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Abstract—Although multi/many-core platforms enable the
parallel execution of tasks, the sharing of resources may lead
to long WCETs that fail to meet the real-time constraints of the
system. Then, a safe solution is the execution of the most critical
tasks in isolation followed by the execution of the remaining tasks.
To improve the system performance, we propose an approach
where a critical task can run in parallel with less critical tasks,
as long as the real-time constraints are met. When no further
interferences can be tolerated, the proposed run-time control
suspends the low critical tasks until the termination of the
critical task. In this paper, we describe the design and prove
the correctness of our approach. To do so, a graph grammar is
defined to formally model the critical task as a set of control flow
graphs on which a safe partial WCET analysis is applied and
used at run-time to control the safe execution of the critical task.

I. INTRODUCTION

A. Context

The chip market moves towards multi/many-core systems
due to increased system requirements and power dissipation is-
sues of single-core systems [1]. As these systems offer massive
computing power, a higher integration of applications is per-
formed in the same platform. The integrated applications have
diverse characteristics which create mixed-critical systems [2].
A mixed-critical system consists of applications with different
levels of criticality. The criticality level of an application
depends on the potential consequences on the system in case
the application fails to meet its timing constraints. The Design
Assurance Level (DAL) model [3] defines the hard real-time
applications with high criticality levels A, B or C and the soft
real-time applications with low criticality levels D or E.

Applications with high criticality level require strict guar-
antees on their correct execution. To ensure these guaran-
tees, real-time task scheduling techniques should use a safe
estimation of the Worst-Case Execution Time (WCET) [4].
Several WCET estimation techniques exist, but static analysis
tools [5], such as AIT or OTAWA, are recommended for
high criticality applications. Unfortunately, many/multi-core
systems have a dynamic difficult-to-predict behavior. More
precisely, the concurrent accesses to the shared resources
introduce timing variations, e.g. in the communication network
and in the memory hierarchy with variable delays under
concurrent requests. Therefore, the effects of possible task
interferences have to be upper bounded to guarantee real-time
response, usually by assuming full contention under concurrent
requests. The result is a safe but pessimistic WCET, in the
sense that the cases leading to the worst case scenarios are

unlikely to occur. This leads to over-allocating resources to
high criticality applications and it may even be the cause of
the system unschedulability.

B. Motivation

Let us consider n+1 independent synchronous tasks T =
{τC, τ1, . . . , τn} where τC is a periodic task of high criticality
level (DAL A, B or C), period TC and deadline DC ; τi are
tasks of low criticality level (DAL D or E). A partitioned
scheduling is applied where each task is executed on a different
core.
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Fig. 1. Mixed-critical schedules scenarios

Two scenarios for the WCET computation of τC are
considered: 1) maximum load (max): all tasks run in parallel,
and 2) isolation (iso): only τC runs on the system. In max

scenario, we assume that due to the resource sharing, the
WCET of τC is above the deadline, i.e. WCETmax > DC , as
depicted in Fig. 1(a). In this case, the hard real-time constraints
cannot be met. Existing mixed-critical scheduling approaches,
such as [6], [7], [8], assume that the task set is schedulable at
least in the highest criticality level, and thus are not directly
applicable. Then, a safe solution is to execute τC in isolation.
When the critical task terminates and if time slack exists, the
low criticality tasks are executed. In this case, no conflict
occurs with the low criticality tasks. Hence, the WCET is
significantly lower and the critical task respects its deadline,
i.e. WCETiso ≤ DC , as shown in Fig. 1(b).

Our goal is to increase the task parallelism and to reduce
the over-provisioning of resources by combining the benefits
and discarding the drawbacks of the previous cases. To achieve
that, the low criticality tasks are allowed to run in parallel
with the critical task, as long as it is safe. At run-time, if
the interferences may lead to a deadline miss of τC , the low
criticality tasks are suspended until the termination of τC . If



time slack exists, the low criticality tasks are resumed. In
this way, the critical task is guaranteed to meet its deadline,
whereas the low criticality tasks run in parallel improving the
resources utilization, as shown in Fig. 1(c).

C. Proposed methodology and contributions

This optimistic mixed-critical schedule can be achieved us-
ing an appropriate run-time control mechanism, as proposed by
our methodology. We introduce a set of observation points to
enable the run-time (online) monitoring of the timing behavior
of the critical task and the control of task set scenarios. At
each observation point, a safety condition is applied to check
whether it is still safe to continue the execution of τC in
the maximum load scenario. The safety condition uses the
remaining WCET of the critical task in isolation scenario,
which is run-time computed by our low-overhead algorithm. If
the safety condition evaluates that a risk exists of overloading
the system and, thus, the critical task runs too slow, a backup
process is applied to guarantee the real-time response of
τC : the low criticality tasks are suspended and τC runs in
isolation. When the critical task finishes its execution and if
time remains until the next release of τC , the low criticality
tasks are resumed. We prove the correctness of the proposed
safety condition and the low-overhead run-time algorithm for
computing the remaining WCET.

As the computation of the remaining WCET is time
consuming, it cannot be performed at run-time. Hence, we
propose a run-time algorithm based on pre-computed data
which reflect the program structure (static analysis). Then,
the run-time computation involves only basic arithmetic and
reflects the actual progress of the critical task execution. To
achieve this goal, during the design-time (offline) analysis,
the critical task is represented by a set of Extended Control
Flow Graphs (ECFGs) with observation points. We propose
a graph grammar to formally describe the set of ECFGs
under study and to prove the correctness of our run-time
computation algorithm. Based on the obtained ECFGs, a safe
WCET analysis is applied for the pre-computation of several
partial remaining WCETs used by the run-time control.
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Fig. 2. Overall methodology

The proposed methodology consists of the design-time
analysis to pre-compute the required data and the task scenario
control applied at run-time, as shown in Fig. 2. A brief

description of the general idea is detailed in [9], whereas in this
paper, we focus on the design, the formal description and the
proof of the proposed methodology. We also give evaluation
results based on simulations. The proposed run-time control
can be implemented in the target system as a software or as a
hardware component, which is our future work.

The remaining of the paper is organized as follows: Sec-
tion II presents the proof of our guarantee on the critical task
real-time response. Section III formally presents the design-
time analysis. Section IV describes and proves the run-time
control. Section V demonstrates how the proposed methodol-
ogy is applied in a detailed case study and presents several
experimental results. Section VI presents the related work on
mixed-critical systems. Section VII concludes this study.

II. GUARANTEE OF CRITICAL TASK REAL-TIME RESPONSE

The proposed methodology initially executes the maximum
load scenario and at each observation point of τC checks
whether the low criticality tasks should be suspended. Hence,
the following statement should be proved: “The switching from
the maximum load scenario to the isolation scenario guarantees
that the critical task meets the hard real-time deadline DC.”

The task set scenario switching occurs when the following
safety condition does not hold:

RWCETiso(x) + RWCETmax,PTP + tRT ≤ DC − ET(x) (1)

where RWCETiso(x) is the remaining WCET of τC at an
observation point x in the isolation scenario, RWCETmax,PTP

is the WCET until the next observation point, tRT is the total
time of the proposed run-time control mechanism and ET(x)
is the real execution time of τC until point x. The tRT is the
sum of: 1) tMon (the overhead to monitor the real execution
time), 2) tCnt (the WCET of the run-time control), and 3) tSW
(the WCET overhead due to scenario switching).

Theorem 1. If WCETiso ≤ DC , then for any execution with
the proposed run-time control, τC always respects its deadline.

Proof: If τC is executed in isolation, by definition
WCETiso ≤ DC . Let us assume that τC starts its execution
in the maximum load scenario until point pi+1. For two
consecutive observation points pi and pi+1, we have:

ET(pi+1)− ET(pi) ≤ RWCETmax,PTP (2)

0 ≤ RWCETiso(pi)− RWCETiso(pi+1) (3)

Since the execution continues in the maximum load scenario
until pi+1, it means that pi fulfilled the safety condition 1:

ET(pi) + tRT + RWCETmax,PTP + RWCETiso(pi) ≤ DC

The remaining execution from pi+1 is safe if τC can be
switched in the isolation scenario and ends before its deadline,
therefore we have to show that:

ET(pi+1) + tRT + RWCETiso(pi+1) ≤ DC

Thanks to (2), ET(pi+1)+ tRT+RWCETiso(pi+1) ≤ ET(pi)+
RWCETmax,PTP + tRT + RWCETiso(pi+1). Because the safety
condition (1) holds in pi, we obtain: ET(pi+1) + tRT +
RWCETiso(pi+1) ≤ DC + RWCETiso(pi+1) − RWCETiso(pi)
Thanks to (3), RWCETiso(pi+1) − RWCETiso(pi) ≤ 0, hence
we conclude that ET(pi+1) + tRT + RWCETiso(pi+1) ≤ DC,
i.e., the critical task terminates in time.



III. DESIGN-TIME ANALYSIS

This section describes the design-time analysis of the
critical task and the computation of parameters used by the
run-time control mechanism.

A. Extended Control Flow Graph Representation

A graph grammar is proposed to model the critical task
τC considered under study. The critical task τC is described
by the syntax of Table I, which covers a wide range of
applications. From the binary code of the critical task τC [10],
we create a set of control flow graphs (CFGs), where we
insert observation points. The CFGs obtained from the abstract
syntax of Table I and compiled without optimizations are
covered by the proposed grammar.

TABLE I. APPLICATION MODEL SYNTAX

Syntax rules

term ::= <constant> | <variable>

expr ::= <term> | <term> <operator> <term> | <unary-expr>

unary-expr ::= <variable> <unary-operator> | <unary-operator> <variable>

cond-expr ::= <expr> <conditional-operator> <expr>

assignment ::= <unary-expr> <assignment-operator> <expr>

instruction ::= <assignment> | <unary-expr> | <>;

stat ::= <instruction> | <stat>;<stat> | if (<cond-expr>) then <stat1>

else <stat2> | for (expr1; cond-expr; expr2) <stat> | <function-

call> ;

function-call ::= <return-type> functionName( <parameter-list> ) <stat> return

<expr-return>;

program ::= <function-call>

Definition 1 (Critical task τC). A critical task τC is a set of
functions S = {F0, F1, ..., Fn}, with F0 the main function.
Each function is represented by an Extended CFG (ECFG).

Definition 2 (Observation point). An observation point is a
check point in an ECFG where the run-time control is executed.
A special observation point named start is defined before the
starting of the execution.

Definition 3 (Extended Control Flow Graph). An ECFG is
a CFG annotated with observation points. The ECFG of a
function F is a directed graph G = (V,E), consisting of

1) A finite set of nodes V composed of 5 disjoint sub-sets
V = N ∪ C ∪ F ∪ {IN} ∪ {OUT} where,

• N ∈ N represents a binary instruction or a block of
binary instructions (Fig. 3(a)),

• C ∈ C represents the block of binary instructions of a
condition statement (Fig. 3(b)),

• Fi ∈ F represents the binary instructions of calling a
function Fi and links the node with the ECFG of the
function Fi (Fig. 3(c)),

• IN is the input node with an observation point in
(Fig. 3(d)),

• OUT is the output node with an observation point out
(Fig. 3(e)).

Every node v ∈ V corresponds to a terminal node of our
grammar with one unique input observation point before
the execution of the first binary instruction. We name the
terminal nodes with upper letters and the observation point
with lower letter based on the node type.

2) a finite set of edges E ⊆ V × V representing the control
flow between nodes.
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Fig. 3. Schematic representation of terminal grammar nodes.

Definition 4 (ECFG syntax). The ECFG syntax is defined by
the following graph grammar, where the terminal nodes are the
nodes of ECFG and the non-terminal node is B. The grammar
rules are:

• A function Fi has exactly one input node and one output
node, with B a non-terminal node of the grammar (Fig. 4),

• A non-terminal node B is derived as (Fig. 5):

1) An empty node (Fig. 5(b)),

2) A single node N (Fig. 5(c)),

3) A sequential component, i.e. the concatenation of non-
terminal nodes (Fig. 5(d)),

4) An if-then-else component, i.e. the concatenation of a C
conditional node with two mutually executed paths that
end to the same non-terminal node (Fig. 5(e)),

5) A loop component, i.e. the concatenation of a loop con-
dition C with two mutually executed paths, one with the
empty node and one with the repetition of the loop kernel
(Fig. 5(f)),

6) A function call node Fi (Fig. 5(g)).

• During every derivation, the possibly multiple incoming
links of B are ”glued” to the upper block, and the outgoing
link is glued to the lower block, with lower and upper
referring to the graphical representation of Fig. 5
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Fig. 4. Representation of function Fi.
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Fig. 5. Schematic representation of rewritting grammar rules



Definition 5 (Disjoint graphs). Two ECFG graphs
Gi = (Vi ,Ei) and Gj = (Vj ,Ej ) are disjoint if Vi ∩ Vj = ∅
and Ei ∩ Ej = ∅.

The function call nodes link the disjoint ECFGs associated
to the different functions. The Fig. 6 describes a task composed
of two functions S = {F0, F1}. In Fig 6(a), F1 is sequential,
while in Fig. 6(b) F1 is recursive.
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Fig. 6. Disjoints ECFGs associated to S = {F0, F1}

Definition 6 (Walk). A walk W = (IN, v1, . . . , vn, OUT ) in
an ECFG is defined as a finite list of nodes such that (vi, vi+1)
∈ E, (IN, v1) ∈ E and (vn, OUT ) ∈ E.

A walk is defined on a unique ECFG, while at run-time a
complete execution over the different ECFGs is observed.

Definition 7 (Execution of τC). Let us consider the task
S = {F0, ..., Fn} and the associated ECFGs G0,. . .Gn. An
execution P is a list of nodes ∈ V0 ∪ . . . ∪ Vn obtained by
inserting walks over the ECFGs. An execution is obtained
inductively as follows:

• Initially, P=Wo, where Wo is a walk over the ECFG of F0,
Wo = (IN0 , v1 , . . . ,OUT0 ).

• Let P=(IN0 , . . . , vi , vi+1 , . . . ,OUT0 ). If vi = Fk

and vi+1 6= INk, then P is rewritten as P =
(IN0 , . . . , vi ,WFk

, vi+1 , . . . ,OUT0 ) where WFk
is a

walk over Gk. The entry function point is the point
of node vi. The exit function point is the point of
node vi+1. The exit and entry points are sequential in
ECFG of vi. The type of a point x is denoted by
type(x) ∈ {F ENTRY, F EXIT, F ENEX,−}, where
F ENEX refers to the case where a point is both an entry
and an exit point.

Following an execution, we obtain the sequence of visited
nodes of the ECFGs and thus the sequence of the observation
points. An observation point may be visited several times due
to the loop components and the function calls. Hence, we
define the nested level of an observation point to distinguish
between different visits of the same point.

Definition 8 (Nested level). The nested level level (x) of an
observation point x in an ECFG is defined based on the
grammar syntax as:

• Initialization point: The level of the initialization point start
is 0, level(start)=0.

• Input node: The level of the input point in is 1, level(in)=1.

• Output node: The level of the output point out is 1,
level(out)=1.

• Sequential component: The levels of two sequential points
b1 and b2 are equal, level(b1)=level(b2).

• If-then-else component: The levels of all the points
c, bt, bf and bo are equal, i.e. level(c)=level(bt)
=level(bf )=level(bo).

• Loop component: The level of the initial block bi is equal
to the level of the conditional node c, i.e. level(bi)=level(c).
The level of the loop body point b is equal to the level of the
loop condition c incremented by one, level(b)=level(c)+1.

As the nested levels are design-time determined per ECFG,
we define the head points to deal with the real execution of
the critical task. The head points show when a function has
been called and where a loop exists in each ECFG.

Definition 9 (Head point). Let us consider the task S =
{F0, ..., Fn} with the associated ECFGs G0,. . .Gn and an
execution P = (IN 0, v1, . . . ,OUT 0). The head points are
defined as follows:

• head(in0)=start

• let us assume that we computed head(vi).

◦ if vi+1 = INk, then head(vi+1) = vi

◦ if vi = OUTk, then head(vi+1) = head(head(vi))

◦ if (vi, vi+1) ∈ Ek (i.e. are in the same ECFG):

if vi is the condition of a loop, head(vi+1) = vi

otherwise head(vi+1) = head(vi)

For instance, in Fig. 6(a) the
P=(IN0 , N0,a, F1, IN1 , N1,a, C,N1,b, C,OUT1 , N0,b,OUT0 )
is an execution of the task. In a similar way, an
execution over a recursive function in Fig. 6(b) is
P = (IN0 , N0,a, F1, IN1, N1, C,N3, F1, IN1, N1,
C,N2, N4,OUT1 , N4,OUT1 , N0,b,OUT0 ). Table II
provides the nested levels and the head points for the
observation points of Fig. 6 for these executions.

B. Remaining WCET analysis

The remaining WCET of the critical task heavily depends
on the real execution of the critical task. Hence, at design-time,
we process the ECFGs and compute partial WCETs using safe
static WCET analysis, similar to [5], but extended and adapted
to our methodology. The WCET is computed by writing an
Integer Linear Programming (ILP) formulation to express the
program execution time as the combination of the individual
times of the grammar components weighted by their execution
counts. This expression is maximized to find the WCET, with



TABLE II. NESTED LEVEL AND HEAD POINTS OF FIG. 6

Observation point x level (x) type (x) head (x)

Initialization

start 0 - -

F0

in0 1 - start

n0,a 1 - start

f0,1 1 F ENTRY start

n0,b 1 F EXIT start

out0 1 - start

F1 Fig. 6(a)

in1 1 - f0,1
n1,a 1 - f0,1
c 1 - f0,1

n1,b 2 - c

out1 1 - f0,1
F1 Fig. 6(b)

1st visit 2nd visit

in1 1 - f0,1 f1,1
n1 1 - f0,1 f1,1
c 1 - f0,1 f1,1
n3 2 - c

f1,1 2 F ENTRY c

n2 1 - f1,1 -

n4 1 F EXIT f1,1 f0,1
out1 1 - f1,1 f0,1

a number of constraints that reflect flow facts, e.g. loop bounds
and unfeasible paths.

Our WCET analysis is based on computing the remain-
ing WCET from one observation point x until the end of
the program, RWCETy(x), where y ∈ {iso,max}. When the
RWCETmax(x) is computed, we consider that interferences oc-
cur from the parallel tasks, whereas when the RWCETiso(x) is
computed no interferences are taken into account. When point
x is the entry of the critical task, i.e. start of F0, RWCETy(start)
is the total WCETτi,y . When point x is inside the ECFG, we
compute the remaining WCET by using constraints to prohibit
the execution of all the blocks which do not belong to any path
from point x until the end of the ECFG.

Using the remaining WCET analysis of an observation
point x, we can compute remaining WCETs between an
observation point and its head point.

Definition 10 (dhead(x)−x). dhead(x)−x is the maximum time
from head(x) to x.

dhead(x)−x = RWCETiso(head(x))− RWCETiso(x)

Definition 11 (Loop component). When dhead(x)−x is com-
puted inside a loop component with conditional node c and
n number of iterations, no time variation exists between
iterations.

dc−x = RWCETiso(c, j)− RWCETiso(c, j), ∀j ≤ n

wc is the time between any two consecutive iterations j and
j + 1 of the conditional node c.

wc = RWCETiso(c, j)− RWCETiso(c, j + 1), ∀j ≤ n

When a function is called from different points, the
paths to the different points may result to several partial
remaining WCETs. The existence of several paths may in-
troduce time variability in the computation of dhead(x)−x

of the function points x with level 1. For instance, point
n1 in Fig. 6(a) may have different values df0,1−n1

and
df1,1−n1

. A trade-off exists between storing these time-
variations or a unique partial information that permits the
computation of a local upper bound for these points, i.e.

the minimum remaining time observed from any common
function call. For instance, in Fig. 6(b), the OTAWA tool
computes RWCETiso(f0,1) = 50, RWCETiso(n1) = 48,
RWCETiso(f1,1) = 45, RWCETiso(n1) = 40. By using the
minimum time, we store dhead(n1)−n1

= 2 and at run-time
we obtain RWCETiso(f0,1) = 50, RWCETiso(n1) = 48,
RWCETiso(f1,1) = 45, RWCETiso(n1) = 43.

To guarantee that the critical task deadline is always met,
we must ensure that enough time is available to perform the
scenario switch at the next observation point. Hence, we apply
our remaining WCET analysis to compute the RWCETmax,PTP

between any two consecutive observation points of the critical
task in the maximum load scenario.

RWCETmax,PTP = maxx,x′(RWCETmax(x)− RWCETmax(x
′))

To support the run-time RWCETiso(x) computation, we
store in memory the level(x) and dhead(x)−x for each point
x. If x is the head point of a loop component, the wx is also
stored. If x is a function call entry or exit point, the type of
the point is stored as well. An example of the data stored after
the design-time analysis is given in Table III of Section V-A
for our case study.

IV. RUN-TIME CONTROL

At each observation point x, the safety condition of
Section II decides the switching between scenarios. As the
RWCETiso(x) is modified at each observation point, we pro-
pose a low-overhead algorithm to run-time compute this value
by efficiently reusing the RWCETiso of the head points. In
Section IV-A we describe and formally prove the basic version
of our algorithm applied when the critical task consists of a
single function, i.e. S = {F0}. In Section IV-B we present and
formally prove our extended version applied when the critical
task consists of a finite set of functions, i.e. S = {F0, . . . , Fn}.

A. Basic version

1) Algorithm description: The run-time computation of
RWCETiso(x) is depicted in Alg. 1. The pre-computed data
are stored in the memory as constant arrays: level for the level
and d and w for the partial WCETs. The algorithm maintains
two local values o level (for the previous observed level) and
ll for the local level. For the basic version, ll is always equal to
level(x). At run-time, the algorithm stores in array last point
the last observed point and in array R the computed RWCETiso

per level.

ALGORITHM 1: Basic version.
Pre-computed data: level, w, d

Input: x

Data: o level = 0, ll = level[x], last point[0]=start, RWCETiso[0]=WCETiso
Output: RWCETiso(x) = R[ll]
if o level < ll then /* condition 1 */

R[ll] = R[ll − 1] − d[x]
else

if (last point[level] == x) then /* condition 2 */

R[ll] = R[ll] − w[x]
else

R[ll] = R[ll − 1] − d[x]
last point[ll]= x

o level=ll

Three cases exist during the algorithm execution:



• Case 1: The current observation level o level is less than
the local level ll. In this case the ECFG is traversed in a
forward direction, because the observed point x has larger
level than the previously observed point. This case occurs
when we enter a loop. The remaining WCET is given by the
remaining WCET of the head point c minus the time from
the head point to the observation point x, d[x] = dc−x.

• Case 2: o level ≥ ll and last point [ll] = x. The observa-
tion point x is revisited. In this case, the ECFG is traversed
in a backward direction due to the head point of a loop
component, i.e. the condition. The remaining time of this
level is reduced by w[x] = wc.

• Case 3: otherwise. The ECFG is traversed in forward direc-
tion as the observed point is placed in a sequence with the
previously observed point. This case occurs in the sequential
component and the if-then-else component of our grammar.
The remaining time is the remaining time of the head point
c minus d[x] = dc−x.

2) Algorithm proof: The termination of the algorithm is
ensured, as the task execution terminates and a finite number
of observed points exist. If m points have been inserted to the
critical task, each executed at most l times, due to the bounded
number of loop iterations, the algorithm is executed at most n
times, where n is the total number of visits over the observed
points, i.e. n ≤

∑m

i=0 li.

We prove the correctness of the Alg. 1 given the graph
grammar defined in Section III-A. We show that the result of
the algorithm is the RWCETiso(x) of point x. The proposed
algorithm is proved through a structural induction on the
grammar rules. Initially, the algorithm is proved for the basic
case. Then, starting from the basic case and applying m
grammar rules, we reach our induction hypothesis. At that
point, the induction step derives from rewriting a non-terminal
block B using the grammar components depicted in Fig. 5.

Basic case (Fig. 7(a)): The function F0 has a non-terminal
block B. By definition 8, level (in0) = level (out0) =
level (b) = 1. By definition 9, head (in0) = head (out0)
= head (b) = start. By definition 7, there is a unique ex-
ecution P = (IN0 ,B ,OUT0 ). We have moreover R[0] =
RWCETiso(start) = WCETiso. We apply the algorithm on the
ECFG.

Point in0 is the input of the function. Since o level=0, the
condition 1 of Alg. 1 is true:

R[1] = R[0] − dstart−in0
= R[0] − (WCETiso − RWCETiso(in0))

= RWCETiso(in0)
o level = 1
last point[1] = in0

Point b is just before the execution of the block. Since
o level=1 and the previously observed point is in0, the
condition 1 of the run-time control algorithm is false. As the
last point [1 ] is the point in0 and we observe the point b, the
condition 2 is false:

R[1] = R[0] − dstart−b = R[0] − (WCETiso − RWCETiso(b))
= RWCETiso(b)

o level = 1
last point[1] = b

Point out0 is the point after the execution of all instructions
of the block, but for this basic case, the algorithm did not

visit any other observation point. The variables are o level =
1, last point [1 ] = b. Therefore, the condition 1 and the
condition 2 are false.

R[1] = R[0] − dstart−out = R[0] − (WCETiso − RWCETiso(out0))
= RWCETiso(out0) = 0

o level = 1
last point[1] = out0
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OUT0

out0

(a)

IN0
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B

OUT0
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b

IN0
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m

...

...

(b)

Fig. 7. a) Basic case and b) Structural induction hypothesis.

Induction step: We first define the induction hypothesis
(Fig. 7(b)). By applying m grammar rules starting from
the basic case, we obtain an execution starting from IN0

and ending at OUT0 with at least one non-terminal block
(we are somewhere in the ECFG creation process), i.e.
P=(IN0 , . . . ,B , . . . ,OUT0 ). We apply the algorithm until the
observation point b, with level(b) = l and head(b) = h, and
we compute R[l] = RWCETiso(b). The run-time execution
has already visited the point h, which is the head point of
b, with level l − 1. More precisely, we know that R[l − 1] =
RWCETiso(h), o level=l and last point [l ] = b.

A step (Fig. 8) is done as follows: The non-terminal block
of B in the execution P is rewritten by applying the grammar
rules.

B

b
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Fig. 8. Structural induction step.

Single node N (Fig. 8(b)): The block B becomes node
N and the execution becomes P=(IN0 , . . . ,N , . . . ,OUT0 ).
By definition 8, level (b) = level (n) = l and by definition 9,
head (n) = head (b) = h. We now apply the algorithm. Since N
replaces B, R[l] = R[l−1]−(RWCETiso(h)−RWCETiso(n)) =
RWCETiso(n), o level=l and last point [l ]=n.

Sequential component of two blocks B1 and B2

(Fig. 8(c)): The block B becomes two blocks B1 and B2, while
the execution becomes P=(IN0 , . . . ,B1 ,B2 , . . . ,OUT0 ). By
definition 8, level (b1) = level (b2) = level (b) = l and by
definition 9, head (b1) = head (b2) = head (b) = h. We now
apply the algorithm. At point b1, we have R[l] = R[l − 1] −



(RWCETiso(h) − RWCETiso(b1)) = RWCETiso(b1), o level=l
and last point [l ]=b1. At point b2, the previously observed
point is b1 which has level l and thus the condition 1 and
condition 2 are false. Therefore, we have:

R[l] = R[l − 1] − dh−b2
= R[l − 1] − (RWCETiso(h) − RWCETiso(b2)) ≥ RWCETiso(b2)

o level = l

last point[l] = b2

If-then-else condition component (Fig. 8(d)): The block B
becomes a conditional node C, two mutually executed blocks
BT and BF and an output block BO. The execution becomes
P=(IN0 , . . . ,C ,BT ,BO , . . . ,OUT0 ) when the condition C
is true, or P=(IN0 , . . . ,C ,BF ,BO , . . . ,OUT0 ) when the
condition C is false. The point b is equal to the point c. Based
on definition 8, the level remains same between observation
points of the condition node C, the mutually executed blocks
BT and BF and the output block B. Based on definition 9,
all points have the same head point. For point bf and bt the
previously observed point is c and for bo is bf or bt, depending
on the value of the condition C. The condition 1 is always
false.

For all points bp ∈ {bt, bf , bo}, we have:

R[l] = R[l − 1] − dh−bp

= RWCETiso(h) − (RWCETiso(h) − RWCETiso(bp))
= RWCETiso(bp)

o level = l

last point[l] = bp

Loop component (Fig. 8(e)): The block B be-
comes an initial block BI , a condition node C and
a loop body block BL. We also know the maximal
number of loop iterations p. The execution becomes
P=(IN0 , . . . ,BI , (C ,BL)

k ,C , . . . ,OUT0 ) with k ≤ p. By
definition 8, level (bi) = level (c) = level (b) = l and level
(bl)=l + 1 . By definition 9, head (bi) = head (c) = head (b) =
h and head (bl)=c. We now apply the algorithm.

Since BI replaces B, at point bi we have:

R[l] = RWCETiso(bi)
o level = l

last point[l] = bi

The first time C is visited (iteration 0), the condition 1 and
the condition 2 are false.

R[l] = R[l − 1] − dh−c = R[l − 1] − (RWCETiso(h) − RWCETiso(c))
= RWCETiso(c)

o level = l

last point[l] = c

The j-th time c is visited (iteration j), the previously observed
point is bl, so o level=l + 1 . Therefore, the condition 1 is
false and since the previously observed point of level l is c,
the condition 2 is now true.

R[l] = R[l] − wc = RWCETiso(c) − j × wc = RWCETiso(c, j)
o level = l

last point[l] = c

When bl is visited (C was true) at the j-th iteration, the
condition 1 is true.

R[l + 1] = R[l] − dc−bl
= R[l] − (RWCETiso(c, j) − RWCETiso(bl, j))
= RWCETiso(c, j) − (RWCETiso(c, j) − RWCETiso(bl, j))
= RWCETiso(bl,j)

o level = l+1

last point[l+1] = bl

B. Extended version

1) Algorithm description: The extension of the basic ver-
sion of the proposed run-time algorithm for the critical task
described by a set of ECFGs is depicted in Alg. 2.

ALGORITHM 2: Extended version.
Pre-computed data: level, w, d, type

Input: x

Data: o level = 0, ll = level[x], last point[0]=start, R[0]=WCETiso, offset = 0
Output: RWCETiso(x) = R[ll]
if (type[x] ==F EXIT or F ENEX) then /* condition 4 */

o level-=1
offset -= level[x]

ll = offset + level[x]
Instructions of basic version [Alg. 1]

if (level[x] ==F ENTRY or F ENEX) then /* condition 3 */

offset += level[x]

As the function calls link the ECFGs, we need to know
at run-time when the execution moves to another ECFG.
Therefore, we have to mark the entry and the exit points of a
function call and, thus, the type(x) of the points is also stored
in memory. Locally, a data offset computes the accumulated
nested level up to the last observed function entry point. The
local level ll depends on this offset and the nested levels of
the observation point. Note that now the condition 1 of the
basic version becomes also true in the case we enter in a
function after the function call node. In the extended version,
two additional cases exist during the algorithm execution:

• Case 1: When a function entry point is observed
(condition 3 is true), we increase the offset by the level
of the entry point.

• Case 2: When an exit point is observed (condition 4 is
true), we decrease the offset by the level of the entry point.
In that case, o level is decreased by 1 to indicate that we
encountered an exit point.

From definition 8, the level of the exit point is equal to the
level of the entry point. Hence, if the offset is equal to zero,
we have returned in the main function F0.

2) Algorithm proof: The termination of the algorithm is
ensured due to the finite number of loop iterations and function
calls. We prove the correctness of the extended algorithm by
applying a structural induction on the grammar rules in a
similar way with the basic version, as depicted in Fig. 7. The
basic case of the extended version remains the same (Fig. 7(a)),
as no function call has occurred yet.

Induction step: We first define the induction hypothe-
sis (Fig. 7(b)). After applying m grammar rules, we ob-
tain an execution that has started from IN0 and ends
at OUT0 with at least one non-terminal node, i.e.
P=(IN0 , . . . ,B ,V , . . . ,OUT0 ). We know for point b that
level(b) = l, offset = m, o level = m + l , R[m + l] =
RWCETiso(b). The head point of b is point h and R[m +
l − 1]=RWCETiso(h). We need also the successor V of B in
the execution, which can be either a terminal or non terminal
block. We also know that level(v) = l and head(v) = h since
B is a non-terminal block, and thus it cannot be a loop head
or a function call.

Step (Fig. 9): The non-terminal block B is rewritten based
on the grammar components. For the grammar rules except
the function call, the proof of the basic version remains valid.
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Fig. 9. Structural induction step to function call node.

The main difference occurs when the non-terminal block B be-
comes a function call node Fi, where the Fi is described by an
ECFG. Let the block B become the node Fi and the execution
become P=(IN0 , . . . ,Fi , INi ,Bi ,OUTi ,V , . . . ,OUT0 ).

1) Since fi replaces b, we have R[m + l] = RWCETiso(fi).
Moreover, the condition 3 is true, thus offset = m+ l and
last point[m+ l] = fi.

2) For bk ∈ {ini, bi, outi}, we have level(bk) = 1 and the
condition 3 and condition 4 are false. The computation
is similar in these points, we obtain
R[m + l + 1] = R[m + l] − dfi−bk

= RWCETiso(fi) − (RWCETiso(fi) − RWCETiso(bk))
= RWCETiso(bk)

o level = m+l+1

last point[m+l+1] = bk

3) The successor V of B is the exit point of the function call
Fi. In v, the condition C4 is true, meaning that offset =
m + l − l = m and o level = m + l. This implies that
condition 1 and condition 2 are false.

R[m + l] = R[m + l − 1] − dh−v

= RWCETiso(h) − (RWCETiso(h) − RWCETiso(v)
= RWCETiso(v)

o level = m+l

last point[m+l] = v

V. RESULTS

A. Demonstration case study

We use as a case study the lu from Polybench benchmark
suite [11], which is depicted in Alg. 3.

ALGORITHM 3: Demonstration case study.

# define PB N 100

int A[PB N][PB N];

begin int main()

lu();

return EXIT SUC;

begin int lu()

int i, j, k;

for (k = 0; k < PB N; k++) do

for (j = k + 1; j < PB N; j++) do
A[k][j] = A[k][j] / A[k][k];

for (i = k + 1; i < PB N; i++) do

for (j = k + 1; j < PB N; j++) do
A[i][j] -= A[i][k] * A[k][j];

return EXIT SUCCESS;

1) Design-time analysis: The ECFGs corresponding to the
main function F0 and the lu function F1 are depicted Fig. 10.
Different colors are used to distinguish the nested loops: the
first loop is depicted with light gray, the second with gray, the
third with black, whereas the white corresponds to no loop.
Fig. 11 depicts the corresponding assembly operations and the
blocks. An observation point exists per block. By analyzing
the ECFGs we pre-compute the data level, w, d, type, which
are depicted in Table III.

The assembly instruction and the grouping into blocks is
depicted in Fig. 11.
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Fig. 10. ECFGs of the main function F0 and the lu function F1 with the
level, the w of loop head points and some d between the loop head point
and the first observation point.

TABLE III. DESIGN-TIME ANALYSIS RESULTS FOR main AND lu.

Obs.point x type (x) level (x) w(x) d(x)

n0,1 - 1 0 0

f1 F ENTRY 1 0 dstart−f1

n0,2 F EXIT 1 0 dstart−n0,2

n1,1 - 1 0 0

c1 - 1 w1 df1−c1

n1,2 - 2 0 dc1−n1,2

c2 - 2 w2 dc1−c2

n1,3 - 3 0 dc2−n1,3

n1,4 - 2 0 dc1−n1,4

c3 - 2 w3 dc1−c3

n1,5 - 3 0 dc3−n1,5

c4 - 3 w4 dc3−c4

n1,6 - 4 0 dc4−n1,6

n1,7 - 3 0 dc3−n1,7

n1,8 - 2 0 dc1−n1,8

n1,9 - 1 0 df1−n1,9

2) Run-time control: We apply the extended version of the
proposed run-time algorithm (Alg. 2) on the execution P =
(IN0 , N0,1, F1, IN1 , N1,1, C1, N1,2, C2, N1,3, C2, N1,4, C3,
N1,5, C4, N1,6, C4, N1,7, C3, N1,8, C1, N1,9,OUT1 , N0,2,
OUT0 ). The obtained results are depicted in Table IV.
The table, following the order of the execution, shows the
observation points, the value of the each condition of the
run-time computation algorithm, how the RWCETiso(x) is
computed and which is the last point last point [ll ] that
modified the RWCETiso(x).

B. Experimental results

We applied our methodology for several benchmarks from
Polybenchmark suite [11] through simulation to obtain pre-
liminary results of our method. We explore several options
in the sets of observation points, i.e. Head Points (HP) in:
i ) nested level 1, ii ) nested level 1 and 2, iii ) nested level
1, 2 and 3, and iv ) nested level 1,2 and 3 and Sequential
Points (SP) inside level 3, considering the same deadline
per benchmark. We compute the gain of our approach, i.e.
the percentage of the execution time of the critical tack in
maximum load scenario, and the overhead introduced by our



             .Ltext0:
             .comm A,40000,32
             .globl main
             main:
             .LFB0:
             .cfi_startproc
0000 55       pushq %rbp
             .LCFI0:
             .cfi_def_cfa_offset 16
             .cfi_offset 6, -16
0001 4889E5   movq %rsp, %rbp
             .LCFI1:

0004 E8000000 call lu
     00

0009 B8000000 movl $0, %eax
     00
000e 5D       popq %rbp
             .LCFI2:
             .cfi_def_cfa 7, 8
000f C3       ret
             .cfi_endproc
             .LFE0:
             .globl lu

N
1

F
1

N
2

(a)

.L10:
0020 8B45FC   movl -4(%rbp), %eax
0023 83C001   addl $1, %eax
0026 8945F8   movl %eax, -8(%rbp)
0029 E9850000 jmp .L4
     00

.L5:
002e 8B45F8   movl -8(%rbp), %eax
0031 4863C8   movslq %eax, %rcx
0034 8B45FC   movl -4(%rbp), %eax
0037 4863D0   movslq %eax, %rdx
003a 4889D0   movq %rdx, %rax
003d 48C1E002 salq $2, %rax
0041 4801D0   addq %rdx, %rax
0044 488D1485 leaq 0(,%rax,4), %rdx
     00000000 
004c 4801D0   addq %rdx, %rax
004f 48C1E002 salq $2, %rax
0053 4801C8   addq %rcx, %rax
0056 8B048500 movl A(,%rax,4), %eax
     000000
005d 8B55FC   movl -4(%rbp), %edx
0060 4863D2   movslq %edx, %rdx
0063 4869D294 imulq $404, %rdx, %rdx
     010000
006a 4881C200 addq $A, %rdx
     000000
0071 8B12     movl (%rdx), %edx
0073 8955EC   movl %edx, -20(%rbp)
0076 89C2     movl %eax, %edx
0078 C1FA1F   sarl $31, %edx
007b F77DEC   idivl -20(%rbp)
007e 89C1     movl %eax, %ecx
0080 8B45F8   movl -8(%rbp), %eax
0083 4863F0   movslq %eax, %rsi
0086 8B45FC   movl -4(%rbp), %eax
0089 4863D0   movslq %eax, %rdx
008c 4889D0   movq %rdx, %rax
008f 48C1E002 salq $2, %rax
0093 4801D0   addq %rdx, %rax
0096 488D1485 leaq 0(,%rax,4), %rdx
     00000000 
009e 4801D0   addq %rdx, %rax
00a1 48C1E002 salq $2, %rax
00a5 4801F0   addq %rsi, %rax
00a8 890C8500 movl %ecx, A(,%rax,4)
     000000     
00af 8345F801 addl $1, -8(%rbp)

00bd 8B45FC   movl -4(%rbp), %eax
00c0 83C001   addl $1, %eax
00c3 8945F4   movl %eax, -12(%rbp)
00c6 E9E10000 jmp .L6
     00

L4:
00b3 837DF863 cmpl $99, -8(%rbp)
00b7 0F8E71FF jle .L5
     FFFF

N
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N
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N
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N
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L9:
00cb 8B45FC   movl -4(%rbp), %eax
00ce 83C001   addl $1, %eax
00d1 8945F8   movl %eax, -8(%rbp)
00d4 E9C50000 jmp .L7
     00

   lu:
             .LFB1:
             .cfi_startproc
0010 55       pushq %rbp
             .LCFI3:
             .cfi_def_cfa_offset 16
             .cfi_offset 6, -16
0011 4889E5   movq %rsp, %rbp
             .LCFI4:
             .cfi_def_cfa_register 6
0014 C745FC00 movl $0, -4(%rbp)
     000000
001b E99A0100 jmp .L3
     00

N
1,1

C
2

01c4 B8000000 movl $0, %eax
     00
01c9 5D       popq %rbp
             .LCFI5:
             .cfi_def_cfa 7, 8
01ca C3       ret
             .cfi_endproc
             .LFE1:
             .Letext0:

.L6:
01ac 837DF463 cmpl $99, -12(%rbp)
01b0 0F8E15FF jle .L9
     FFFF

.L3:
01ba 837DFC63 cmpl $99, -4(%rbp)
01be 0F8E5CFE jle .L10
     FFFF

.L7:
019e 837DF863 cmpl $99, -8(%rbp)
01a2 0F8E31FF jle .L8
     FFFF

.L8:
00d9 8B45F8   movl -8(%rbp), %eax
00dc 4863C8   movslq %eax, %rcx
00df 8B45F4   movl -12(%rbp), %eax
00e2 4863D0   movslq %eax, %rdx
00e5 4889D0   movq %rdx, %rax
00e8 48C1E002 salq $2, %rax
00ec 4801D0   addq %rdx, %rax
00ef 488D1485 leaq 0(,%rax,4), %rdx
     00000000 
00f7 4801D0   addq %rdx, %rax
00fa 48C1E002 salq $2, %rax
00fe 4801C8   addq %rcx, %rax
0101 8B0C8500 movl A(,%rax,4), %ecx
     000000
0108 8B45FC   movl -4(%rbp), %eax
010b 4863F0   movslq %eax, %rsi
010e 8B45F4   movl -12(%rbp), %eax
0111 4863D0   movslq %eax, %rdx
0114 4889D0   movq %rdx, %rax
0117 48C1E002 salq $2, %rax
011b 4801D0   addq %rdx, %rax
011e 488D1485 leaq 0(,%rax,4), %rdx
     00000000 
0126 4801D0   addq %rdx, %rax
0129 48C1E002 salq $2, %rax
012d 4801F0   addq %rsi, %rax
0130 8B348500 movl A(,%rax,4), %esi
     000000
0137 8B45F8   movl -8(%rbp), %eax
013a 4863F8   movslq %eax, %rdi
013d 8B45FC   movl -4(%rbp), %eax
0140 4863D0   movslq %eax, %rdx
0143 4889D0   movq %rdx, %rax
0146 48C1E002 salq $2, %rax
014a 4801D0   addq %rdx, %rax
014d 488D1485 leaq 0(,%rax,4), %rdx
     00000000 
0155 4801D0   addq %rdx, %rax
0158 48C1E002 salq $2, %rax
015c 4801F8   addq %rdi, %rax
015f 8B048500 movl A(,%rax,4), %eax
     000000
0166 0FAFC6   imull %esi, %eax
0169 29C1     subl %eax, %ecx
016b 8B45F8   movl -8(%rbp), %eax
016e 4863F0   movslq %eax, %rsi
0171 8B45F4   movl -12(%rbp), %eax
0174 4863D0   movslq %eax, %rdx
0177 4889D0   movq %rdx, %rax
017a 48C1E002 salq $2, %rax
017e 4801D0   addq %rdx, %rax
0181 488D1485 leaq 0(,%rax,4), %rdx
     00000000 
0189 4801D0   addq %rdx, %rax
018c 48C1E002 salq $2, %rax
0190 4801F0   addq %rsi, %rax
0193 890C8500 movl %ecx, A(,%rax,4)
     000000
019a 8345F801 addl $1, -8(%rbp)
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Fig. 11. Assembly instructions and the grouping to nodes for a) main function F0 and b) lu function F1.

run-time control. The results are given by the number of
observation points executed before the switching to isolation
scenario over the total number of observation points introduced
in the benchmark. Our simulation has as input the ECFG, the
partial RWCETs and the information about the observation
points and the execution. We considered an ∼0.10-0.32%
difference between the real execution time and the WCET in
isolation. The results are depicted in Table V.

Based on the obtained results, a trade-off exists between
the number of observation points introduced in the ECFGs
and the gain of the proposed approach, which is affected by
the shape of the ECFGs. By using few points, e.g. HP in
L1, the switching of scenarios may occur too early giving
lower than the possible gains, e.g. 25,00% for benchmark
bicg. This behavior occurs due to large distance between two
sequential observation points. It may occur in the case where
inside the loops of level 1 several nested loops exists with high
number of iterations. On the other hand, by using too many
points, i.e. in all loop head points and in the internal loop

kernel, the time between two consecutive points may be similar
to the execution time of the controller. Then, a significant
time is dedicated to control execution pushing further in time
the task execution, resulting to an early scenario switch and
to a lower gain of the proposed approach, e.g. 51,90% for
benchmark bicg. When the execution time of the critical task
between two sequential points is quite larger than the controller
overhead, but still not too large to prohibit the exploration
of the potentials of our approach, we can achieve significant
gains, e.g. 78,68% for benchmark bicg.

VI. RELATED WORK

This section briefly presents the different approaches on
the mixed-critical systems, whereas a detailed survey on the
mixed-criticality research up to now is available in [12].

A. Task scheduling

The majority of mixed-criticality scheduling work has
been mainly addressed for uni-processor platforms (e.g. [2],



TABLE IV. RWCETiso COMPUTATION OF LEVEL l AT RUN-TIME.

Obs. condition
Offset RWCETiso(x)

Last Obs.

Point 1 2 3 4 point[ll] level

Init. x x x x 0 R[0] = RWCETiso LP[0]=0 0

n0,1 1 x 0 0 0 R[1] = R[0] − 0 LP[1]=n0,1 1

f1 0 0 1 0 0 R[1] = R[0] − dstart−f1
LP[1]=f1 1

n1,1 1 x 0 0 1 R[2] = R[1] − 0 LP[2]=n1,1 2

c1 0 0 0 0 1 R[2] = R[1] − dn1,1−c1
LP[2]=c1 2

n1,2 1 x 0 0 1 R[3] = R[2] − dc1−n1,2
LP[3]=n1,2 3

c2 0 0 0 0 1 R[3] = R[2] − dc1−c2
LP[3]=c2 3

n1,3 1 x 0 0 1 R[4] = R[3] − dc2−n1,3
LP[4]=n1,3 4

c2 0 1 0 0 1 R[3] = R[3] − w2 LP[3]=c2 3

n1,4 0 0 0 0 1 R[3] = R[2] − dc1−n1,4
LP[3]=n1,4 3

c3 0 0 0 0 1 R[3] = R[2] − dc1−c3
LP[3]=c3 3

n1,5 1 x 0 0 1 R[4] = R[3] − dc3−n1,5
LP[4]=n1,5 4

c4 0 0 0 0 1 R[4] = R[3] − dc3−c4
LP[4]=c4 4

n1,6 1 x 0 0 1 R[5] = R[4] − dc4−n1,6
LP[5]=n1,6 5

c4 0 1 0 0 1 R[4] = R[4] − w4 LP[4]=c4 4

n1,7 0 0 0 0 1 R[4] = R[3] − dc3−n1,7
LP[4]=n1,7 4

c3 0 1 0 0 1 R[3] = R[3] − w3 LP[3]=c3 3

n1,8 0 0 0 0 1 R[3] = R[2] − dc1−n1,8
LP[3]=n1,8 3

c1 0 1 0 0 1 R[2] = R[2] − w1 LP[2]=c1 2

n1,9 0 0 0 0 1 R[2] = R[1] − dn1,1−n1,9
LP[2]=n1,9 2

n0,2 0 0 0 1 0 R[1] = R[0] − dstart−n0,2
LP[1]=n0,2 1

TABLE V. EXPERIMENTAL RESULTS OF OUR METHODOLOGY.

Algorithm Points Position Number of points % max scenario Tot.overhead (tu)

Basic version

LU , N = 16

HP L1 16 50 18

HP L1,L2 256 69.53 358

HP L1-3 4,096 19.33 1,586

LU , N = 32

HP L1 32 43.75 30

HP L1,L2 1,024 67.77 1,390

HP L1-3 32,768 29.04 19,030

LU , N = 128
HP L1 128 25.78 68

HP L1,L2 16,384 85.81 28,120

bicg ,

NY =NX=16

HP L1 32 25.00 18

HP L1,L2 272 78.68 430

HP L1,L2 & SP 578 51.90 602

bicg ,

NY =NX=32

HP L1 64 18.75 26

HP L1,L2 1,056 37.31 790

HP L1,L2 & SP 2,178 17.54 766

bicg ,

NY =NX=64

HP L1 128 5.47 16

HP L1,L2 4,160 11.35 946

HP L1,L2 & SP 8,450 43.79 7,402

Extended version

trmm ,

NI = 8

HP L1 11 27.27 8

HP L1,L2 83 63.85 108

HP L1-3 659 43.86 580

HP L1-3 & SP 1,316 36.93 974

trmm ,

NI = 16

HP L1 19 21.05 10

HP L1,L2 291 56.70 332

HP L1-3 4,643 23.48 2,182

HP L1-3 & SP 9,284 15.53 2,886

gesummv ,

NI = 8

HP L1 11 18.18 6

HP L1,L2 83 31.33 54

HP L1,L2 & SP 164 48.78 162

gesummv ,

NI = 16

HP L1 19 36.84 16

HP L1,L2 291 40.55 238

HP L1,L2 & SP 580 51.73 602
HP: Head Points, SP: Sequential Points, tu: time units

[13], [14], [15]), which is not directly applicable in multicore
platforms. In the latter, shared resources exist and time com-
positionality cannot be ensured [16], as the WCET analysis
cannot be applied independently per task.

In multicore platforms, several approaches exist that as-
sume that the task set is schedulable at least at the high
criticality level. For instance, in [17], both hard real-time and
soft real-time tasks are scheduled using an Earliest Deadline
First for Hard real-time, Soft real-time and Best effort tasks
(EDF-HSB) approach with the assumption that the hard real-
time tasks are statically schedulable. When time slack occurs
at run-time, it is reallocated to non hard real-time tasks.
Another example is the two level mixed-criticality scheduling
for multicore platforms proposed in [6] and extended in [7],
where the tasks are scheduled based on the WCET of their
criticality level and the time slack is reallocated to lower

criticality levels. The tasks of different criticality levels are
scheduled with different appropriate scheduling approaches.
The tasks with the lowest criticality level are allowed to be
executed when no higher criticality task is running, i.e. in
the critical tasks are executed in isolation. In addition, several
mixed-critical scheduling policies have been implemented in
the LITMUSRT framework [18].

Less pessimistic approaches, such as [8], [19], [20], use
several WCETs per task during task scheduling. Initially, all
tasks are assigned their low criticality WCET, which is a less
pessimistic bound on WCET given by designers. This WCET
derives from a set of test cases [21] and is the maximum
execution time observed during execution of the system on
maximum load scenario. The proposed algorithms in [8],
[19] describe a generalization of the preemptive uniprocessor
algorithm EDF with Virtual Deadlines (EDF-VD) to multi-
processor platforms. At run-time, they observe if the tasks
have signaled termination at their low criticality WCET. If
no signal termination exists by that time, the criticality level
of the tasks is increased and the tasks with lower criticality
levels are dropped. This occurs because a scenario of higher
criticality is now considered and the completion of jobs of
lower criticality becomes irrelevant for the new scenario [22].
Further extensions of similar methods are presented in [23]
which avoid the abandoning the low criticality tasks during
high criticality mode and return to the low criticality mode
after the high criticality mode has been terminated. In [20]
a Mixed-criticality Scheduling on Multiprocessor (MSM) al-
gorithm is proposed which uses a global fixed priority based
approach. When the switching of criticality level occurs, the
low criticality tasks are dropped. The approach presented
in [24] considers mixed-critical systems and time-triggered
paradigm where WCET estimates may be overrun. A run-time
monitor is in charge of detecting these overruns and switching
on a schedule selected from a set of pre-computed schedules.

Existing approaches explore efficient ways to address
mixed-criticality systems in multi/many-core systems, but un-
der the assumption that the WCETs of at least the high
criticality level remains below the deadlines. The methodology
proposed in this paper improves the resources utilization while
guaranteeing the critical task real-time response, when the
WCET of the critical task in maximum load scenario is
estimated above the deadline, whereas in isolation scenario
respects its deadline.

B. Run-time control implementation

Several approaches exist that reallocate the resources based
on information derived from monitoring their utilization, e.g.
the memory accesses. For instance, in [25] interference-
sensitive WCETs are computed based on a preliminary analysis
of the resource usage of tasks. The shared resources are off-
line partitioned among tasks. A run-time monitoring device
observes the resource usage of each task and suspends the task
that overtakes the allocated capacity. In [26] the approach is
extended by allowing safe dynamic changes in the resource
partitioning, when resources are underutilized. In [27] an
approach has been developed to reserve memory accesses for
critical tasks. A run-time controller has been implemented
which regulates the accesses to the shared memory and ensures
temporal isolation among tasks. An off-line profiling technique



has been proposed in [28] which finds the most frequently
accessed memory pages in a task. Then, this information is
used to modify the variables’ position in the shared caches in
order to reduce the interferences.

In contrast, our approach is based on monitoring the real
execution time of the critical task and decides the suspension
of the low criticality task by run-time computing the remaining
WCET of the critical task in isolation.

VII. CONCLUSION & FUTURE WORK

In this work, we present a methodology to improve the
resources utilization by increasing the task parallelism, while
guaranteeing the real-time response of the critical task. At
design-time analysis, the critical task is described by a set of
ECFGs and partial WCET analysis is applied to compute the
required data for the run-time part. At run-time, a low-overhead
controller computes the remaining WCET of the critical task
and decides the switching between maximum load scenario
and isolation scenario.

As future directions, we plan to develop a methodology to
decide the position of the observation points over the ECFGs
and to implement and evaluate the proposed methodologies to a
real mutlicore system. Potentially a similar profiling approach
with [28] could be also used to experimentally identify the
position of the observation points. In addition, we consider the
extension of the proposed approach to several high criticality
tasks and several criticality levels. In this context, we plan
to explore several strategies on task scheduling, where the
proposed methodology could be potentially combined with
several approaches presented in the related work.
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