (Rmax)r , mean Rr, and rms (Rrms)r values of
the rain rate R, as well as the mean Gr and rms (Grms)r
values of the modulus of the (numerical) gradient of R,
are computed for each rain cell identified in the radar
field at t = 1 mm h�1. As mentioned in Section 3,
subscript r stands for radar measurements.
[39] When doing this, it is important to keep in mind

some of the radar limitations. The minimum detectable
rain rate (MDRR) and the minimum cell size that can be
resolved by the radar increase with distance (owing to
the filtering by the pulse volume). The threshold con-
sidered in the present paper (t = 1 mm h�1) is largely
higher than the MDRR of the radars of Bordeaux
and Karlsruhe at the farthest observed distance (about
12 dBZ at 100 km). The minimum cell size Lmin

resolved by the radars depends on the azimuthal reso-
lution, that is on the maximum distance of observation
dmax and on the 3dB beam width q3dB so that Lmin must
be greater than dmax 
 q3dB.

Table 1. Main Technical Characteristics of the Radars

Bordeaux Karlsruhe

Wavelength, cm 10 (S band) 5 (C band)
Peak power, kW 700 250
Pulse repetition frequency, Hz 250 250
3dB beam width. q3dB, deg. 1.75 0.98
Cartesian grid resolution 1 
 1 km2 0.5
0.5 km2

Observation radius, km 256 120
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[40] Considering a maximum distance of observation
dmax of 100 km at Bordeaux and 117 km at Karlsruhe,
Lmin is about 3 km and 2 km for the radars of Bordeaux
and Karlsruhe, respectively. This left truncation leads to
keep only the cells having an area Ar greater than 7 km2

and 3 km2 for Bordeaux and Karlsruhe, respectively.
Moreover, all the rain cells which straddle the dmax

frontier are removed from the data set.
[41] The maximum size Lmax considered for the rain

cells is about 20 km in equivalent diameter (300 km2

in area). Beyond this size, of course, there are still rain
structures; however, they are no longer rain cells but
rather cell clusters, controlled by air motions, whose
scale is larger than the rain cell. Anyway, the analysis
of the radar data shows that cells larger than about
20 km in diameter are not numerous [Mesnard and
Sauvageot, 2003]. If this method is applied, the
number of rain cells finally identified by the radars
of Bordeaux and Karlsruhe are 213112 and 701882,
respectively.

4.3. Results

[42] For all the cells of Bordeaux and Karlsruhe, the
seven parameters (RG, aG, bG, RE, aE, bE, R1) defining
the hybrid model have been computed according to the
modeling methodology described in section 3.
[43] Figure 5 shows the HYCELL modeling of the rain

cell, observed by the radar of Bordeaux, shown in Figure
3a. The qualitative improvement from the EXCELL
model (Figure 3b) is obvious, notably with respect to
RG, which value no longer overestimates the radar
measured peak rain rate Rmax (RG is even equal to Rmax

in that case).
[44] Figures 6a, 6b, and 6c, show three other examples

of HYCELL modeling deduced from radar observations.

The result of the modeling by EXCELL is also shown for
comparison. The radar cells of cases a, b, and c are part
of the same rain field, observed by the radar of Karlshrue
on 02/06/1999 at 14:14 UTC. By construction, in all the
cases, both HYCELL and EXCELL models reproduce
exactly the area Ar and the ellipticity er of the radar cell
with the additional constraint, for the HYCELL model,
to reproduce exactly (Grms)r .
[45] In cell 1, whatever the model considered, the

peak rain rate measured by the radar is exactly repro-
duced by the peak values RG and RE of the HYCELL
and EXCELL models, respectively. The relative error of
HYCELL with respect to Rr, (Rrms)r and Gr is 2.93%,
0.08%, and 9.53%, respectively. When considering the
EXCELL modeling, these values become 7.41%,
8.63%, and 16%, respectively. For (Grms)r, the relative
error of EXCELL is 25.03% (null error for HYCELL
by construction). It is worth noting that, here, though
the determination of the HYCELL parameters lies on
the minimization of the functional (150) - which
involves not only Rr but also (Rrms)r and Gr - the
HYCELL model reproduces the mean rain rate Rr better
than EXCELL.
[46] In cell 2, if HYCELL correctly accounts for

the peak rain rate of the radar cell (RG = Rmax =
175.50 mm h�1), EXCELL leads to RE = 240.73 mm
h�1, which squares with an overestimation of 37%.
EXCELL now describes optimally Rr, whereas the
relative error of HYCELL with respect to this parameter
is 4.61%. When considering (Rrms)r, Gr, and (Grms)r, the
relative errors of HYCELL (EXCELL, respectively) are
3.08% (3.58%), 4.54% (4.60%), and 0% (16.19%).
[47] In cell 3, both HYCELL and EXCELL models

overestimate Rmax, by about 211% for EXCELL but only
16% for HYCELL. Both models optimally reproduce Rr.
Now the relative errors of HYCELL (EXCELL) with
respect to (Rrms)r, Gr and (Grms)r are 14.79% (36.69%),
4.61% (27.69%), and 0% (89.52%), respectively.
[48] As shown in Figure 6c (cell 3), the peak RG of the

cell modeled by a hybrid scheme is not necessarily equal
to the peak rain rate (Rmax)r measured with the radar.
Nevertheless, it does not display large values with
respect to (Rmax)r, as shown in Figures 7a and 7b, where
the cumulative distribution function of (Rmax)r, RG

(HYCELL peak rain rate), and RE (EXCELL peak rain
rate) are represented for the cells of Bordeaux and
Karlsruhe, respectively.
[49] The usefulness of the hybrid modeling is all the

more justified because the proportion of hybrid and
gaussian cells is important with respect to the total
population of modeled cells. Considering all the radar
cells identified from Bordeaux and Karlsruhe at t = R2 =
1 mm h�1, the proportion of hybrid (R2 < R1 < RG),
purely exponential (R1 = RG = RE), or purely gaussian
(R2 = R1) cells, has been determined on a monthly and

Figure 5. HYCELL modeling of the cell of Figure 3a,
observed by the radar of Bordeaux on 20/08/1996 at
08:00 UTC. R2 = t = 1 mm h�1. RG = 30.33 mm h�1.
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annual basis. The results are shown in Table 2. What
can be seen is that only 27 to 51% of the cells are
purely exponential and thus are adapted to a modeling
using the EXCELL scheme, while the HYCELL
scheme is able to model all the cases. This fully
justifies the usefulness of the turn to a hybrid model-

ing. Moreover, Table 2 shows that the proportion of
hybrid cells is all the more important as convective
months are considered - at least for the data set of
Karlsruhe - leading to the conclusion that the descrip-
tion of the heavy convective rain cell organization does
require the combination of a gaussian and an exponen-

Figure 6. Examples of HYCELL and EXCELL modeling of three rain cells observed by the radar
of Karlsruhe on 02/06/1999 at 14:14 UTC. The modeled cells are centered in the (X,Y) plane, their
orientation is not forced to be the one of the radar cells.

22 - 10 FÉRAL ET AL.: HYCELL MODEL, 1



tial component. If this trend is less pronounced for
Bordeaux, it can be due to the oceanic influence on the
climate of this region. In fact the atmospheric con-
vection is more homogeneous over sea than over land,
so that the maximum value of convection by-products
is also smaller over sea than over land.
[50] For a quantitative assessment of the improve-

ment of the HYCELL modeling with respect to the
EXCELL one, for each rain cell, the ratio c of the
error of these two models with respect to the radar

integral parameters Rr, (Rrms)r, Gr and (Grms)r, has been
computed, namely:

c ¼ ErrorEXCELL

ErrorHYCELL
¼

REXCELL � Rr

�

�

�

�þ Rrmsð ÞEXCELL� Rrmsð Þr
�

�

�

�þ GEXCELL � Gr

�

�

�

�þ Grmsð ÞEXCELL� Grmsð Þr
�

�

�

�

RHYCELL � Rr

�

�

�

�þ Rrmsð ÞHYCELL� Rrmsð Þr
�

�

�

�þ GHYCELL � Gr

�

�

�

�þ Grmsð ÞHYCELL� Grmsð Þr
�

�

�

�

ð21Þ

When the 213 112 cells of Bordeaux and the 701 882
cells of Karlsruhe are considered, it is found that, in
average, c = 3.13 for Karlsruhe and c = 2.37 for
Bordeaux.

Figure 6. (continued)

Figure 7a. Cumulative distribution function of the
peak rain rate for the radar cells ((Rmax)r, full line), for
the cells modeled with EXCELL (RE, dashed dot line),
and for those modeled with the hybrid model (RG, dot
line). The results are derived from the radar data of
Bordeaux.

Figure 7b. Same as Figure 7a but for the radar data of
Karlsruhe.
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[51] Figure 8 shows the monthly distribution of the
mean value c. As previously mentioned, it appears that
the HYCELL modeling is all the better (with respect to
EXCELL) as the rain cell convective organization is
achieved. This suggests that the HYCELL model
should be all the better (with respect to EXCELL) as
we consider tropical cells showing a strong develop-
ment of the convection. Anyway, be it for the rain cells
of Bordeaux (oceanic climate) or Karlsruhe (continental
climate), the HYCELL model proves efficient in
describing the rain rate horizontal distribution within
the rain cells.
[52] Another point of interest is the mean value c

computed by distinguishing the hybrid cells from the
purely exponential and purely gaussian cells. The
results are shown in Table 3. Either for hybrid cells
or for purely gaussian cells, c is about 3 to 4. For the
purely exponential cells (R1 = RG = RE), c is about
1.5. Thus, even in the case of a hybrid purely expo-

nential scheme, HYCELL allows a more realistic mod-
eling of the rain rate horizontal distribution within the
cells than EXCELL. As explained in Section 3.2, this
results from the methodological difference between the
two models in the determination of RE.

5. Conclusion

[53] A new physical model of the rain cells named
HYCELL has been presented. It allows to improve the
description of the rain rate horizontal distribution within
the cells by combining a gaussian function and an
exponential one.
[54] The gaussian component accounts for the descrip-

tion of the rain rate distribution in the inner convective
core of the cell, while the exponential component
accounts for the surrounding stratiform component. In
such a way, the mathematical definition of the hybrid
(HYCELL) model provides the versatility necessary to the
description of the internal structure of the real rain cells.
[55] The rain cell modeling by unimodal functions is

justified by the fact that, firstly, the majority of the cells
are single-peaked and, secondly, when they are not, the
cells inside which several peaks of comparable intensity
coexist are rather rare. Usually there is a main or
dominant peak.
[56] The hybrid modeling of the rain cells requires the

determination of seven parameters: RG, aG, bG, RE, aE,
bE, and R1. {RG, aG, bG} and {RE, aE, bE} define the

Table 2. Monthly and Total Percentage of Rain Cells Having a Hybrid Structure (R2 < R1 < RG), and Purely Exponential (R1 = RG

= RE) or Purely Gaussian (R1 = R2) Structure, for Bordeaux (213 112 Cells) and Karlsruhe (701 882 Cells)

Jan., % Feb., % March, % April, % May, % June, % July, % Aug., % Sept., % Oct., % Nov., % Dec., % Total, %

Bordeaux
Purely Expo 45 39 43 40 40 43 47 43 43 42 46 51 42
Purely Gauss 8 7 9 11 11 10 11 14 12 10 8 6 10
Hybrid 47 54 48 49 49 47 42 43 45 48 46 43 48

Karlsruhe
Purely Expo 41 39 38 28 32 29 27 28 33 29 48 51 34
Purely Gauss 2 2 2 2 2 2 3 2 2 2 4 4 2
Hybrid 57 59 60 70 66 69 70 70 65 69 48 45 64

Figure 8. Monthly distribution of the mean value of the
error ratio (c).

Table 3. Mean Value of the Error Ratioc for the Cells Having a

Hybrid Structure (R2 < R1 < RG), and Purely Gaussian (R2 = R1)

or Purely Exponential (R1 = RG = RE) Structure, for Bordeaux

and Karlsruhe

c (Bordeaux) c (Karlsruhe)

Hybrid 3 3.32
Purely Gaussian 3.06 3.94
Purely Exponential 1.49 1.59
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gaussian and exponential components, respectively,
while R1 delimits the zones of gaussian and exponential
definition. Their values are obtained, cell by cell, by
solving a set of five fit-forcing equations completed by
two continuity equations. The fit-forcing equations
involve radar parameters of integral nature. Their ana-
lytical expressions are derived from the hybrid model
definition while their values are forced to be those
obtained from radar measurements.
[57] According to the value of R1, the hybrid scheme is

able to model purely hybrid (R2 < R1 < RG), purely
gaussian (R1 = R2), and purely exponential cells (R1 =
RG = RE).
[58] When considering the 213112 cells of Bordeaux

(southwestern France, oceanic climate) and the 701882
cells of Karlsruhe (southwestern Germany, continental
climate), the results show that the new model enables the
description of the rain rate horizontal distribution within
the cells more accurately than the well-known EXCELL
model, even in the case of cells having a purely
exponential structure (R1 = RG = RE). Moreover, the
HYCELL model behaves still better (with respect to
EXCELL) when rain cells with an achieved convective
organization are considered. This results in an increasing
proportion of hybrid cells (R2 < R1 < RG) when
convective months are considered. A significant advan-
tage of HYCELL rests on its ability to describe with
accuracy stratiform-like rain cells characterized by low
peak rain rate and spreading on large area, which
represents the most frequent situation at midlatitude
and leads to strong attenuation at frequency higher than
15 GHz.
[59] The HYCELL modeling of rain cells, due to its

ability to describe both their convective and stratiform
components, should be an objective tool to evaluate and
predict (from a statistical point of view) the temporal
evolution of the rain cell internal structure, from their
birth to their decay, by studying the temporal evolution
of a limited number of parameters, the seven parameters
which define the HYCELL model. Moreover, HYCELL
should be a powerful tool to compute many propagation
parameters. HYCELL is, for example, the basis of a new
methodology of two-dimensional scene generating
whose statistical properties follow the local climatology
[Féral et al., 2003].

Appendix A: Determination of the

Analytical Expressions of A, R, Rrms, G,

and Grms From the HYCELL Model

Definition (6)

[60] The mathematical definition of the HYCELL
model is given by (6). As the model results from the
combination of a gaussian function with an exponential

one, the analytical expressions of the five integral
parameters, namely A, R, Rrms, G, and Grms (see section
3.2) have first to be determined independently for both
functions.

A1. Gaussian Function

[61] Let R be the two-dimensional gaussian function
of elliptic horizontal cross section (aG < bG), defined for
R � R1. In cartesian coordinates:

Rðx; yÞ ¼ RG exp �
x2

a2G
þ

y2

b2G

� �� �

; for R � R1:

ðA1Þ

The cartesian domain of definition D of R is thus:

D ¼ ðx; yÞ 2 <2;
x2

a2G
þ

y2

b2G
� ln

RG

R1

� �

: ðA2Þ

In polar coordinates, with x = rcosw and y = rsinw. R can
be rewritten:

Rðr;wÞ ¼ RG exp �r2
cos2 w

a2G
þ
sin2 w

b2G

� �� �

; for R � R1:

ðA3Þ

The domain of definition D becomes DP (aG < bG):

DP ¼

�

ðr;wÞ;w 2 0; 2p½ �; r 2 0; bG ln1=2
RG

R1

� �

;

r2
cos2w

a2G
þ
sin2 w

b2G

� �

� ln
RG

R1

�

; ðA4Þ

and

r21 ¼ ln
RG

R1

cos2w

a2G
þ
sin2 w

b2G

� �

:

�

ðA5Þ

A1.1. Area A Over Which R �����������__ R1

[62] Integrating with respect to r and considering (A5),
gives:

A ¼

Z Z

D

dxdy ¼

Z Z

DP

rdrdw ¼

Z

2p

0

dw

Z

r1

0

rdr ¼
1

2
ln
RG

R1

�

Z

2p

0

a2Gb
2
G

b2G cos2wþ a2G sin2w
dw: ðA6Þ
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Now, it can be shown that:

Z

2p

0

dw

b2G cos2wþ a2G sin2w
¼

2p

aGbG
; ðA7Þ

thus (A6) can be rewritten:

A ¼ paGbG ln
RG

R1

: ðA8Þ

A1.2. Mean Value of R(x, y) Over #

[63] Let R be the mean value of R(x, y) over D.

AR ¼

Z Z

D

Rðx; yÞdxdy ¼

Z Z

DP

Rðr;wÞrdrdw

¼ RG

Z

2p

0

dw

Z

r1

0

r exp

�

�r2
cos2w

a2G
þ
sin2 w

b2G

� ��

dr:

The integration with respect to r is straightforward.
Considering (A5), (A9) becomes:

Z Z

D

Rðx; yÞdxdy ¼
1

2
ðRG � R1Þ

�

Z

2p

0

a2Gb
2
G

b2G cos2wþ a2G sin2w
dw:

ðA10Þ

(A7) finally gives:

AR ¼ paGbGðRG � R1Þ: ðA11Þ

A1.3. rms Value of R(x, y) Over #
[64] Let Rrms be the rms value of R(x, y) over D.

AR2
rms ¼

Z Z

D

R2ðx; yÞdxdy ¼

Z Z

DP

R2ðr;wÞrdrdw

¼ R2
G

Z

2p

0

dw

Z

r1

0

r exp �2r2
cos2w

a2G
þ
sin2w

b2G

� �� �

dr:

ðA12Þ

Integrating with respect to r and considering (A5), (A12)
becomes:
Z Z

D

R2ðx; yÞdxdy ¼
1

4
ðR2

G � R2
1Þ

�

Z

2p

0

a2Gb
2
G

b2G cos2wþ a2G sin2w
dw:

ðA13Þ

So that, from (A7):

AR2
rms ¼

p

2
aGbGðR

2
G � R2

1Þ: ðA14Þ

A1.4. Mean Value of the Horizontal Gradient
of R(x, y) Over #

[65] Let G be the mean value of the horizontal gradient
of R(x, y) over D and G(x, y) the modulus of the
horizontal gradient of R(x, y).

Gðx; yÞ ¼ 2
x2

a4G
þ

y2

b4G

� �1=2

RGexp �
x2

a2G
þ

y2

b2G

� �� �

;

for R � R1: ðA15Þ

In polar coordinates, (A15) can be rewritten:

Gðr;wÞ ¼ 2r
cos2w

a4G
þ
sin2w

b4G

� �1=2

� RG exp

�

�r2
cos2w

a2G
þ
sin2w

b2G

� ��

; for R � R1:

ðA16Þ

Thus,

AG ¼

Z Z

D

Gðx; yÞdxdy ¼

Z Z

DP

Gðr;wÞrdrdw

¼ 2RG

Z

2p

0

cos2w

a4G
þ
sin2w

b4G

� �1=2

dw

�

Z

r1

0

r2exp

�

� r2:
cos2w

a2G
þ
sin2w

b2G

� ��

dr: ðA17Þ

Let W ¼
cos2w

a2G
þ
sin2w

b2G

� �

: ðA18Þ

In such conditions,

Z

r1

0

r2exp �r2
cos2w

a2G
þ
sin2w

b2G

� �� �

dr¼

Z

r1

0

r2 exp �r2W
	 


dr;

ðA19Þ

and, integrating by parts:

Z

r1

0

r2 exp �r2
cos2w

a2G
þ
sin2w

b2G

� �� �

dr ¼ �
r1

2W
exp �r21W
	 


þ
1

2W

Z

r1

0

expð�r2WÞdr: ðA20Þ

(A9)
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The substitution u = W1/2r yields:

Z

r1

0

r2 exp �r2
cos2 w

a2G
þ
sin2 w

b2G

� �� �

dr¼�
r1

2W
exp �r21W
	 


þ
1

2W3=2

Z

r1W
1=2

0

expð�u2Þdu: ðA21Þ

Introducing the error function erf,

erf ðxÞ ¼ 2p�1=2

Z

x

0

expð�t2Þdt; ðA22Þ

leads to:

Z

r1

0

r2 exp �r2
cos2w

a2G
þ
sin2 w

b2G

� �� �

dr¼�
r1

2W
exp �r21W
	 


þ
p1=2

4W3=2
erf ðr1W

1=2Þ: ðA23Þ

From (A5) and (A18),

r21 ¼ ln
RG

R1

W:= ðA24Þ

One can deduce:

Z

r1

0

r2 exp �r2
cos2w

a2G
þ
sin2 w

b2G

� �� �

dr

¼ W�3=2 p1=2

4
erf ln1=2

RG

R1

� ��

�
R1

2RG

ln1=2
RG

R1

�

;

ðA25Þ

so that:

Z Z

D

Gðx; yÞdxdy

¼
RGp

1=2

2
erf

�

ln1=2
RG

R1

� �

�R1 ln
1=2 RG

R1

�

aGbG

�

Z

2p

0

b4G cos2 wþ a4G sin2 w
	 
1=2

b2G cos2 wþ a2G sin2 w
	 
3=2

dw: ðA26Þ

From the properties of the functions sin and cos, (A26)
can be rewritten:
Z Z

D

Gðx; yÞdxdy

¼
RGp

1=2

2
erf ln1=2

RG

R1

� ��

�R1 ln
1=2 RG

R1

�

4aG

�

Z

p=2

0

1� q2 sin2w
	 
1=2

1� p2 sin2w
	 
3=2

dw; ðA27Þ

where

q2 ¼
b4G � a4G

b4G
and p2 ¼

b2G � a2G
b2G

: ðA28Þ

As aG and bG are the minor and major axes for which R
decreases by a factor 1/e with respect to RG, respectively,

aG < bG and 0 < p2 < q2 < 1: ðA29Þ

Under the condition (A29), it can be shown that,

Z

p=2

0

1� q2 sin2w
	 
1=2

1� p2 sin2w
	 
3=2

dw ¼
1

ð1� p2Þ1=2
E

p

2
;K

� �

;

ðA30Þ

where K2 =
q2�p2

1�p2
and E p

2
;K

	 


is the elliptic integral of
second kind, namely:

E
p

2
;K

� �

¼

Z

p=2

0

1� K2 sin2 w
	 
1=2

dw: ðA31Þ

Therefore,

aGbG

Z

2p

0

b4G cos2wþ a4G sin2w
	 
1=2

b2G cos2wþ a2G sin2w
	 
3=2

dw

¼ 4bGE
p

2
; 1�

a2G
b2G

� �1=2
" #

; ðA32Þ

and (A26) finally becomes,

AG ¼ 4bGE
p

2
; 1�

a2G
b2G

� �1=2
" #

�
RGp

1=2

2
erf ln1=2

RG

R1

� �

� R1 ln
1=2 RG

R1

� �

: ðA33Þ
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A1.5. rms Value of the Horizontal Gradient
of R(x, y) Over #

[66] Let Grms be the rms value of the horizontal
gradient of R(x, y) over D.

AG2
rms ¼

Z Z

D

G2ðx; yÞdxdy ¼

Z Z

DP

G2ðr;wÞrdrdw

¼ 4R2
G

Z

2p

0

cos2 w

a4G
þ
sin2 w

b4G

� �

dw

Z

r1

0

r3 exp

�

�

� 2r2
cos2 w

a2G
þ
sin2 w

b2G

� ��

dr: ðA34Þ

Let

W1 ¼
cos2 w

a4G
þ
sin2 w

b4G

� �

and; as before;

W ¼
cos2 w

a2G
þ
sin2 w

b2G

� �

: ðA35Þ

In such conditions,

Z Z

D

G2ðx; yÞdxdy¼ 4R2
G

Z

2p

0

W1dw

Z

r1

0

r3 exp �2r2W
	 


dr:

ðA36Þ

The integration with respect to r is straightforward and
(A5) leads to:

Z Z

D

G2ðx; yÞdxdy ¼
1

2
R2
G � R2

1

�

1þ 2 ln
RG

R1

� ��

�

Z

2p

0

W1

W2
dw: ðA37Þ

Now,

Z

2p

0

W1

W2
dw ¼

Z

2p

0

b4G cos2 wþ a4G sin2 w

b2G cos2 wþ a2G sin2 w
	 
2

dw

¼ p
bG

aG
þ

aG

bG

� �

: ðA38Þ

Therefore,

AG2
rms ¼

p

2

bG

aG
þ

aG

bG

� �

R2
G � R2

1 1þ 2 ln
RG

R1

� �� �

:

ðA39Þ

A2. Exponential Function

[67] Now, let R be the two-dimensional exponential
function of elliptic horizontal cross section (aE < bE),
defined for R � R2. In cartesian coordinates:

Rðx; yÞ ¼ RE exp �
x2

a2E
þ

y2

b2E

� �1=2
" #

for R � R2:

ðA40Þ

The cartesian domain of definition D of R is now:

D ¼ ðx; yÞ 2 <2;
x2

a2E
þ

y2

b2E
� ln2

RE

R2

� �

: ðA41Þ

In polar coordinates (x = rcosw and y = rsinw), R can be
rewritten:

Rðr;wÞ ¼ RE exp �r
cos2w

a2E
þ
sin2 w

b2E

� �1=2
" #

for R � R2

ðA42Þ

and the domain of definition D becomes DP (aE < bE):

DP ¼ ðr;wÞ;w 2 0; 2p½ �; r 2 0; bE ln
RE

R2

� �

;

�

r2
cos2 w

a2E
þ
sin2 w

b2E

� �

� ln2
RE

R2

�

; ðA43Þ

and

r22 ¼ ln2
RE

R2

cos2 w

a2E
þ
sin2 w

b2E

� �

:

�

ðA44Þ

A2.1. Area A Over Which R �����������__ R2

[68] Integrating with respect to r and considering (A44)
and (A7), gives:

A ¼

Z Z

D

dxdy ¼

Z Z

DP

rdrdw ¼

Z

2p

0

dw

Z

r2

0

rdr

¼ paEbE ln
2 RE

R2

: ðA45Þ

A2.2. Mean Value of R(x, y) Over #

[69] Let R be the mean value of R(x, y) over D.

AR ¼

Z Z

D

Rðx; yÞdxdy ¼

Z Z

DP

Rðr;wÞrdrdw

¼ RE

Z

2p

0

dw

Z

r2

0

r exp

"

�r:
cos2w

a2E
þ
sin2 w

b2E

� �1=2
#

dr:

ðA46Þ
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The integration with respect to r is straightforward and
(A44) leads to:

Z Z

D

Rðx; yÞdxdy ¼ RE � R2 1þ ln
RE

R2

� �� �

�

Z

2p

0

a2Eb
2
E

b2E cos
2 wþ a2E sin

2 w
dw:

ðA47Þ

From (A7), (A47) becomes:

AR ¼ 2paEbE RE � R2 1þ ln
RE

R2

� �� �

: ðA48Þ

A2.3. rms Value of R(x, y) Over #
[70] Let Rrms be the rms value of R(x, y) over D.

AR2
rms ¼

Z Z

D

R2ðx; yÞdxdy ¼

Z Z

DP

R2ðr;wÞrdrdw

¼R2
E

Z

2p

0

dw

Z

r2

0

r exp

"

� 2r
cos2w

a2E
þ
sin2 w

b2E

� �1=2
#

dr:

ðA49Þ

Integrating with respect to dr and considering (A44),
(A49) can be rewritten:

Z Z

D

R2ðx; yÞdxdy ¼
1

4
R2
E � R2

2 1þ 2 ln
RE

R2

� �� �

�

Z

2p

0

a2Eb
2
E

b2E cos
2 wþ a2E sin

2 w
dw;

ðA50Þ

so that, from (A7):

AR2
rms ¼

p

2
aEbE R2

E � R2
2 1þ 2 ln

RE

R2

� �� �

: ðA51Þ

A2.4. Mean Value of the Horizontal Gradient
of R(x, y) Over #
[71] Let G be the mean value of the horizontal gradient

of R(x, y) over D and G(x, y) the modulus of the
horizontal gradient of R(x, y).

Gðx; yÞ ¼
b4Ex

2 þ a4Ey
2

b2Ex
2 þ a2Ey

2

� �1=2
RE

aEbE
exp �

x2

a2E
þ

y2

b2E

� �1=2
" #

;

for R � R2: ðA52Þ

In polar coordinates:

Gðr;wÞ ¼
b4E cos

2wþ a4E sin
2 w

b2E cos
2wþ a2E sin

2 w

 !1=2
RE

aEbE

� exp �r
cos2 w

a2E
þ
sin2 w

b2E

� �1=2
" #

; for R � R2:

ðA53Þ

In such conditions,

AG ¼

Z Z

D

Gðx; yÞdxdy ¼

Z Z

DP

Gðr;wÞrdrdw

¼
RE

aEbE

Z

2p

0

b4E cos
2 wþ a4E sin

2 w

b2E cos
2 wþ a2E sin

2 w

 !1=2

dw

�

Z

r2

0

r exp �r
cos2w

a2E
þ
sin2 w

b2E

� �1=2
" #

dr: ðA54Þ

Considering (A44), the integration with respect to r leads
to:

Z Z

D

Gðx; yÞdxdy ¼ aEbE

�

RE � R2: 1þ ln
RE

R2

� ��
Z

2p

0

�
b4E cos

2 wþ a4E sin
2 w

	 
1=2

b2E cos
2 wþ a2E sin

2 w
	 
3=2

dw:

ðA55Þ

aE and bE are, respectively, the minor and major axes for
which R decreases by a factor 1/e with respect to RE, so
that aE < bE.
[72] From (A32) and under the condition (A29) now

verified by aE and bE:

aEbE

Z

2p

0

b4E cos
2 wþ a4E sin

2 w
	 
1=2

b2E cos
2 wþ a2E sin

2 w
	 
3=2

dw

¼ 4bEE
p

2
; 1�

a2E
b2E

� �1=2
" #

; ðA56Þ

where E is the elliptic integral of second kind introduced
previously. Finally,

AG¼ 4bEE
p

2
; 1�

a2E
b2E

� �1=2
" #

RE � R2 1þ ln
RE

R2

� �� �

:

ðA57Þ
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A2.5. rms Value of the Horizontal Gradient
of R(x, y) Over #

[73] Let Grms be the rms value of the horizontal
gradient of R(x, y) over D.

AG2
rms ¼

Z Z

D

G2ðx; yÞdxdy ¼

Z Z

DP

G2ðr;wÞrdrdw

¼
R2
E

a2Eb
2
E

Z

2p

0

b4E cos
2 wþ a4E sin

2 w

b2E cos
2 wþ a2E sin

2 w

 !

dw

�

Z

r2

0

r exp �2r
cos2 w

a2G
þ
sin2 w

b2G

� �1=2
" #

dr:

ðA58Þ

Considering (A44), the integration with respect to r leads
to:

Z Z

D

G2ðx; yÞdxdy ¼
1

4

�

R2
E � R2

2: 1þ 2 ln
RE

R2

� ��

�

Z

2p

0

b4E cos
2 wþ a4E sin

2 w

b2E cos
2 wþ a2E sin

2 w
	 
2

dw; ðA59Þ

and from (A38),

AG2
rms ¼

p

4

bE

aE
þ

aE

bE

� �

R2
E � R2

2 1þ 2 ln
RE

R2

� �� �

:

ðA60Þ

A3. Hybrid Model

[74] Let R be the two-dimensional function defined,
according to the hybrid model (6), by:

Rðx; yÞ ¼ RG exp �
x2

a2G
þ

y2

b2G

� �� �

; if R � R1;

¼ RE exp �
x2

a2E
þ

y2

b2E

� �1=2
" #

; if R2 � R < R1:

)

ðA61Þ

The analytical expressions of the five integral para-
meters, namely A, R, Rrms , G, and Grms can be deduced
from the results obtained in the two previous sections.
From (A61), the domain of definition D of R can be
simply expressed as the area in the horizontal plane
where R(x, y) � R2.

A3.1. Area A Over Which R �����������__ R2

[75] From (A8) and (A45):

A¼

ZZ

D

dxdy¼ paGbG ln
RG

R1

þpaEbE ln2
RE

R2

� ln2
RE

R1

� �

:

ðA62Þ

Due to the continuity equations (12) and (13) for R = R1,
(A62) reduces to:

A ¼ paEbE ln
2 RE

R2

: ðA63Þ

A3.2. Mean Value of R(x, y) Over #
[76] Let R be the mean value of R(x, y) over D. From

(A11) and (A48):

AR ¼

Z Z

D

Rðx; yÞdxdy ¼ paGbGðRG � R1Þ

þ 2paEbE RE � R2 1þ ln
RE

R2

� �� �

� 2paEbE RE � R1 1þ ln
RE

R1

� �� �

¼ paGbGðRG � R1Þ

þ 2paEbE R1 1þ ln
RE

R1

� ��

� R2 1þ ln
RE

R2

� ��

:

ðA64Þ

A3.3. rms Value of R(x, y) Over #

[77] Let Rrms be the rms value of R(x, y) over D. From
(A14) and (A51):

AR2
rms ¼

Z Z

D

R2ðx; yÞdxdy ¼
p

2
aGbG R2

G � R2
1

	 


þ
p

2
aEbE R2

E � R2
2 1þ 2 ln

RE

R2

� �� �

�
p

2
aEbE

�

R2
E � R2

1 1þ 2 ln
RE

R1

� ��

¼
p

2
aGbG R2

G � R2
1

	 


þ
p

2
aEbE

� R2
1 1þ 2 ln

RE

R1

� ��

�R2
2 1þ 2 ln

RE

R2

� ��

:

ðA65Þ

A3.4. Mean Value of the Horizontal Gradient of
R(x, y) Over #

[78] Let G be the mean value of the horizontal gradient
of R(x, y) over D and G(x, y) the modulus of the
horizontal gradient of R(x, y). From (A33) and (A57):

AG ¼

Z Z

D

Gðx; yÞdxdy

¼ IG RG

p1=2

2
erf ln1=2

RG

R1

� ��

�R1 ln
1=2 RG

R1

�

þ IE R1 1þ ln
RE

R1

� ��

�R2 1þ ln
RE

R2

� ��

; ðA66Þ
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where IG = 4bGE
p
2
; 1�

a2
G

b2
G

� �1=2
� �

and IE = 4bEE

p
2
; 1�

a2
E

b2
E

� �1=2
� �

.

Importantly (14) gives:

E
p

2
; 1�

a2G
b2G

� �1=2
" #

¼ E
p

2
; 1�

a2E
b2E

� �1=2
" #

:

A3.5. rms Value of the Horizontal Gradient of
R(x, y) Over #

[79] Let Grms be the rms value of the horizontal
gradient of R(x, y) over D. From (A39) and (A60):

AG2
rms ¼

Z Z

D

G2ðx; yÞdxdy ¼
p

2

bG

aG
þ

aG

bG

� �

� R2
G � R2

1 1þ 2 ln
RG

R1

� �� �

þ
p

4

bE

aE
þ

aE

bE

� �

� R2
1 1þ 2 ln

RE

R1

� ��

�R2
2 1þ 2 ln

RE

R2

� ��

: ðA67Þ

Moreover, from (14), (A67) reduces to:

AG2
rms ¼

p

2

bG

aG
þ

aG

bG

� �

� R2
G � R2

1 1þ 2 ln
RG

R1

� ��

þ
R2
1

2
1þ 2 ln

RE

R1

� �

�
R2
2

2
1þ 2 ln

RE

R2

� ��

: ðA68Þ

[80] Acknowledgments. The authors are very grateful to
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