
HAL Id: hal-00797091
https://hal.science/hal-00797091

Submitted on 5 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal Software Verification at Model and at Source
Code Levels

Anthony Fernandes Pires, Thomas Polacsek, Stéphane Duprat

To cite this version:
Anthony Fernandes Pires, Thomas Polacsek, Stéphane Duprat. Formal Software Verification at Model
and at Source Code Levels. 2nd International Conference on Model & Data Engineering (MEDI’2012),
Oct 2012, France. pp.162-169, �10.1007/978-3-642-33609-6_16�. �hal-00797091�

https://hal.science/hal-00797091
https://hal.archives-ouvertes.fr

Formal Software Verification at Model and at

Source Code Levels

Anthony Fernandes Pires*,**, Thomas Polacsek*, Stéphane Duprat**

* ONERA, 2 avenue Edouard Belin,

31055 Toulouse, France
** Atos Intégration SAS, 6 impasse Alice Guy, B.P. 43045,

31024 Toulouse cedex 03, France

{anthony.fernandespires,stephane.duprat}@atos.net

{thomas.polacsek}@onera.fr

Authors final version, accepted for publication as:

Anthony Fernandes Pires, Thomas Polacsek, and Stéphane Duprat.
Formal software verification at model and at source code levels. In Alberto
Abelló, Ladjel Bellatreche, and Boualem Benatallah, editors, Model and Data
Engineering, volume 7602 of Lecture Notes in Computer Science, pages 162-169.
Springer Berlin Heidelberg, 2012. 10.1007/978-3-642-33609-6 16.

The original publication is available at www.springerlink.com (http:
//link.springer.com/chapter/10.1007\%2F978-3-642-33609-6_16)

Abstract

In a software development cycle, it is often more than half of the devel-

opment time that is dedicated to verification activities. Formal methods

offer new possibilities for verification. In the specification phase, simu-

lation or model-checking allow users to detect errors in models. In the

implementation phase, analysis techniques, like static analysis, make the

verification tasks more exhaustive and more automatic. In that context,

we propose to take advantage of these methods to improve embedded soft-

ware development processes based on the V-model.

Keywords: Verification, formal methods, development process, Model

Based Engineering

1 Introduction

In software development, verification activities are significant costs. In the sev-
enties, [8] was reporting that over half the software development time was de-
voted to tests. Today, in critical embedded software projects at Atos, we notice
that the cost of verification activities can sometimes reach 60% of the total
workload. In the DO-178b certification standard1 verification means are re-
views, analysis and tests, but the new version includes a specific text on the

1DO-178b Software considerations in airborne systems and equipment certification

1

SysML

Model-
checking

Specification

Design

Implementation

Executable

C Code

Static code
analysis

Frama-C

Design
Verification

SysML
OCL

annotations

Figure 1: Left side of our V-model with verification tasks

use of formal methods (DO-333). Formal methods are mathematically-based
techniques, for instance, formal logic, model checking or discrete mathematics.
Although not all errors can be found with tests, most of them could be detected
by the addition of formal methods in the early stages of development. It enables
more effective identification of software defects and allows to reduce verification
costs.

We propose to extend the embedded software development process based on
V-model by introducing formal methods at the earliest stages of the life cycle
and to use it to perform verification tasks. In this paper, our main contribution
is to introduce links between model, formal verification and source code formal
verification in an industrial context. Indeed, a lot of works focus on model ver-
ification and, more particularly, on OCL checking like we can see in [12] or [2].
Moreover, source code verification is successfully used now in industrial projects
like [13]. But, all these works use verifications only in one step of the develop-
ment cycle. Furthermore, because of our industrial context, it is necessary to
consider the formalisms and the practices used by development teams. It is im-
possible to introduce a disruptive innovation. Consequently, we limit our work
to OMG standards UML2 and SysML3 adapted to embedded software domain
for the design stages and to Frama-C4 for code analysis implementation stages.

In section 2, we introduce the addition of formal methods at the different
phases of the left branch of the V-model. In sections 3, 4 and 5, we give a
quick view of existing methods which can be used in the phases of our process,
we describe what we do in our approach and we illustrate its use on a simple
example. In section 6, we conclude the paper and give perspectives for our
work.

2 The global picture

The V-model is the most widely development process used for embedded soft-
ware. Even if it is often replaced, in other industrial domains, by other practices,
it is not the case in our context. The V-model has two main streams: the devel-
opment stream, the left side of the “V”, represents the program refinement from
requirements to code; the testing stream, the right side of the “V”, represents
integration of parts and their validation. In this paper, we propose to extend
the left side of the “V” by adding earlier verification steps (figure 1).

2http://www.uml.org/
3http://www.sysml.org/
4http://frama-c.com/

2

In order to illustrate our approach, this paper uses a simple example of
software development. We will represent the controller of a component in charge
of the verification of the power. The controller is driven by a clock. At each clock
tick, the controller does a task. During verification performed by the controller,
if a problem is detected, the controlled component jumps to a maintenance
status. While this maintenance status is maintained, no verifications are done
by the controller. When the component status becomes normal, verifications
start again.

3 Specification

3.1 Modeling Languages

There are many ways to specify software. The common one is to use natural
language to write specifications, but it often leads to ambiguities and misun-
derstandings like explained in [9]. Modeling languages offer ways to produce
formal specifications, which are better understandable, make communication
easier between users and allow code and documents generation activities.

Our scope is UML/SysML standards. Some works adapt these modeling
languages to the embedded domain. The UML profile MARTE [7] is an OMG
standard for the modeling of embedded and real-time systems. It defines con-
cepts in order to take into account the notions of time, concurrency, software
and hardware platform, resources and characteristics like execution time. It is
also possible to annotate models to perform analysis.

The SysML profile AVATAR [10] is dedicated to the modeling and the formal
verification of real-time embedded software. The language is a specialization of
SysML which focuses on activities realized in upper-stream of the development
cycle. It offers solutions for: requirements engineering, system analysis, system
modeling and safety and security properties modeling.

3.2 Our approach

We choose to use a subset of SysML for the specification. We limit the scope
of elements and we define patterns for specific use, without adding new con-
cepts. Our language is adapted to the specification of embedded software in a
synchronous and scheduled environment. This kind of software is driven by a
clock so it is expected to do a certain number of actions at each clock tick. Our
subset is based on three diagrams: block diagram representing the structure of
software components, state machine diagram representing the behavior of com-
ponents and activity diagram, representing the detailed actions occurring in a
state. The functioning is the following: for state machines, we constrain the
triggers of all the major transitions with a unique event named “NextStep“ in
our case. At each clock tick, which corresponds to one cycle, this event occurs.
It allows the firing of a transition of the state machine. In this way, we control
the evolution in a synchronous way. For more information and industrial use,
see [6].

3

Figure 2: the controller specification

3.3 Application on the example

The behavior specification of the controller using the modeling language de-
scribed above is given Figure 2. The controller starts by a state of verification
of the component status (check status). If it is normal, the controller goes to
a state of power verification (check power). If not, it repeats and waits for the
next cycle to check the status again. Once in state check power, the verification
is proceeded. At the next cycle, if the verification is correct or if the compo-
nent status is maintenance, the controller goes to check status and repeats the
behavior. If the verification is not correct and the component status is normal,
the controller goes to a state of maintenance (maintenance) and the component
status changes from normal to maintenance. The controller has to wait the end
of the maintenance, which can last some cycles, before going to check power
again.

4 Design & verification

4.1 Formal models analysis

Model notations like those introduced in section 3, even though really efficient at
conveying intelligible visual clues to the designers, lack the expressiveness needed
to capture the finer details of a complete specification. For instance, expressing
transition condition in natural language is a source of many ambiguities. To
address this, formal constraints specification languages were introduced. The
major interest of a fully formalized specification is the ability to perform analysis
tasks in early phases of the development process.

Analysis tasks can be performed with model checking. Model checking,
introduced in [11], allows users to verify if a system model respects a set of
requirements expressed as properties. For example, in the embedded domain,
UPPAAL [1] provides an environment for the modeling, simulation and verifi-
cation of real-time embedded systems. The model checker can verify properties
expressed in temporal logic Timed CTL, for which model checking is decidable.
A gateway exists between UPPAAL and SysML. TTool 5 gives the possibility to
check safety properties on AVATAR models with the UPPAAL model-checker.

5http://ttool.telecom-paristech.fr/index.html

4

4.2 Our approach

Here, we want to refine the specification model to meet a complete formalization
of our specification. We translate guards in state machine diagrams from natural
language to Object Constraint Language (OCL). OCL has been designed to be
easy to read, to write and to understand. We can also detail for each state the
set of actions that must be done in a cycle thanks activity diagram.

In addition, we want to use the formal specification of transition guards to
check some simple properties. Our goal is to make the verification completely
transparent to the user and to propose a set of properties to automatically verify
thanks model checking. An example of property is the deadlock freeness of each
state of the state machine. It is expressed with the following logical formula.

Definition 1 (Deadlock freeness of a state).
Let s a state of a state machine and G(s) the set of guards of all outgoing
transitions of s where G(s) = {g0, g1, . . . , gn}. The state s is deadlock free if
and only if Dfree(s) is valid, with Dfree(s) ≡

∨
0≤i≤n

gi

4.3 Application on the example

In our example, we formalized each guard with an OCL expression. The result
of the controller verification became a variable named check result defined as
enum type checking result whose possible values are OK or KO. The component
status became a global variable named status. This variable is of enum type
component status whose possible values are NORMAL or MAINTENANCE.

Today, we are not able to show the verification step, our work has just begun
and the choice of the tool has not been yet decided. But these formalizations are
sufficient to obtain code from the state machine and to conduct code analysis.

5 Implementation & static code analysis

5.1 Formal analysis of code

Static code analysis allows users to detect runtime errors or check properties
on the source code without execution. The framework Frama-C is an open-
source modular environment dedicated to the static analysis of C programs.
The framework uses ACSL 6 specification language to specify properties and
contracts on functions. Frama-C relies on different static analysis techniques
available through plugins and linked solvers.

The value analysis technique, based on the abstract interpretation [3], can be
used to ensure the absence of run-time errors in a program. This method is avail-
able with the Frama-C Value Analysis plugin 7. It is based on the computation
of variation domains for the variables of a program. The plugin gives warnings
if it detects possible runtime errors, for instance access to invalid pointer.

Another method is the verification by proof obligations derived from the
weakest precondition calculus introduced by [4]. It is a deductive method for

6ANSI/ISO C Specification Language, http://frama-c.com/acsl.html
7http://frama-c.com/value.html

5

proving properties. This kind of analysis is managed by Frama-C WP plugin 8

or Jessie plugin 9.

5.2 Our approach

In this step, our main goal is to ensure that source code conforms to the speci-
fication. In the same vein as [5], we want to derive ACSL annotations from the
design model (here in SysML) to the code and check them with static analysis.

In our approach, the behavior of the software is represented by state ma-
chines. Each state machine is implemented by two C functions, a transition
function dedicated to the choice of the triggered transition, the other for the
behavior of each state. Each function is constructed as a switch/case structure.
At each cycle, the two functions are called in sequence, in order to determine
which transition is triggered and what will be the actions done in the cycle.

To verify the global behavior, we add a function contract for the C transition
function. This contract is composed of one ACSL behavior for each state of the
state machine. One behavior is composed of two types of clause. Assumes
clause which specifies the property that must be true for the behavior to apply.
In our context, it is the current state at the call of the function. Then, ensures
clause which specifies the property that must be true at the end of the behavior.
In our context, there is one ensures clause for each possible outgoing transition
of the state. Each ensures clause is an implication defining that if the condition
of the transition is true, it implies that the new state of the state machine is
the targeted state of the transition.

In addition, we translate into ACSL the property expressed in design phase.
We want to verify that a state, expressed in the model, is deadlock freeness using
the enum types of the code. In that way, we use Frama-C to verify a property of
the specification. For that we add annotations for each state in the C function.
Requires clause will concern the range of the possible values of all variables used
in the guards of all outgoing transitions of the state. The behavior, composed
of one assumes clause will represent an implication defining that if we are in the
current state, it implies our property (the translation of the logical expression
defined in definition 1 to ASCL). Then, we will use a little trick. We will use
the complete behaviors annotation, originally used to check the completeness of
behaviors with Frama-C. In our case, this annotation will allow us to verify that
the requires clause implies the assumes clause and so to prove our property.

5.3 Application on the example

The C code of the transition function of the example (see figure 2) is given
below:

power_ctrl_state Power_Controller_T(power_ctrl_state state){

power_ctrl_state o_state;

switch(state) {

case init :

o_state=check_status;

break;

8http://frama-c.com/wp.html
9http://krakatoa.lri.fr/jessie.html

6

case check_status :

if (status==NORMAL) o_state=check_power;

if (status==MAINTENANCE) o_state=check_status;

break;

case check_power :

if(check_result==KO && status==NORMAL) o_state=maintenance;

if(check_result==OK || status==MAINTENANCE)

o_state=check_status;

break;

case maintenance :

if (status==NORMAL) o_state=check_power;

if (status==MAINTENANCE) o_state=maintenance;

break;

}

return o_state;

}

An example of ACSL behaviors is given below. This function contract checks
the outgoing transitions of the state check power.

/*@behavior state_check_power :

assumes state==check_power;

ensures (status==NORMAL && check_result==KO)

==> \result==maintenance;

ensures (status==MAINTENANCE || check_result==OK)

==> \result==check_status;*/

The behavior representing the deadlock freeness for this state is given below.

/*@requires status==NORMAL || status==MAINTENANCE;

requires check_result==OK || check_result==KO;

behavior dfree_check_power :

assumes state==check_power

==> ((check_result==KO && status==NORMAL)

|| (check_result==OK || status==MAINTENANCE));

complete behaviors dfree_check_power;*/

Static analysis is performed with the WP plugin version 0.4 of the Frama-
C Nitrogen version. For our example, all the proof obligations are verified
which means our transition function is compliant with our specification and the
deadlock freeness is verified for each state of the state machine.

6 Conclusion

There are many formal methods for verification tasks and all of them can be
incorporated in the different steps of the V-model. In this paper, we have
presented how to use some of them throughout the development cycle to gain
confidence on the specification, design and implementation, and to detect er-
rors in early stage of the development cycle. In addition, we have begun to
discuss how to link design and design verification with source code verification.

7

Furthermore, we have presented a way to verify a model property using code
analysis tool.

This work is a first proposal. We still need to work on generation of ACSL
annotations from SysML models. Today annotations are manually created from
state machine models. We need to work on the consideration of activity behav-
iors and the automatic generation. We should also propose OCL patterns for
properties and gateways to model checkers for the design verification step.

References

[1] G. Behrmann, A. David, and K. Larsen. A tutorial on uppaal. In Marco
Bernardo and Flavio Corradini, editors, Formal Methods for the Design of
Real-Time Systems, volume 3185 of LNCS, pages 33–35. Springer Berlin /
Heidelberg, 2004.

[2] J. Cabot, R. Clariso, and D. Riera. Verification of uml/ocl class dia-
grams using constraint programming. In Proceedings of the 2008 IEEE
International Conference on Software Testing Verification and Validation
Workshop, ICSTW ’08, pages 73–80, Washington, DC, USA, 2008. IEEE
Computer Society.

[3] P. Cousot. Abstract interpretation. ACM Comput. Surv., 28(2):324–328,
June 1996.

[4] E. W. Dijkstra. A constructive approach to the problem of program cor-
rectness. BIT Numerical Mathematics, 8:174–186, 1968.

[5] S. Duprat, P. Gaufillet, V. Moya Lamiel, and F. Passarello. Formal verifi-
cation of sam state machine implementation. In ERTS, France, 2010.

[6] A. Fernandes Pires, S. Duprat, T. Faure, C. Besseyre, J. Beringuier, and J-
F. Rolland. Use of modelling methods and tools in an industrial embedded
system project : works and feedback. In ERTS, France, 2012.

[7] S. Gérard, H. Espinoza, F. Terrier, and B. Selic. 6 modeling languages
for real-time and embedded systems. In Holger Giese, Gabor Karsai, Ed-
ward Lee, Bernhard Rumpe, and Bernhard Schtz, editors, Model-Based
Engineering of Embedded Real-Time Systems, volume 6100 of LNCS, pages
129–154. Springer Berlin / Heidelberg, 2011.

[8] C. A. R. Hoare. An axiomatic basis for computer programming. Commun.
ACM, 12(10):576–580, 1969.

[9] B. Meyer. On formalism in specifications. Software, IEEE, 2(1):6–26, 1985.

[10] G. Pedroza, L. Apvrille, and D. Knorreck. Avatar: A sysml environment
for the formal verification of safety and security properties. In 11th An-
nual International Conference on New Technologies of Distributed Systems
(NOTERE), pages 1–10, 2011.

[11] J. Queille and J. Sifakis. Specification and verification of concurrent systems
in cesar. In Mariangiola Dezani-Ciancaglini and Ugo Montanari, editors,
International Symposium on Programming, volume 137 of LNCS, pages
337–351. Springer Berlin / Heidelberg, 1982.

8

[12] M. Soeken, R. Wille, M. Kuhlmann, M. Gogolla, and R. Drechsler. Ver-
ifying uml/ocl models using boolean satisfiability. In Proceedings of the
Conference on Design, Automation and Test in Europe, DATE ’10, pages
1341–1344, 3001 Leuven, Belgium, Belgium, 2010. European Design and
Automation Association.

[13] J. Souyris, V. Wiels, D. Delmas, and H. Delseny. Formal verification of
avionics software products. In Ana Cavalcanti and Dennis Dams, editors,
FM 2009: Formal Methods, volume 5850 of LNCS, pages 532–546. Springer
Berlin / Heidelberg, 2009.

9

