N
N

N

HAL

open science

STELAE - A Model-Driven Test Development
Environment for Avionics Systems

Alexandru Robert Ciprian Guduvan, Hélene Waeselynck, V. Wiels, Gagl

Durrieu, Yann Fusero, Michel Schieber

» To cite this version:

Alexandru Robert Ciprian Guduvan, Hélene Waeselynck, V. Wiels, Gaél Durrieu, Yann Fusero, et
al.. STELAE - A Model-Driven Test Development Environment for Avionics Systems. IEEE ISORC

2013, Jun 2013, PADEBORN, Germany. 8p. hal-01057937

HAL Id: hal-01057937
https://onera.hal.science/hal-01057937
Submitted on 25 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://onera.hal.science/hal-01057937
https://hal.archives-ouvertes.fr

STELAE - A Model-Driven Test Development
Environment for Avionics Systems

Alexandru-Robert GUDUVAN?3 Héléne WAESELYNCRK? Virginie WIELS', Guy DURRIEUY,
Yann FUSER®and Michel SCHIEBER

Cassidian Test & Services, 5 av. de Guynemer, B.P. 86, F-31772 Colomiers Cedex, France
2CNRS, LAAS, 7 av. du Colonel Roche, F-31400 Toulouse, France
3Univ de Toulouse, LAAS, F-31400 Toulouse, France
4ONERA/DTIM, 2 av. Edouard Belin, B.P. 74025, F-31055 Toulouse Cedex 4, France
Alexandru-Robert.Guduvan@cassidian.com, Helene.Waeselynck@laas.fr, Virginie Wiels@onera.fr, Guy.Durrieu@onera.fr,
Yann.Fusero@cassidian.com, Michel .Schieber @cassidian.com

Abstract—In this paper we present STELAE, a model-driven test
development environment for avionics embedded systems,
implemented on top of a real integration test platform. It is the
result of an R& D project between two resear ch laboratories and
a test solution provider, aiming to introduce model-driven
engineering methodologies and technologies for the development
of tests. Our work was motivated by the multiplicity of
proprietary test languages in this industrial context, which no
longer respond to the stakeholder needs. We present the early
prototype functionalities (test model definition, automatic code
gener ation and execution) on a case study inspired from real-life.
Our feedback on the used technologies concludes this paper.

Keywords—test development, test language, test model, model-

driven engineering, development environment, automatic code
generation

. INTRODUCTION

This work deals with the implementation of tests for

research laboratories. The aim is to introduce a model-driven
approach for test development, responding to this wide range
of needs. Model-driven engineering is a means to abstract away
from the existing proprietary implementation solutions. It
promotes the central role of platform-independent models in
the development activity: models are developed, maintained
and shared. The proposed shift from test code to test models is
driven by the fact that test software is indeed software, and that
test development can benefit from advanced software
engineering methodologies [4].

The approach is based on the definition of a meta-model
that captures the domain-specific concepts and constrains the
building of models, in the same way that a language gramma
constrains the writing of code. The employed meta-modeling
technology also gave us access to a wide range of free open-
source tools that led to the rapid development of our prototype,
called STELAE (Systems TEst LAnguage Environment)

STELAE gave us the opportunity to experiment with

avionics embedded systems. The current practice igodel-driven engineering and associated technologies. This
heterogeneous, as it involves a multiplicity of in-house tesfist prototype allows us to demonstrate different test engineer

languages to code the tests.

Test solution providergetivities:

equipment/system providers and aircraft manufacturers all have

their own proprietary test languages and associated tools. No

standardized test language has emerged, in contrast to other
fields that use international standards, for example: the
Abbreviated Test Language for All Systems (ATDA$] and

the Automatic Test Markup Language (ATML) [2] standards
in hardware testing or the Testing and Test Control Notation
Version 3 (TTCN-3) [3] in the field of telecommunication
protocols and distributed systems. These standards are not
designed to address the specificities of our industrial context
and as such are not directly reusabléee multiplicity of
proprietary test languages is challenging for the different
stakeholders of the avionics industry. Test solution providers
have to accommodate the habits of different clients. The
exchange of tests between aircraft manufacturers and
equipment/system providers is hindered. A number of high-
level needs (portability, maintainability and customizability)
are not answered by existing solutions.

These issues have been the basis for launching a three-yeare

R&D project involving a test solution provider and two

The definition of test models conforming to a test
meta-model. We presented the testameodel in [5]

We defined it usingecore [6]. The test meta-model
integrates a rich set of domain-specific concepts
identified by our analysis of a set of proprietary test
languages [7]. Test models are also analyzed according
to a set of rules we defined in ti@bject Constraint
Language (OCL) [8]. The definition of test models is
performed:

o In a graphical editor for structural test
elemens. The graphical editor was developed
using the Eclipse Modeling Framework
(EMF) [6].

o In a textual editor for behavioral test
elements. The textual editor was developed
usingXtext [9].

Theimplementation of test models through modete-
text transformations with template-based automatic

mailto:Alexandru-Robert.Guduvan@cassidian.com
mailto:Helene.Waeselynck@laas.fr
mailto:Virginie.Wiels@onera.fr
mailto:Guy.Durrieu@onera.fr
mailto:Yann.Fusero@cassidian.com
mailto:Michel.Schieber@cassidian.com

code generation. ¥ used Acceleo [10] for the the rest of the paper. ICD elements are distinguished by unique
implementation. The target is a Python-basedstring identifiers built from a path name traversing the tree-like
executable test language developed at Cassidian Testtucture of the ICD. Such identifiers provide an abstraction for
& Services. accessing the SUT interfaces. For an engineer variable, an

e The execution of the automatically generated files \dentifier would have the generic form:

and code on top of a real integration test platform: the ‘SUT/BUS/MESSAGE/ENG_VARIABLE'.
U-TEST Real-Time System [11] developed by

Cassidian Test & Services. Various predefined test actions can be applied to SUT

interfaces, at all of the ICD hierarchical levels (e.g.
This paper presents the functionalities of STELAE on aet/getvalue () and timed stimulations, such asmp (),
case study inspired from real-life. It also gives our feedback ofor engineer variables; fault injection:
the open-source model-driven engineering technologies witBtart/stopEmission () on a bus).

which we experimented.)
In order to propose a model-driven approach for the

Section Il introduces the industrial context. Section Il development of tests for thie-the-loop testing of avionics
presents a case study with two test cases that will guide the reghbedded systems, we had to define the test meta-model
of the paper. Sectiond/ to VII discuss the functionalities underlying the approach. First we analyzed the current practice,
offered by STELAE to test engineers, exemplified on the casgy looking at the features offered by a sample of test languages
study. Section VIII deals with related work. SectitX currently deployed [7]. The domain-specific concepts issued
comprises our feedback on the different technologies that wefeom this analysis were afterwards integrated within the test

employed and concludes this paper. meta-model [5]. In this paper we focus on the prototype test
model development environment we implemented, wiéch
[I. INDUSTRIAL CONTEXT called STELAE.

An avionics embedded system is typically a distributed
. . . Interface Control Document (ICD)
system, with interconnected hardware elements: interconnectedzsrs aors
processors, memory modules, input/output cards, power supgly
devices, and others. Software elements running on the # CONNECTOR BUS LINE TYPE
pro_c_ess_ors impler_nen_t the . fu_nctional IOgiC' . Among the CONNECTOR CONNECTOR_1 ARINC_429_TN_1 ARINC_429
verification and validation activities (for an overview see [12]

that accompany the system development process our focug ig p—
on the in-the-loop testing phases, which come in various form: ¥ BYS conrrcurarion | COMMECTOR
model/software/hardwari&-the-loop. BRINC 429 | g g COMMECTOR 1

INPUT BUS

Avionics embedded systems have a predominantly reactiye
behavior: there are execution cycles to read the input data &
compute the output ones. The system functionalities cannot pe
exercised unless all expected inputs are received from the
environment at each cycle, with some time tolerance. This |s
the motivation for in-the-loop testing: the system under test
(SUT) is coupled to a model of its environment that produces
the data, together forming a (cyclic) closed-loop system.

>

ENGINEER

¥ MES SAGE BUS
VARIABLE

ARINC 429

LABEL IN 1 ARINC 42% IN 1 AC SFEED 1
INPUT LABEL - - - - - - -

Figure 1. ADIRS-Inspired ICD Example Snippet

As mentioned previously, standard test languages used in
other fields are not directly reusable in ours. ATLAS and lll. CaseSrupy
ATML target electronic circuitty manufacturing defects, For our demonstration of the STELAE functionalities, we
detected by applying electrical signals at various places insid#ose a case study inspired from a real one targeting the
the circuit; while TTCN-3 targets the testing of open-loopADIRS (Air Data Inertial Reference System) [13\Ve
systems, which are quiescent unless activated by sonseveloped a simulation of part of the ADIRS behavior. We
asynchronous messages. implemented this case study on a real integration test platform:
U-TEST Real-Time System [11]. We chose the ADIRS-

In the avionics domain, communication between systenhgired case study as it allowed us to demonstrate a number of
components is achieved by buses, such as: AFDX (Avionicg,

. , omain-specific concepts that we integrated in the test meta-
Full-Duplex Switched Ethernet) or ARINC 429 (Aeronautical), qel (e.g., timed stimulations such as sine, the dygleycle
Radio, Incorporated). The interfaces of a system are defingds; component). We also tested our approach on a real case
inside an Interface Control Document (ICD) (Figure 1). Thisyy,qy targeting the Flight Warning System, where we verify the
document is organized into several hierarchical levels. Loweg,

. . . ynthesis of a global alarm from partial alarms in an aircraft
levels comprise connectors with pins. They are followed bypgine fire situation. We do not present it in this paper as it

buses attached to the pins. The higher levels comprise bys)id have allowed us to show only a limited number of

messages transporting application parameters as payload. @t?ncepts in comparison with the ADIRS case study.

application parameters are meaningful to engineers, they are _ o _

also called engineer variables. We shall refer to them as such in ADIRS deals with the acquisition of several engineer
variables necessary for the flight control system (e.g., altitude,

speed, angle of attack). For each of these engineer variableariables. Consequently, the test solution provider can add
redundant sensors exist and a consolidated value is computisg@m to the list of already existing ones using our predefined

from the set of available input values.

We deal here with the aircraft speed engineer varidibie
values of three input engineer variables (SPEED 1/2/3)
are used to compute the value of the output consolidat
engineer variable AC SPEED). The ADIRS logic is the
following:

extension points. Test actions that do not correspond to
interactions with the SUT are distributed inside toolkit
structures. Such an example is theitDuration ()
fynctionality, attached to a time management toolkit, that the
&8st solution provider also makes available. Figure 3 shows the
functionalities that are rendered available by the test solution
provider for the example discussed above. In STELAE, a

e Nominal behavior: The consolidated value is the mediafassword-based access control system restricts access to the
of the three input values, if the median does not divergtest solution provider section.
from the other two values. The divergence is measured as gpce these elements are rendered available by the test

the differences between the median value and the othgp|ytion provider, they can be used by the test engineers in
two values. The median is divergent if these differenceg qer to model the ICD of their SUT and to call test actions on

exceed a certain threshold.

its different interface elements.

e Degraded behavior: If the median of the three input valueBr ot meta-Model

diverges from the remaining two for more than three
cycles, then the source having produced the median |S
permanently eliminated. The consolidated value is the
average of the remaining two values.

For this system under test, we consider here two test cas
verifying the behavior:

D

e Nominal behavior test case: Verify that the consolidated
value remains equal to the median of the three input value
in the presence of a small-amplitude sine oscillation that
does not render the three input values divergent.

(7]

e Degraded behavior test case: Inject a divergence on one

Test Solution Provider Section

Test Solution User Section

Test Contexts

Systemunder Test Interface Types

High-Level Structural Concepts(e.g.,

test case, test component)

Low-Level Structural Cencepts

Test Actions.

(e.g., test section)

Behavioural Concepts (e.g. test

action calls)

of the three input values and verify that the consolidated
value is equal to the average of the two remaining values.
Verify that the divergent source is permanently eliminated,
even if the divergence is corrected.

These test cases should be executed on all combinations of
input engineer variables.

For exemplification purposes, we assume that our
simplified ADIRS employs ARINC 429 buses for transporting
its input and output engineer variables

IV. TESTSOLUTION PROVIDER AND USERSEPARATION

One of the main architectural choices we made was to
separate the elements related to the test solution provider from
those related to the test solution user inside the test meta-
model. A high-level view of the test meta-model structure can
be found in Figure 2. This separation allows the test solution
provider to easily customize and maintain the test solution, by
rendering available to test solution users different SUT
interface types (e.g., types of buses, messages, engineer
variables) and associated test actions (e.g. set and get the value
of an engineer variable, start and stop the emission on a bus).

For our case study, let us assume that the following
elements are already available to the test engineer: the AFDX
bus type and the float engineer variables with the following
predefined test actionssetValue (), getValue () and

Figure 2. Test Meta-Model High-Level View

< Database MyDatabase
~ < Provider Data MyProviderData
4 Physical Bus Type Avionics Full Duplex
4 Logical Bus Type Avionics Full Duplex Virtual Link
< Message Type Avionics Full Duplex Message
P 4 Engineer Variable Type Boolean Application Parameter
< Physical Bus Type ARINC 429
< Message Type ARINC 429 Label
= < Engineer Variable Type Float Application Parameter
P < Test Action getValue
I < Test Action generatelmpulseSignal
P < Test Action generateRampSignal
P < Test Action generateSineSignal

I 4 Toolkit TimeManagementToolkit

El Properties 32

Property Value
Blocking Type '= NonBlocking
Bounded Type = UnBounded
Name '= setValue
Side Effect Type '= SideEffect
Temporal Type = UnTimed

generateRampSignal (). But the test engineer will also Figure 3. Test Solution Provider - SUT Interface Types and TesibAs

need access to the ARINC 429 bus type and to the
generateSineSignal () test action on float engineer

V. TESTSTRUCTUREMODELING Test cases are in charge of controlling the execution of test

First we present the different concepts that a test engine‘é?mponem instances. In our simplified case study the test cases
has access to in STELAE, and afterwards we show how the§¥ECUle &tartExecutableElement () command on the
concepts are actually used for the case study modeling. two test component instances.

For the definition of the structural aspects, the test engineer L€t US now look at our two test components. First it is
employs the graphical editor (Figure 8.&pr our prototype important to mention that our analysis of test Ianguages
this editor is basic. It comprises a tree-like navigable view Oﬁvealed the fact that test engineers are accustomed to using
test structural elements, with contextual menus and input dafigh-level predefined test component constructs that hide the
fields. In order to begin modeling the two test cases of our cadgW-level multi-threading aspects. We identified three types of
study, the test engineer must first define a test context. A te&§St components: simple ones such as sequential test
context is a container for test cases applied to a SUT, togetHeg@MPonents and test monitors, as well as the timed periodic
with an architecture of test components. This concept €St component type periodic test component executes the
inspired from the UML Testing Profile [14A conceptual view ~S&me behavior periodically, while the test monitor has a simple

can be found in Figure 4. We call the elements of a test conteR€havior of the formcondition-> action. Following
high-level structural elements. discussions with test engineers, we also defined a new test

component typ: the cycleby-cycle test component.

Test components are executable elements that run in)
parallel during a test. They can access the interfaces of the SUT The test mrmodel integrates all of these test component
and call test actions. In addition, they also have access to §Pes, although we illustrate only two of them in this paper
external pool of events (i.e., for synchronization) and sharedihe Nominal Component is a sequential test component,
data (i.e., for communication). For fault avoidance purposesvhile the Degraded_Component is a cycleby-cycle test
we defined a one producermany consumers policy. Clashes component. The sequential test component executes its
can thus be detected by means of OCL rules, for example whéghavior only once, while the cydg-cycle test component
several test components target a same SUT interface with tdgts different behaviors for each SUT execution cycle or set of
actions that have side effects. Notice theleEffectType cycles. It can be “synchronized” with the SUT execution
attributein the “Properties” view in Figure 3. cycles.

A test component can be instantiated several times inside a
test case, with the test case being in control of the execution of
each test component instan@mly the test case is able to start, TestCase Nominal_TestCase I
stop or pause the execution of a test component instance.

Test Context ADIRS Validation

Test Component
. peas Instance
For ever higher reuse capabilities, test components possess Neminal Compenent 1

formal interfaces that we call accessors. It is the test
architecture associated to a test case that indicates the
connection between the formal interfaces and the interfaces of
the SUT or the pool of events and shared.data

Test Architecture 0

For our case study, a test engineer would define a unique

ADIRS Validation test context, comprising the two test
. . System under Test

cases:Nominal TestCase and Degraded TestCase. ADIRS
Two test components are added as well to the test context: n—
Nominal Component and Degraded Component.
Each test component is instantiated once within each
previously mentioned test case®minal Component 1
and respectivelpegraded Component 1.

Figure 4. Conceptual View of the Test Context

In order to render the test components reusable, we add
four formal interfaces to each one: three for the first input Each test component type has its behavior organized inside
engineer variables Ffrst IN, Second IN and low-level structural elements. A sequential test component
Third IN) and one for the output engineer varialery). Organizes its behavior within sequential blocks. The sequential
The connection to the corresponding permutations of input arf{ocks are executed one after the other, with each sequential
output engineer variables of the ADIRS is defined within the?!0Ck comprising a list of statements. Each sequential block

test architectures owned by the test cases. Figure 4 shows @ correspond ta different phase performed during a test,
corresponding conceptual view for the nominal test case. such as SUT initialization and stimulation. We defined three

sequential blocks for thBominal Component sequential

test component:initialization, Stimulation and

Behavior. The first sequential block initializes the SUT by
Two types of behavior can be modeled: for the test case aR@tting three coherent values for the three input engineer

for the test components. variables first/Second/Third IN). Notice that we refer

here to the formal interfaces of the test component. The second

VI. TESTBEHAVIOR MODELING

sequential block applies a sine signal on one of the ingut - &
engineer variablessécond IN). The sine signal does not
render the engineer variable divergent with regard to the
remaining two. The last sequential block verifies that the vallie
for the output parameted(T) is the median.

Cycle By Cycle Test Component Degraded_Component
<4 Engineer Variable Accessor First_IN
<4 Engineer Variable Accessor Second_IN
<4 Engineer Variable Accessor Third_IN
<4 Engineer Variable Accessor OUT

A cycleby-cycle test component comprises elements that 4 Cycle Initialization
allow test engineers to precisely define the behavior of the test b
component‘synchronized with each cycle of the SUT, such
as: cycle, repeated cycle or iterated cycle. A cycle das
behavior to be executed only once, for one of the SUT cyclgs.

% Cycle Cycle_1
+ lterated Cycle Cycle_2_to_4

P < Cycle Cycle_5

A repeated cycle has a behavior to be executed several times, b ¢ CycleCycle 6

depending on the evaluation of a logical condition. For faylt 4 Iterated Cycle Cycle_7_to_9

avoidance purposes, we constrain the repeated cycle to| be b 4 Cycle Cycle 10

bound by a maximum number of times it is executed. An

iterated cycle has a behavior to be executed for a fixed number Figure 6. Degraded Component in Graphical Editor

of times. Figure 5 exemplifies the cyddg-cycle behavior for
the Degraded Component test component. First the CallAccessor First IN.setvalue(10)

ADIRS is initialized with coherent values for the three inpy CallAccessor Second IN setvalue (25)

engineer variables. Next, one of the inputs is renderged CallAccessor Third_IN setValue (34)

divergent and the fact that the divergent source has been

eliminated after three cycles is verified. Finally the divergent Figure 7. Tnitialization Cycle Behavior in Textual Editor
source is rendered coherent and the fact that it remains

permanently eliminated is verified. Figure 6 shows the We also implemented some fault avoidance functionalities
corresponding model in the STELAE graphical editor, whilein STELAE, in order to identify and help in the removal of test
Figure 7 shows the behavior of theitialization cycle model problems, at design levélVe previously gave an
in the STELAE textual editor. It is important to mention thatexample concerning clash detection.

the concrete syntax found in Figure 7 is only an example, as
several ones can be defined for the test meta-model, catering o
the individual needs and tastes of the different users.

—

In addition, a partition for specifiable behavior was defined
the different low-level structural elements depending on the
test component type to which they are attached. For example,
It is worthy to mention that special instructions are used foloops are always bounded in the case of periodic and byele-
verifications of the SUT behavior inside a test component (e.geycle test components, while this constraint is relaxed for
for verifying that the output value is the median). The results oggequential test components, where bounding is only optional.
these verifications lead to the definition of a test verdict. A test

verdict can have one of th_e five foII0_N|ng possible Valuesalso defined verifications that guarantee that the corresponding
among which an order relation was definedne >pass > pepayior is executed within the different periodicity time
inconclusive > fail >error. This relation allows the consiraints. For example, we verify that the execution of the
automatic synthesis of a global verdict from local ones: thgtatements within a cycle ésnot exceed the duration of the
verdict of a test case is computed from the verdict of thgycle, I this happens, then the runtime automatically sets the
different test component instances it possesses. For this verdighqict to error, informing the test engineer that the

management we took inspiration from TTCN-3 [3]. In theperformance expected for the execution of the test was not met
Degraded_Component we have two verifications. If one of py the test platform. In addition to these verifications
these verifications leads torass and the other to @ail performed at runtime, we can also analyze the correctness of
then the local verdict of the test componentail. As our the test specification. For example, if a test action on a SUT
Degraded TestCase only has one test component interface, such as sine, is called within a cycle with a duration

For our periodic and cycley-cycle test components we

instance, then its global verdict would beil as well. higher than the duration of the cycle, then it is clear that this
specification is incorrect. This problem would be detected at
Cycle 40 # 42 tond 45 runtime, but it is more useful to detect it before. In the case of
—— theDegraded Component such a rule is validated trivially,
Irs = . - . .
Behavior | Second IN=25 | Second_IN=40 Nothing Pfgﬂny:) as we have no timed test actions that are being called. The
Third_IN =34 OCL rules that we defined allowed us to analyze aspects such
as those mentioned above.
Cycle 6 #Tto# 0 VIl. STELAEENVIRONMENT OVERVIEW
Behavior | Second_IN=25 Nothing o012 a5 Figure 8.a shows a screenshot of STELAE with the

graphical {UserData” view) and textual editors (“Behavior”
view), on theNominal TestCase example. Th&Consol&
view shows the execution traces of the automatically generated
code for theDegraded TestCase. Notice the twopass

Figure 5. Degraded Component Behavior Description

local verdicts corresponding to the two verifications inside thés discussed in [20]In avionics, UML-based modeling of
Degraded Component. The “Tests Management” view Simulation software for modéh-the-loop testing is proposed
shows the two test cases with their corresponding globah [21]. Also in avionics, [22] proposes test models conforming
verdicts (both ar@ass). The automatically generated files are to a test meta-model (integrating automata-based formalisms),
seen on the left (“Model Projects” view). As mentioned for the second generation of Integrated Modular Avionics
previously, the STELAE prototype was integrated into the reglIMA). Previous work by the same authors includes automata-
integration test platform U-TEST Real-Time System [11]based test modeling for their RT-Tester platform [23] [24].

developed by Cassidian Test & Services. STELAE was pNeither UTP and UML, nor the various standardized test

language executable on the test platform. Consequently, the domain-specific concepts derived from our
The graphical editor offers intelligent contextual menus an@nalysis of current practice were integrated inside our own test

data input fields, while the textual editor offers syntaxmeta-model.

checking, auto-completion and code coloration functionalities.

As can be seen in Figurea8- the central tree-like editor IX." FEEDBACK ONUSEDTECHNOLOGIES
we implemented several other test cases for the ADIRS in The completion of STELAE required a total effort of 12
order to test our approach. This figure also shows the testan-months. A team of five people, with four distinct roles,
context for our second case study concerning the Flighvasinvolved in the project: the test meta-model architect, a
Warning System (FWS). software architect, a project manager and a developer. The
distribution of the required effort for the different partsoof

For the Nominal TestCase, Figure 8b shows the work was as follows:

“Runtime perspective of the U-TEST MMI component, where
we can observe the modification of the values for our differené ~6 man-months (50%) for the definition of the test meta-
application parameters during executi®he “Array” view on model, for a person without any prior experience in meta-
the left comprises a list of engineer variables that we observe modeling/modeling (the list of domain-specific concepts
during the execution of the tests. Notice the three was known at the beginning of this activity),

AC SPEED 1/2/3 STATUS variables. They are internal to
our simulation of the ADIRS (i.e., not part of the ICD), ¢
corresponding to whether a source was eliminated or not
because of its divergence from the other two. We rendered ~3 man-months (25%) for the development of the
them observable in order to see the internal state of the graphical and textual editors and their integration within
simulated SUT. Notice the sine timed stimulation on the MMI component of the U-TEST Real-Time System,

~1 man-month (9%) for the development of the automatic
code generation template-based implementation,

AC_SPEED_2 in the first “Oscilloscope” view. The second for a person with knowledge of the software architecture
“Oscilloscope” shows the values for the of the target test platform, but with minimal knowledge on
AC_SPEED 1/2/3 STATUS variables. The last the model-driven technologies that were used,

“Oscilloscope” view shows the value for the AC_SPEED_OUT
engineer variable. Notice its constant value, not influenced by
the minor sine fluctuations on one of the input enginees ~1 man-month (8%) for project management,
variables.

~%2 man-months (4%) for software architecture definition,

e ~% man-months (4%) for other activities (test model
VIl RELATED WORK verification rl_JIes definition, use-case implementation and
: STELAE testing.

Model-driven engineering is an active field of research. We
focus here on work addressing the use of model-driven
engineering for the development and implementation of tests!
Work addressing the selection of abstract tests from syste
models (model-based testing) is outside the scope.

Most of the effort concerned the definition of the test meta-
odel. One of the challenges was to homogenously integrate
| of the domain-specific conceptave had previously
Identified. We achieved this objective, but the resulting test
meta-model is complex. It currently contains 190 E€las

Most existing work on test development solutions useglements representing the different concepts. 340 EAttribute
UML for the test models. Many projects have addressed thend EReference elements formalize their different
integration of the standardized UML Testing Profile [1@)d characteristics and relations. 18 EENum elements were
TTCN-3 [3]. Among these projects, [15] uses the profile inincluded as well. The size of the test meta-model exceeds that
order to produce TTCN-3 code (or code skeletons). Irtiaddi of other meta-models or domain-specific languages discussed
a meta-model for TTCN-3 can be found in [16], laterin literature. For future industrialization purposes this
encapsulated within the TTworkbench platform [17]. A similarcomplexity could be avoided by developing wizards to guide
project at Motorola [18] uses the TAU tool suite [19] the test engineer and automatically instantiate a skeleton test

Some authors proposed their own UML profiles. A UMLmOdel'

profile and model transformations for web applications testing

The development of the graphical and textual editors walsl
very fast, as this first prototype required only basic
functionalities. In their current state, the editors do not yet offer
test engineers all the functionalities/shortcuts they would neetf!
Our evaluation of the development of richer, more ergonomic
editors, with technologies such as Graphical Modeling
Framework (GMF) or Graphiti [25], leads us to believe that an
industrial product would require a much greater effort than thds]
for our first prototype. One challenging issue we encountered
when developing the two editors was to ensure theit’]
synchronization. The current state of the technology is not
optimized for a usage of several editors synchronized on a
same model. (8]

As mentioned previously, we used model to text9]
transformations for the implementation of our test models. ThEO]
automatic code generation from test models to test langua

files and code is quasi-instantaneous. [12]

A well-known approach for an easy and rapid definition of[
automatic code generation templates is to first select a source
simple example (in our case the test cases of the case study),
then define the expected target (what the corresponding files
and code are) and only afterwards develop the templates that
map the two [26]. Our experience confirms this, as w
encountered no difficulty when developing the templates whil 14
being guided by the use case. Currently, 40% of the concepts;
present in the test meta-model have been implemented. The
missing concepts where not implemented as the
simple/medium complexity case study did not require then‘;l 6]
Moreover, we targeted a relatively young test language th t
only offered access to the application parameter level of the
SUT interfaces. Consequently, concepts related to the bus and
message ICD hierarchical levels could betmplemented. For [17]
the implemented concepts we defined a total of 75 Acceleo
modules, each with one template. [18]

In conclusion, with limited previous experience with

model-driven technologies, the STELAE project workgrou%m

succeeded in the implementation of a first prototype. We ¢ ol

currently demonstrate the test model definition, automatic co
generation and execution of simple to medium complexity test
cases, on a real integration test platform. [21]

ACKNOWLEDGEMENTS 22]

The authors would like to thank all those implicated in the
STELAE project: Gilles BALLANGER Guilhem
BONNAFOUS, Mathieu GARCIA and Etienne ALLOGO.

REFERENCES

[23]
[1] 716-1995 - IEEE Standard Test Language for All Systems -
Common/Abbreviated Test Language for All Systems (C/ATLAS)
1671-2010 - IEEE Standard for Automatic Test Markup Lagg
(ATML) for Exchanging Automatic Test Equipment and Test
Information via XML [25]
ES 201 873 - Methods for Testing and Specification (MT8% Testing [26]
and Test Control Notation version 3; Part 1: TTCN-&eCLanguage.
2012

(24]
(2]

(3]

Thomas Stahl, Markus Voelter, and Krzysztof Czarne2b@6. Model-
Driven Software Development: Technology, EngineerMgnagement.
John Wiley & Sons.

Guduvan, A., Waeselynck, H., Wiels, V., Durrieu, Ghieber, M., and
Fusero, Y.: A Meta-Model for Tests of Avionics Embeddgdt&ms to
appear in Proceedings of MODELSWARD 20131st International
Conference on Model-Driven Engineering and Softwaexelopment,
SciTePress, 9 pages, February 2013

Eclipse Modeling - EMFT - Home,
http://www.eclipse.org/modeling/emft/?project=ecoréfoo

Guduvan, A., Waeselynck, H., Wiels, V., Durrieu, Ghi&ber, M., and
Fusero, Y.: Test Languages for In-the-Loop Testing ofioAe
Embedded Systems, LAAS Report N°12151, Mars 2012, 21p.
http://homepages.laas.friwaeselyn/Reports/TR-12151.pdf

OCL, Object Constraint Language, Version 2.3.1, Jan2@t 2,
http://www.omg.org/spec/OCL/2.3.1/

Xtext, http://www.eclipse.org/Xtext/
Acceleo,http://www.eclipse.org/acceleo/

] Cassidian T & S - U-Test Software,

http://www.eads-ts.com/web/products/software/utest.html
Aliki Ott. System Testing in the Avionics Domain. Ph.Dissertation
University of Bremen, Germany, 2007

13] Guy Durrieu, Hélene Waeselynck, Virginie Wiels. LETOA-Lustre-

Based Test Oracle for Airbus Critical Systems. In DartenCofer,
Alessandro Fantechi, editors, Formal Methods for Inghis@ritical
Systems, 13th International Workshop, FMICS 2008, L kxqutaly,
September 15-16, 2008, Revised Selected Papers. Vol&®@ &f
Lecture Notes in Computer Science, pages 7-22, Spridge8.

UTP, UML Testing Profile, Version 1.1. 2012.
http://www.omg.org/spec/UTP/1.1/

J. Zander, Z. Ru Dai, . Schieferdecker, G. Din. FId&TP models to
executable tests with TTCN-3: An approach to modeledritesting, in
Proc. international conference on testing of commaiitig systems
(TestCom 2005), pp. 289-303, 2005.

Ina Schieferdecker, George Din. A Meta-model for NF& FORTE
2004 Workshops The FormEMC, EPEW, ITM, Toledo, Spainpkat
1-2, 2004. Volume 3236 of Lecture Notes in Computeer®e, pages
366-379, Springer, 2004

TTworkbench - The Reliable Test Automation Platform, ihigst
Technologies.
http://www.testingtech.com/products/ttworkbench.php

Paul Baker and Clive Jervis, Testing UML2.0 Models USIT@EN-3
and the UML2.0 Testing Profile, Proc. SDL 2007, LNQ@S345,
Springer, pp. 86-100, 2007.

Rational Tau, IBMhttp://www01.ibm.com/software/awdtools/tau/

Yanelis Hernandez, Tariq M. King, Jairo Pava, Pételarke: A Meta-
model to Support Regression Testing of Web ApplicatiSiEKE 2008:
500505

Yin, Y. F., Liu, B., Zhong, D. M., & Jiang, T. M.2009). On modeling
approach for embedded real-time software simulatiomgesiournal of
Systems Engineering and Electronics, 20(2), 420-426.

C. Efkemann and J. peleska. Model-Based Testing for #wond
Generation of Integrated Modular Avionics. In Proéegsd of the 2011
IEEE 4" International Conference on Software Testing, Veaitfon and
Validation Wakshops, ICSTW ’11, pages 55-62, Washington, DC,
USA, 2011, IEEE Computer Society, ISBN 978-0-7695-4B4%0i:
10.1109/ICSTW.2011.72.,

URL http://dx.doi.org/10.1109/ICSTW.2011.72

RT-Tester 6.X Product Information,

URL:http://www.verified.de/ _media/en/products/rt-
tester_information.pdf

M. Dahlweid, O. Meyer, and J. Peleska. Automated Tgstiith RT-
Tester— Theoretical Issus Driven by Practical Needs. In Praogedf
FM-Tools 2000, number 2000-07 in Ulmer Informatik Bericlo@

Graphiti Homehttp://www.eclipse.org/graphiti/

K. Czarnecki and S. Helsen. 2006. Feature-based ysw¥emodel
transformation approaches. IBM Syst. J. 45, 3 (July 2068),-645.
DOI=10.1147/sj.453.062kttp://dx.doi.org/10.1147/s}.453.0621

http://www.eclipse.org/modeling/emft/?project=ecoretools
http://homepages.laas.fr/waeselyn/Reports/TR-12151.pdf
http://www.omg.org/spec/OCL/2.3.1/
http://www.eclipse.org/Xtext/
http://www.eclipse.org/acceleo/
http://www.eads-ts.com/web/products/software/utest.html
http://www.omg.org/spec/UTP/1.1/
http://www.testingtech.com/products/ttworkbench.php
http://www01.ibm.com/software/awdtools/tau/
http://dx.doi.org/10.1109/ICSTW.2011.72
http://www.verified.de/_media/en/products/rt-tester_information.pdf
http://www.verified.de/_media/en/products/rt-tester_information.pdf
http://www.eclipse.org/graphiti/
http://dx.doi.org/10.1147/sj.453.0621

FHle Edit Views Help Run

U-TEST™ RT MMI Framework - admin

Stelae Editor

e seBEBx @D 286 |@ -5 |3 20 |G-

Model Projects 22 \

- & > fws_testmodel 5119 [hitp:
D (% > Template 5115
P = JRE System Library [|25E-1 5]
B =i, Plug-in Dependencies
D (3 META-INF 6111
¥ [> Model 6074

(&% Result 5969
¥ [y = Rules 6114
[fl} = stelae ocl 5185
¥ [= Test-Gen 5119
[F] ADIRS_Validation py
ADIRS_Validation pyc
[F] ADIRS py
[5 ADIRS pyc
[F] ADIRSSimulation py

ADIRSSimulation.pyc
[E] ADIRSTestSuite tsdef

[# Alarm_reset_function.py
[F; CPIOM_J11 py

[CPICM_J11Simulation.py

[F) Degraded_Component.py

Degraded Component.pyc
[F) Degraded_TestCase py

|= Degraded_TestCase.pyc
[/ FWS_test_program tsdef
[F FWSTestContext.py

[MyProviderData.py

MyProviderData.pyc
[F) Nominal_Component.py
|= Nominal_Component.pyc

[F) Nominal_TestCase.py

ubversior

y stelae 6185

- =80

User Data
= 4 User Data MyUserData
P 4 Test Context FWSTestContext
¥ |4 Test Context ADIRS_Validation
13 WTsst Case Simple_TestCase
[F&Test Case SimpleFaulty_TestCase
I m Test Case Ramp_TestCase
b [Test Case Nominal_TestCase
I [Test Case Degraded_TestCase
b '@ Sequential Test Component Simple_Component
3 '@ Sequential Test Component SimpleFaulty_Component
['@ Sequential Test Component Ramp_Component
~ '% Sequential Test Component Nominal_Component
4 Engineer Variable Accessor First_IN
4 Engineer Variable Accessor Second_IN
4 Engineer Variable Accessor Third_IN
4 Engineer Variable Accessor OUT
P .7 Sequential Block Initialization

I .” sequential Block Stimulation

P <4 Cycle By Cycle Test Component Degraded_Component
| I 3

B Sequential Block havior

Behavior

TimeManagementToolkit.waitDuration([2 second]) =
Check (CallAccessor OUTgetValue() == CallAccessor T

TimeManagementToolkit.waitDuration([¢ second])
Check (CallAccessor OUT.getValue() == CallAccessor T

TimeManagementToolkit waitDuration([10 second])
Check (CallAccessor OUTgetValue() == CallAccessor T

]
L

(1 L I

[*]

=1 Properties I‘Z\Ermr Log ‘ k% Pmblems‘ « Tests manage 2 - = O |E cConscle & - =
o ek L] B W G REEF o B

(16:29:39) Executing TestAction getWalue()

D Status (16:29:39) [PASS] self.OUT.getValue() == 22.

b [El Nominal_TestCase (16:29:43) Executing TestAction setValue()
(16:29:44) Executing TestAction getValue()

¢ B Degraded_TestCase (16:29:44) [PASS] self.QUT.getValue() '= 25.
(16:29:44) Executing TestAction waitDuration()
(16:29:49) Stopping TestComponentInstance Degraded_Com
(16:29:49) [PAS5] Verdict of TestCase Degraded_TestCas
(16:29:49) Stopping TestCase Degraded_TestCase
(16:29:49) Stopping SystemUnderTest Simulation ADIRS

= STELAE Offline..

(l Il [[*]

‘ ‘ & admin
Figure 8.a. “STELAE’ Perspective
I U-TEST™ RT MMI Framework dmin B x
File Edit Views Acquisiton Help Run
P b B e H Y @ R (%] @ ¢ d x|
| Array = Oscilloscope % A —0
Variable name Value Timestamp E 10,
ADIRS/ARINC_429_IN_1/LABEL IN_1/AC_SPEED_1 -10.0000 11:35:43:947 :%. #
o] 0
ADIRS/ARINC_429_N_2/LABEL IN_2/AC_SFEED 2 -1.4589 11:35.53:898 s
ADIRS/ARINC_429_IN_3/LABEL IN_3/AC_SPEED_3 -5.0000 11:35:43:951 % 10
/LAB i L 3
ARIHGARING S AR QUIAG SREED =000 300 = 1134:00:000 11:3420:000 11:34.40:000 113500000 113520000 11:35:40:000 =
Memory variables/AC_SPEED_1_STATUS 1 11:36:02:050 g time
o
Memory variables/AC_SPEED_2_STATUS 1 11:36:02:050 ,%, .
Memory variables/AC_SPEED_3_STATUS 1 11:36:02:050 = S
G =
Msmory variablesftolerance 15,0000 11:35:43:941 B oscilloscope 3 A —H
I
1
3| 13
E' 07
=] Variables List zz\ 15 41
Filter - J[A é 05
b 1134:10:000 11:32:30:000 11:34:50:000 11:3%10:000 11:35:30:000 11:35:50.000
T z [
Variables Values g i
b =@ ADIRS § -
P N Oscilloscope 32 A =0
b (4 CODES
b = cPiom j11 § :
3
> &) MONITORS % P
P 5} Memory variables o g
b 2 POOLS § Er
= 11:34:10:000 11:3430:000 1134:50:000 11:35:10:000 11:35:30:000 11:35:50:000
g
o ADIRSIARING 429 OUT/LABEL OUT/AC SPEED [x: Second. y:]
[&) Monitering management = 8| @ Error Log i El Consale % . =8
- 2 - B GESE # B
(11:36:01 } Executing TestAction getValue()
D Status (11:36:01) Executing TestAction getValue()
n » (11:36:81) [PASS] self.0UT.getValue()==self.Third_IN.getValue()
B Nominal_TestCase (11:36:01)} Stopping TestComponentInstance Mominal Component 1
| Degraded_TestCase (11:36:02) [PASS] Verdict of TestCase Nominal TestCase
- (11:36:02) Stopping TestCase Mominal_TestCase
(11:36:82) Stopping SystemUnderTest Simulation ADIRS
|STELAE Offline..

@

_‘ & admin

Figure 8.b.

“Runtime” Perspective

