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Abstract

In this paper, we revisit the idea of splitting a
planning problem into subproblems hopefully eas-
ier to solve with the help of landmark analysis.
While this technique initially proposed in the first
approaches related to landmarks has been outper-
formed by landmark-based heuristics, we believe
that it is still a promising research direction. To
this end, we propose a new method for problem
splitting based on landmarks which has two advan-
tages over the original technique: it is complete
(if a solution exists, the algorithm finds it), and it
uses the precedence relation over the landmarks in
a more flexible way. We lay in this paper the foun-
dations of a meta best-first search algorithm, which
explores the landmark orderings to create subprob-
lems and can use any embedded planner to solve
subproblems. It opens up avenues for future re-
search: among them are new heuristics for guiding
the meta search towards the most promising order-
ings, different policies for generating subproblems,
and influence of the embedded subplanner.

1 Introduction

Automated Planning in Artificial Intelligence [Ghallab et al.,
2004] is a general problem solving framework which aims
at finding solutions to combinatorial problems formulated
with concepts such as actions, states of the world, and goals.
Landmark-based analysis is actually among the most popu-
lar tools to build efficient planning systems, either optimal or
suboptimal. Landmarks are facts that must be true at some
point during the execution of any solution plan, and some
of them can be found, as well as an ordering, in polynomial
time [Hoffmann et al., 2004; Keyder et al., 2010]. Land-
marks have been used in two main ways. The most successful
one is the design of heuristic functions to guide search algo-
rithms, such as the landmark-counting heuristic used in the
LAMA suboptimal planner [Richter et al., 2008] or the LM-
Cut heuristic for optimal cost-based planning [Helmert and
Domshlak, 2009]. An anterior method proposed in [Hoff-
mann et al., 2004] is to divide a planning problem into suc-
cessive subproblems whose goals are disjunctions of land-
marks to be achieved in turn by any embedded planner. This

method is not as efficient as using landmark-based heuristics:
among the most prominent problems are its incompleteness
and its lack of flexibility with respect to an initial ordering
of the landmarks. STeLLa [Sebastia et al., 2006] is another
problem-splitting method which creates a set of subproblems
using conjunctions of landmarks.

We aim in this paper to revisit these last methods, with
the objective of devising a complete algorithm for subprob-
lem splitting based on landmarks. Roughly speaking, our
method consists in performing a best-first search algorithm
in the space of landmark orderings, in which node expansion
implies the search of a subproblem by an embedded planner.
This search algorithm is performed at a meta level, the low
level being the search made by the embedded planner that
can itself use a best-first search algorithm. After giving some
background about classical planning and landmark computa-
tion, we define the basic components later used to describe the
landmark-based meta best-first search algorithm (LMBFS),
along with several heuristics to guide the meta search, and
experimentally evaluate their influence on the planner effi-
ciency. We finally conclude and present some perspectives
for future works.

2 Background on Classical Planning

2.1 STRIPS Model of Planning

The basic STRIPS [Fikes and Nilsson, 1972] model of plan-
ning can be defined as follows. A state of the world is repre-
sented by a set of ground atoms. A ground action a built from
a set of atoms A is a tuple 〈pre(a),add(a),del(a)〉 where
pre(a) ⊆ A, add(a) ⊆ A and del(a) ⊆ A represent the
preconditions, add and delete effects of a, respectively.

A planning problem is defined as a tuple Π = 〈A,O, I,G〉,
where A is a finite set of atoms, O is a finite set of ground
actions built from A, I ⊆ A represents the initial state, and
G ⊆ A represents the goal of the problem. The application
of an action a to a state s is possible if and only if pre(a) ⊆
s and the resulting state is s′ = (s \ del(a)) ∪ add(a). A
solution plan is a sequence of actions 〈a1, . . . , an〉 such that
for s0 = I and for all i ∈ {1, . . . , n}, the intermediate states
si = (si−1 \ del(ai))∪add(ai) are such that pre(ai) ⊆ si−1

and G ⊆ sn. S(Π) denotes the set of all solution plans of Π.

We also denote ◦ the concatenation of two plans, i.e.
〈a1, . . . , ai〉 ◦ 〈aj , . . . , ak〉 = 〈a1, . . . , ai, aj , . . . , ak〉.



2.2 Landmarks

Classical landmark definitions state that landmarks are facts
that must be true at some point during the execution of any
solution plan [Hoffmann et al., 2004; Keyder et al., 2010].
We use the following definition of landmarks:

Definition 1 (Causal landmark). [Zhu and Givan, 2003]

Given a planning problem Π = 〈A,O, I,G〉, an atom l is
a causal landmark for Π if either l ∈ G or ∀ρ ∈ S(Π), ∃a ∈
ρ : l ∈ pre(a).

An intuitive precedence relation among landmarks and a
graph based on this relation can be defined as follows:

Definition 2 (Precedence relation <L). <L can be defined
on a set of landmarks L: (∀(l, l′) ∈ L2) l <L l′ if the first
occurence of l is reached before the first occurence of l′ by
the execution of every solution plan.

Definition 3 (Landmark graph Γ). Given a set of landmarks
L and a precedence relation <L, we define Γ = (V, E), the
corresponding landmark directed graph where the set of ver-
tices V = L and the set of edges E is the transitive reduction
of the graph (V, {(l, l′) ∈ L2 | l <L l′}).

Definition 4 (Relatives of a landmark l). Accordingly to the
graph Γ, we denote PaΓ(l) the set of parents of l, ChΓ(l) the
set of children of l, and PΓ(l) the set of ancestors of l.

We now introduce the following definitions that we will
rely on. First, we denote root landmarks of a landmark graph
all landmarks associated to vertices with no parents:

Definition 5 (Root landmark set). Let Γ = (V, E) be a land-
mark graph: roots(Γ) = {l ∈ V | PaΓ(l) = ∅}.

We now define the subgraph Γ \A built by removing from
the landmark graph Γ the vertices associated to landmarks in
A and their corresponding edges:

Definition 6 (Landmark subgraph). Let Γ = (V, E) be a
landmark graph and A be a set of landmarks: Γ \ A =
(V \ A, {(v, v′) ∈ E | v /∈ A ∧ v′ /∈ A}).

Landmark Graph Generation
Practicals methods proposed to produce landmark graphs
[Hoffmann et al., 2004; Zhu and Givan, 2003] are based on a
Relaxed Planning Graph (RPG) of Π. More complex types of
landmarks might be considered [Keyder et al., 2010]. In this
work, we choosed the method of [Zhu and Givan, 2003] for
its simplicity.

Related Works on Using Landmarks
Previous approaches used landmarks in mainly two differ-
ent ways. One approach is computing heuristics. For ex-
ample, the LAMA heuristic [Richter et al., 2008] estimates
a heuristic value of the states by counting unreached and re-
quired again landmarks. Another approach is to split a plan-
ning problem into subproblems. Disjunctive Search Con-
trol (DSC) [Hoffmann et al., 2004] is a search control algo-
rithm based on the landmark graph. It runs a subplanner on
the problem Π whose goal is the disjunction of the roots of
the landmark graph and G. If a valid plan is found, then the
reached landmark is removed from the landmark graph and
the algorithm iterates (the reached state is used as the new
initial state) until the landmark graph is empty. Finally, the
subplanner is called a last time with G as goal.

3 The Landmark-based Meta Best-First

Search (LMBFS) Algorithm

Our approach is based on problem splitting with a flexible
exploitation of the landmark graph: LMBFS performs a best-
first search in a space of subproblems generated on-the-fly,
based on possible landmark orderings.

More precisely, LMBFS builds a search tree where nodes
represent planning problems that are subproblems of the orig-
inal one. Solving subproblems along a branch of this tree
leads to iteratively reach each landmark in a possible order-
ing, the initial state of each subproblem being the final state
obtained by applying the plan found for the previous subprob-
lem. We formally define in this section the metanodes and as-
sociated planning problems, as well as different ways of gen-
erating the next subproblems to solve from a metanode (the
children of that metanode in the search tree). Both aspects
heavily rely on the landmark graph and on the partial order it
defines. We then give the complete algorithm, heuristics used
and implementation details.

In the following, we consider a planning problem Π =
〈A,O, I,G〉, its corresponding set of landmarks L, and Γ the
landmark graph associated to Π.

3.1 Metanode and Associated Planning Problem

We first define metanodes and associated problems:

Definition 7 (Metanode). A metanode is a tuple m =
〈s, h,A, l, ρ〉 where:
• s is a state of the planning problem Π;
• h is a heuristic evaluation of the node;
• A is a set of landmarks (A ⊆ L);
• l is a landmark (l ∈ L);
• ρ is a plan yielding the state s from the initial state I.

Definition 8 (Metanode-associated planning problem). The
planning problem associated to a metanode m =
〈s, h,A, l, ρ〉 is Πm = 〈A, opsΓ(l,A), s, {l}〉 with
opsΓ(l,A) a subset of O defined below.

We consider the planning problem where s is the initial
state, A is the set of ground atoms of Π, {l} is the goal. In
order to focus search on reaching l, we forbid the actions
producing some other landmarks by defining opsΓ(l,A) as
a subset of actions associated to a landmark subgraph:

Definition 9 (Landmark subgraph action restriction). Let
m = 〈s, h,A, l, ρ〉 be a metanode. opsΓ(l,A) = {a ∈
O | (l ∈ add(a)) ∨ (add(a) ∩ roots(Γ \ A) = ∅)}.

In other words, opsΓ(l,A) is the set of actions producing
l and actions which does not produce any root landmarks of
the subgraph Γ \ A (except if they also produce l). In our
algorithm, A will be the set of already achieved landmarks.

3.2 Expansion of Metanodes

There are several ways to generate children of a metanode,
or equivalently defining other subproblems to solve. Let us
recall that a metanode m = 〈s, h,A, l, ρ〉 defines a problem
starting from s and focusing on achievement of landmark l by
forbidding actions producing other landmarks of roots(Γ\A)
(except if they also produce l). In the following, h′ is the
heuristic evaluation of the generated metanode, discussed in
section 3.4.
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Figure 1: Planning Graph of “nextLM problem”.

Next Landmarks Metanode Generation

This first metanode generator tries to follow the landmark
graph Γ as closely as possible, exploring sequences from the
roots to the leaves. The idea is the following: when the goal
landmark of the metanode can be reached, generate children
in order to reach other root landmarks in Γ. We thus define
the nextLM operator as:

Definition 10 (Next landmarks metanode generation). Let
m = 〈s, h,A, l, ρ〉 be a metanode. If Πm has a solution
ρ′, then nextLM(m) = {〈s′, h′,A ∪ {l}, l′, (ρ ◦ ρ′)〉 | l′ ∈
roots(Γ \ (A ∪ {l}))} where s′ is the state obtained by ap-
plying ρ′ to s. If Πm has no solution, nextLM(m) = ∅.

In other words, at a metanode m, we try to reach the land-
mark l. If there is a plan, the landmark l is added to the set of
already achieved landmarksA, and the partial plan is updated
accordingly. Then, new metanodes are generated by looking
at root landmarks in the restricted graph Γ \ (A ∪ {l}).

Remark. Using nextLM, we can explore every total order
created from the precedence relation <L, which was our ob-
jective. Indeed, consider a metanode focusing on an initial
root landmark of Γ. If we generate its children using the
nextLM operator, then selecting one of them and iterating
the process in a depth-first way, we will eventually empty the
landmark graph Γ, achieving the exploration of a total order
of all landmarks.

Unfortunately, even if the landmark graph Γ is sound and
complete, using only nextLM makes the algorithm incom-
plete, as shown in the following counterexample. Let us con-
sider the example in Figure 1 where circles are atoms, squares
are actions, arrows mean precondition of an action or produc-
tion of an atom and dashed arrows mean deletion of an atom.
The initial state is {a, f, d} and the goal set is {c}. As we can
see, g and c are landmarks, and g has to be reached before
c. The first metanode will have the landmark g as goal. The
subplanner gives the plan 〈α〉. The only generated metanode
added to the open list is m = 〈{f, g}, h, {g}, c, 〈α〉〉. The as-
sociated problem Πm is unsolvable, as α deletes the precon-
ditions of δ and ǫ which are mandatory actions that should be
applied before α.

This led us to define new metanode generators, which, used
in conjunction with nextLM, make the algorithm complete.
These operators are based on landmark deletion from Γ, al-
lowing for instance in the counterexample to try to reach the
goal c without blindly focusing on g first.

Cut-parents Metanode Generation

These operators remove the ancestors of a non-root landmark.

Definition 11 (Cut-parents metanode generations). Let m =
〈s, h,A, l, ρ〉 be a metanode. If Πm has a solution ρ′, then
cutParent(m) = {〈s′, h′,A ∪ PΓ(l

′), l′, (ρ ◦ ρ′)〉 | l′ ∈
ChΓ(l)} where s′ is the state obtained by applying ρ′ to s.
If Πm has no solution, then cutParent(m) = ∅.

Definition 12 (Restart cut-parents metanode genera-
tion). restartCutParent(〈s, h,A, l, ρ〉) = {〈I, h′,A ∪
PΓ(l

′), l′, ∅〉 | l′ ∈ ChΓ(l)} where I is the initial state of the
original planning problem.

The idea is that a total order constructed on the partial order
defined by the landmark graph may be too restrictive, as in the
counterexample. Using these two operators, some landmarks
may be skipped by trying to reach deeper landmarks.

Delete Landmark Metanode Generation

Finally, we introduce the very generic landmark deletion op-
erator: metanodes are generated as if the deleted landmark
did not exist:

Definition 13 (Delete landmark metanode generation).
deleteLM(〈s, h,A, l, ρ〉) = {〈s, h′,A ∪ {l}, l′, ρ〉 | l′ ∈
roots(Γ \ (A ∪ {l}))}.

This operator discards a landmark, and causes the search
to try to achieve remaining root landmarks. Applying this
operator enough times on the first metanode (that has I as
initial state) empties the landmark graph, eventually giving a
metanode associated to the original planning problem. Also,
the cut-parents operators can be seen as shortcuts for several
delete landmark operators applications, guided by PΓ.

3.3 Algorithm

LMBFS (Algorithm 1) is a best-first search algorithm on
metanodes of definition 7, with deferred heuristic evaluation
[Richter and Helmert, 2009]: new nodes are inserted into the
open list with the heuristic value of their parent.

Algorithm 1: LMBFS.

input : STRIPS problem Π = 〈A,O, I,G〉, landmark
graph Γ, metanode successor function succ

output : solution plan (or ⊥ if there is no solution)
1 open← ∅; closed← ∅;
2 ∀l ∈ roots(Γ) : add 〈I, h, ∅, l, ∅〉 to open;
3 while open 6= ∅ do
4 m← argmin〈s,h,A,l,ρ〉∈open h;

5 open← open \ {m};
6 if m /∈ closed then
7 closed← closed ∪ {m};
8 ρ′ ← subplanner(Πm);
9 if ρ′ 6=⊥ then

10 s′ ← result of executing ρ′ in s;
11 if G ⊆ s′ then
12 return ρ ◦ ρ′;

13 open← open ∪ succ(m);

14 return ⊥

The algorithm is run on the problem Πg = 〈A ∪ {g}, O ∪
{ag}, I, {g}〉 where g is a dummy atom representing goal



achievement, and ag is a dummy action whose precondition is
G and add effect is {g}. g is a landmark whose achievement
implies that a solution to Π has been found.

First, the metanodes associated to each root landmark of Γ
are added to the open list. Then, at each iteration, the best
metanode m (according to a heuristic detailed in section 3.4)
is extracted from the open list, and a subplanner is run on the
associated problem Πm. If the subplanner returns a plan, m
is expanded by adding its successors to the open list. The
algorithm iterates until the open list is empty or g is reached.

The function succ applied to the metanode m (Algorithm
1 line 13) computes the set obtained by an operator or the
union set of several operators described in section 3.2. In our
planner, we have implemeted two successor functions:
• succDel(m) = nextLM(m) ∪ deleteLM(m)
• succCut(m) = nextLM(m) ∪ cutParent(m) ∪
restartCutParent(m)

The operator nextLM is at the heart of our algorithm in
order to focus on sequences of landmarks. However to en-
sure completeness, we have to use a combination of the other
operators: as a net effect of applying these operators at each
node expansion, the metanode m = 〈I, h′,L \ {g}, g, ∅〉 cor-
responding to the global problem Πg will appear.

Theorem 1. The LMBFS algorithm using succCut or
succDel as successor function is sound and complete if the
subplanner is sound and complete.

Proof. (sketch) Soundness comes from: (1) the state in the
first metanode is the initial state I of the problem, (2) all suc-
cessor operators build plans that can be concatenated to form
a solution of the global problem or search a new plan from
I , and (3) if the final landmark g appears in a metanode, then
achieving it solves the global problem goal. (2) is obtained
by induction: if a metanode m = 〈s, h,A, l, ρ〉 is such that
s is reachable by applying ρ from I , then by definition of
nextLM and cutParent, s′ is the state obtained by applying
ρ′ to s and so s′ is reachable by applying ρ ◦ ρ′ from I (using
subplanner soundness). deleteLM modifies neither s nor ρ,
so the recursive property is ensured. restartCutParent pro-
duces a metanode m = 〈I, h,A, l, ∅〉: a new search from I is
started, giving a sound plan if the subplanner is sound.

Completeness comes from the fact that the operators
restartCutParents (for the succCut successor function) and
deleteLM (for the succDel successor function) are system-
atically used at each expansion of a metanode. So, the
search graph contains a branch starting from the initial metan-
ode consisting only of applications of restartCutParents or
deleteLM, and both will have the effect to (1) keep I as asso-
ciated state, (2) put all landmarks but g in the set of landmarks
A, and (3) produce a final metanode whose associated land-
mark is g. From definition 9, opsΓ(g,L\{g}) = O∪{ag}: all
actions of the original problem are used for solving this final
metanode, which is the global problem, and so completeness
of LMBFS derives from completeness of the subplanner.

Lazy Metanode Generation

The delete landmark metanode generation (section 3.2) can
generate a considerable amount of metanodes for some in-
stances, thus inducing a slow-down during the insertion of

these metanodes in the open list. To overcome this issue,
we generate metanodes with deleteLM only when the open
list is empty. When a metanode is inserted in the closed
list, it is also pushed into a secondary open list. When
the main open list is empty, we simply pop a metanode m
from the secondary open list, and generate its children using
deleteLM(m). The heuristics for ordering metanodes in the
secondary open list are the same as the ones used for the main
open list.

3.4 Heuristics for Metanode Selection

In order to improve the algorithm effectiveness, the most
promising metanode from the open list has to be selected.
For doing so, a metanode generated by nextLM is always
preferred over others, in order to focus search on reaching
landmarks in sequence. Thus, the expansion of other (de-
graded) metanodes is delayed until we have no other choice,
in the spirit that search can be focused using preferred opera-
tors [Richter and Helmert, 2009].

Three heuristic functions have been implemented. The first
ones evaluate G from the starting state of the metanode, with
the well-known heuristics hadd [Bonet and Geffner, 2001]

and hff [Hoffmann and Nebel, 2001]. The last one, inspired
by the landmark-counting heuristic of LAMA [Richter et al.,
2008], uses the landmark graph Γ and counts the remaining
landmarks to be reached. The metanode with the least num-
ber of remaining landmarks is chosen, enforcing a depth-first
search in the graph. We will refer to this heuristic as hLleft .

Definition 14 (hLleft ). For a metanode m = 〈s, h,A, l, ρ〉
and an associated landmark graph Γ = (V, E), the heuristic
hLleft is defined by hLleft (m) = |V \ A|.

4 Experiments

4.1 Experimental Setup

We conducted a set of experiments on a selection of bench-
marks from the 3rd to the 7th International Planning Compe-
tition (IPC) within a 10 minutes CPU time limit. The exper-
iments were all run on an Intel X5670 processor running at
2.93Ghz with 24GB of RAM. In the next figures, each plot
represents an IPC problem. Only results with the succDel
operator are reported here, as it yielded better results than
succCut. However, actually, nodes generated by nextLM
are always preferred over nodes generated by these two op-
erators, and we think that relevant heuristics for interleaving
both kind of nodes might give a different picture.

Subplanner Embedded in LMBFS For subproblem reso-
lution, we use YAHSP [Vidal, 2004; 2011] for two reasons.

Firstly, we do not want to use a subplanner that also uses
landmarks internally (especially if non-negligible preprocess-
ing time is required), as our objective is to evaluate a new use
of landmarks without benefiting from them in any other way.

Secondly, because the successive subproblems solved dur-
ing metanode expansion should be, and generally are, easy to
solve with very few lookaheads computed in YAHSP. More-
over, directly embedded in the form of a C library, YAHSP
does not require any preprocessing when faced with a new



subproblem. It can thus generally answer very fast. It has
also already been embedded with some success in another
planner based on evolutionary algorithms [Bibaı̈ et al., 2010]

for solving different kinds of subproblem sequences.

Selected Domains To come up with a test suite, we ran pre-
liminary tests in all STRIPS domains from the IPC. We se-
lected some domains which YAHSP does not solve too eas-
ily (using few lookaheads), and also included some domains
it solved easily to exhibit the possible slow-down required
by the pre-computation of the landmark graph and the split-
ting into smaller instances of already easy solvable problems.
Thus, we selected 14 domains1 (390 problems), which we be-
lieve could represent a classic set of domains for the IPC.

4.2 Results

Landmark Graph Generation For most problems, the
computation time of the landmark graph is low. It takes less
than 0.1s for 86% of the instances, and less than 1s for 97%
of the instances. Even if the computational time of the land-
mark graph on the initial state is acceptable, we consider it
too long to be processed at each metanode during search. Re-
computing landmarks could be more informative for search
but, as LMBFS is designed for speed, we did not investigate
such an option. Another reason is that adding new landmarks
in the graph would break the current algorithm’s complete-
ness, which is based on emptying the initial landmark graph.

Efficiency of the Different Heuristics Figure 2(a) shows
a comparison of the runtime of LMBFS with hLleft (x-axis)
and hff (y-axis). As we can see, most of the plots are above
y = x, meaning most instances have been solved faster us-
ing hLleft . Figure 2(b) shows a comparison between hLleft

(x-axis) and hadd (y-axis). The results are again in favor of
hLleft which outperforms hadd in most of the problems. Table
1 summarizes the runs performed with LMBFS using several
heuristics. It shows that LMBFS with the hLleft heuristic out-
performs the two other (with hadd or hff ).

Heuristic solved < 1s solved < 10s solved

hadd 45.64% 63.85% 75.13%
hff 34.62% 45.38% 57.95%
hLleft 74.36% 85.90% 92.31%

Table 1: Coverage of LMBFS using different heuristics (10
minutes timeout).

Lazy Metanode Generation Table 2 compares the speed-
up obtained by using the lazy metanode generation described
in section 3.3. We can see that there is a strictly positive
speed-up for 51.03% of the problems, and a speed-up supe-
rior to 2 for 23.74% of them. Even if there is a noticeable

1ipc3-driverlog, ipc3-freecell, ipc3-satellite, ipc4-pipesworld -
tankage, ipc4-psr small, ipc[56]-openstacks, ipc5-pathways,
ipc[67]-transport, ipc[67]-scanalyzer, ipc7-barman, ipc7-floortile
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Figure 2: Runtimes of LMBFS with several heuristics (in sec-
onds).

slow-down for 4.36% of the problems (heuristically equiva-
lent nodes may be ordered differently in the main and sec-
ondary open lists due to implementation details), it still is a
nice improvement for the overall test suite.

Instances where the
speed-up/slow-down is

Average > 1 > 1.05 > 2
Speed-up 8.11 51.03% 36.41% 22.74%

Slow-down 2.24 14.10% 4.36% 1.81%

Table 2: Speed-up of lazy metanode generation.

LMBFS versus sub-planner (YAHSP) Table 3 summa-
rizes the coverage of runs performed with LMBFS using the
hLleft heuristic in comparison with YAHSP and some state-
of-the-art planners, also shown as a curve in function of
the timeout in Figure 4. The comparison between LMBFS
and YAHSP is also depicted in Figure 3(a). It shows that
many problems are solved within 1s and most of the prob-
lems quickly solved by YAHSP (under 0.1s) are solved by
LMBFS nearly as fast. On harder instances we can also see
that LMBFS shows its benefits in terms of running time. Fi-
nally the total number of solved instances is slightly in favor
of LMBFS.
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(b) LMBFS vs. LAMA (w/ preprocessing).
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Figure 3: Runtimes of LMBFS with hLleft versus YASHP and LAMA-11 (in seconds).
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Figure 4: Coverage of LMBFS with hLleft versus state-of-the-
art planners as a function of the timeout (in seconds).

A major drawback that has been pointed out for the DSC
algorithm and the SteLLa planner is the length of computed
plans which can be significantly higher. Compared to the
plans computed by YAHSP, the average plan length computed
by LMBFS is 8% shorter. In 43% instances LMBFS com-
putes strictly shorter plan than YAHSP and in 19% instances
the plans are strictly longer.

LMBFS versus State-of-the-Art Planners Table 3 and
Figure 4 compare LMBFS to the LAMA-11 planner (based
on landmark analysis but in a different way), as well as to the
SAT-based planners M and Mp [Rintanen, 2012].

Figures 3(b) and 3(c) are scatter plots comparing the run-
times of LMBFS versus LAMA-11. Figure 3(b) shows run-
times including preprocessing within the 10 minutes timeout,
and Figure 3(c) without taking into account the preprocessing
time, as LAMA-11 can spend a lot of time during this stage.

These evaluations show that on our selection of domains,
LMBFS is competitive with the state-of-the-art. It clearly
outperforms M, Mp and YAHSP (for problems that require
at least 1 second). It also outperforms LAMA-11, although
the overall performance for a 10 minutes timeout depends on
whether or not the preprocessing time is included.

5 Conclusion and Future Works

This paper presents several contributions towards a new
landmark-based planning algorithm. First, we propose a

Planner solved < 1s solved < 10s solved

with preprocessing time

LMBFS 71.79% 84.87% 92.31%
YAHSP 71.28% 79.74% 88.97%

LAMA-11 60.51% 81.79% 92.05%
M 40.00% 47.44% 58.72%

Mp 52.82% 64.36% 78.46%
without preprocessing time

LMBFS 74.36% 85.90% 92.31%
LAMA-11 69.74% 82.82% 92.56%

Table 3: Coverage of LMBFS with hLleft versus state-of-the-
art planners (10 minutes timeout), with and without prepro-
cessing time for LMBFS and LAMA-11.

sound framework for a (meta)search based on the order of
landmarks, given a landmark graph. We formalize the link
between so-called metanodes and subproblems of the origi-
nal planning problem, including restrictions on the allowed
actions themselves. We give several operators that allow to
explore different orders for using landmarks as subgoals, in-
cluding skipping some. We also propose a first approach for
evaluating heuristic values of such metanodes, or equivalently
giving priorities to subproblems. We put everything together
in a (deferred) best-first search algorithm, leading to a com-
plete algorithm. Last but not least, we implemented it and
give some promising results.

From now on, several leads will be followed.
A key point for performance is the heuristic evaluation of

metanodes, linked to the operators used for generation. For
instance, nodes generated with nextLM are always expanded
before other metanodes, which is not necessarily the best so-
lution. A first lead to obtain a better heuristic would be to
also take into account the landmark subgoal but preliminary
experiments showed us that this will not be straightforward.

Another point is the operators used. While deleteLM is
very general, cutParent can be seen as a special case (a short-
cut for a given sequence of deleteLM, or said differently,
a lookahead in the landmark graph itself), and other special
cases may be very useful.

Another future work consists in modifying the LMBFS al-
gorithm to make it distributed for being executed on new par-
allel architectures. A first scheme based on ideas from HDA*
[Kishimoto et al., 2009] is proposed in [Vernhes et al., 2013].
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