
HAL Id: hal-01057937
https://onera.hal.science/hal-01057937

Submitted on 25 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

STELAE - A Model-Driven Test Development
Environment for Avionics Systems

Alexandru Robert Ciprian Guduvan, Hélène Waeselynck, V. Wiels, Gaël
Durrieu, Yann Fusero, Michel Schieber

To cite this version:
Alexandru Robert Ciprian Guduvan, Hélène Waeselynck, V. Wiels, Gaël Durrieu, Yann Fusero, et
al.. STELAE - A Model-Driven Test Development Environment for Avionics Systems. IEEE ISORC
2013, Jun 2013, PADEBORN, Germany. 8p. �hal-01057937�

https://onera.hal.science/hal-01057937
https://hal.archives-ouvertes.fr

STELAE – A Model-Driven Test Development
Environment for Avionics Systems

Alexandru-Robert GUDUVAN1,2,3, Hélène WAESELYNCK2,3, Virginie WIELS4, Guy DURRIEU4,
Yann FUSERO1 and Michel SCHIEBER1

1Cassidian Test & Services, 5 av. de Guynemer, B.P. 86, F-31772 Colomiers Cedex, France
2CNRS, LAAS, 7 av. du Colonel Roche, F-31400 Toulouse, France

3Univ de Toulouse, LAAS, F-31400 Toulouse, France
4ONERA/DTIM, 2 av. Edouard Belin, B.P. 74025, F-31055 Toulouse Cedex 4, France

Alexandru-Robert.Guduvan@cassidian.com, Helene.Waeselynck@laas.fr, Virginie.Wiels@onera.fr, Guy.Durrieu@onera.fr,
Yann.Fusero@cassidian.com, Michel.Schieber@cassidian.com

Abstract—In this paper we present STELAE, a model-driven test
development environment for avionics embedded systems,
implemented on top of a real integration test platform. It is the
result of an R&D project between two research laboratories and
a test solution provider, aiming to introduce model-driven
engineering methodologies and technologies for the development
of tests. Our work was motivated by the multiplicity of
proprietary test languages in this industrial context, which no
longer respond to the stakeholder needs. We present the early
prototype functionalities (test model definition, automatic code
generation and execution) on a case study inspired from real-life.
Our feedback on the used technologies concludes this paper.

Keywords—test development, test language, test model, model-
driven engineering, development environment, automatic code
generation

I. INTRODUCTION

This work deals with the implementation of tests for
avionics embedded systems. The current practice is
heterogeneous, as it involves a multiplicity of in-house test
languages to code the tests. Test solution providers,
equipment/system providers and aircraft manufacturers all have
their own proprietary test languages and associated tools. No
standardized test language has emerged, in contrast to other
fields that use international standards, for example: the
Abbreviated Test Language for All Systems (ATLAS) [1] and
the Automatic Test Markup Language (ATML) [2] standards
in hardware testing or the Testing and Test Control Notation
Version 3 (TTCN-3) [3] in the field of telecommunication
protocols and distributed systems. These standards are not
designed to address the specificities of our industrial context
and as such are not directly reusable. The multiplicity of
proprietary test languages is challenging for the different
stakeholders of the avionics industry. Test solution providers
have to accommodate the habits of different clients. The
exchange of tests between aircraft manufacturers and
equipment/system providers is hindered. A number of high-
level needs (portability, maintainability and customizability)
are not answered by existing solutions.

These issues have been the basis for launching a three-year
R&D project involving a test solution provider and two

research laboratories. The aim is to introduce a model-driven
approach for test development, responding to this wide range
of needs. Model-driven engineering is a means to abstract away
from the existing proprietary implementation solutions. It
promotes the central role of platform-independent models in
the development activity: models are developed, maintained
and shared. The proposed shift from test code to test models is
driven by the fact that test software is indeed software, and that
test development can benefit from advanced software
engineering methodologies [4].

The approach is based on the definition of a meta-model
that captures the domain-specific concepts and constrains the
building of models, in the same way that a language grammar
constrains the writing of code. The employed meta-modeling
technology also gave us access to a wide range of free open-
source tools that led to the rapid development of our prototype,
called STELAE (Systems TEst LAnguage Environment).

STELAE gave us the opportunity to experiment with
model-driven engineering and associated technologies. This
first prototype allows us to demonstrate different test engineer
activities:

 The definition of test models conforming to a test
meta-model. We presented the test meta-model in [5].
We defined it using Ecore [6]. The test meta-model
integrates a rich set of domain-specific concepts
identified by our analysis of a set of proprietary test
languages [7]. Test models are also analyzed according
to a set of rules we defined in the Object Constraint
Language (OCL) [8]. The definition of test models is
performed:

o In a graphical editor for structural test
elements. The graphical editor was developed
using the Eclipse Modeling Framework
(EMF) [6].

o In a textual editor for behavioral test
elements. The textual editor was developed
using Xtext [9].

 The implementation of test models through model-to-
text transformations with template-based automatic

mailto:Alexandru-Robert.Guduvan@cassidian.com
mailto:Helene.Waeselynck@laas.fr
mailto:Virginie.Wiels@onera.fr
mailto:Guy.Durrieu@onera.fr
mailto:Yann.Fusero@cassidian.com
mailto:Michel.Schieber@cassidian.com

code generation. We used Acceleo [10] for the
implementation. The target is a Python-based
executable test language developed at Cassidian Test
& Services.

 The execution of the automatically generated files
and code on top of a real integration test platform: the
U-TEST Real-Time System [11] developed by
Cassidian Test & Services.

This paper presents the functionalities of STELAE on a
case study inspired from real-life. It also gives our feedback on
the open-source model-driven engineering technologies with
which we experimented.

Section II introduces the industrial context. Section III
presents a case study with two test cases that will guide the rest
of the paper. Sections IV to VII discuss the functionalities
offered by STELAE to test engineers, exemplified on the case
study. Section VIII deals with related work. Section IX
comprises our feedback on the different technologies that were
employed and concludes this paper.

II. INDUSTRIAL CONTEXT

An avionics embedded system is typically a distributed
system, with interconnected hardware elements: interconnected
processors, memory modules, input/output cards, power supply
devices, and others. Software elements running on the
processors implement the functional logic. Among the
verification and validation activities (for an overview see [12])
that accompany the system development process our focus is
on the in-the-loop testing phases, which come in various forms:
model/software/hardware-in-the-loop.

Avionics embedded systems have a predominantly reactive
behavior: there are execution cycles to read the input data and
compute the output ones. The system functionalities cannot be
exercised unless all expected inputs are received from the
environment at each cycle, with some time tolerance. This is
the motivation for in-the-loop testing: the system under test
(SUT) is coupled to a model of its environment that produces
the data, together forming a (cyclic) closed-loop system.

As mentioned previously, standard test languages used in
other fields are not directly reusable in ours. ATLAS and
ATML target electronic circuitry manufacturing defects,
detected by applying electrical signals at various places inside
the circuit; while TTCN-3 targets the testing of open-loop
systems, which are quiescent unless activated by some
asynchronous messages.

In the avionics domain, communication between system
components is achieved by buses, such as: AFDX (Avionics
Full-Duplex Switched Ethernet) or ARINC 429 (Aeronautical
Radio, Incorporated). The interfaces of a system are defined
inside an Interface Control Document (ICD) (Figure 1). This
document is organized into several hierarchical levels. Lower
levels comprise connectors with pins. They are followed by
buses attached to the pins. The higher levels comprise bus
messages transporting application parameters as payload. As
application parameters are meaningful to engineers, they are
also called engineer variables. We shall refer to them as such in

the rest of the paper. ICD elements are distinguished by unique
string identifiers built from a path name traversing the tree-like
structure of the ICD. Such identifiers provide an abstraction for
accessing the SUT interfaces. For an engineer variable, an
identifier would have the generic form:

‘SUT/BUS/MESSAGE/ENG_VARIABLE’.

Various predefined test actions can be applied to SUT
interfaces, at all of the ICD hierarchical levels (e.g.
set/getValue() and timed stimulations, such as ramp(),
for engineer variables; fault injection:
start/stopEmission() on a bus).

In order to propose a model-driven approach for the
development of tests for the in-the-loop testing of avionics
embedded systems, we had to define the test meta-model
underlying the approach. First we analyzed the current practice,
by looking at the features offered by a sample of test languages
currently deployed [7]. The domain-specific concepts issued
from this analysis were afterwards integrated within the test
meta-model [5]. In this paper we focus on the prototype test
model development environment we implemented, which is
called STELAE.

Figure 1. ADIRS-Inspired ICD Example Snippet

III. CASE STUDY

For our demonstration of the STELAE functionalities, we
chose a case study inspired from a real one targeting the
ADIRS (Air Data Inertial Reference System) [13]. We
developed a simulation of part of the ADIRS behavior. We
implemented this case study on a real integration test platform:
U-TEST Real-Time System [11]. We chose the ADIRS-
inspired case study as it allowed us to demonstrate a number of
domain-specific concepts that we integrated in the test meta-
model (e.g., timed stimulations such as sine, the cycle-by-cycle
test component). We also tested our approach on a real case
study targeting the Flight Warning System, where we verify the
synthesis of a global alarm from partial alarms in an aircraft
engine fire situation. We do not present it in this paper as it
would have allowed us to show only a limited number of
concepts in comparison with the ADIRS case study.

ADIRS deals with the acquisition of several engineer
variables necessary for the flight control system (e.g., altitude,

speed, angle of attack). For each of these engineer variables
redundant sensors exist and a consolidated value is computed
from the set of available input values.

We deal here with the aircraft speed engineer variable. The
values of three input engineer variables (AC_SPEED_1/2/3)
are used to compute the value of the output consolidated
engineer variable (AC_SPEED). The ADIRS logic is the
following:

 Nominal behavior: The consolidated value is the median
of the three input values, if the median does not diverge
from the other two values. The divergence is measured as
the differences between the median value and the other
two values. The median is divergent if these differences
exceed a certain threshold.

 Degraded behavior: If the median of the three input values
diverges from the remaining two for more than three
cycles, then the source having produced the median is
permanently eliminated. The consolidated value is the
average of the remaining two values.

For this system under test, we consider here two test cases
verifying the behavior:

 Nominal behavior test case: Verify that the consolidated
value remains equal to the median of the three input values
in the presence of a small-amplitude sine oscillation that
does not render the three input values divergent.

 Degraded behavior test case: Inject a divergence on one
of the three input values and verify that the consolidated
value is equal to the average of the two remaining values.
Verify that the divergent source is permanently eliminated,
even if the divergence is corrected.

These test cases should be executed on all combinations of
input engineer variables.

For exemplification purposes, we assume that our
simplified ADIRS employs ARINC 429 buses for transporting
its input and output engineer variables.

IV. TEST SOLUTION PROVIDER AND USER SEPARATION

One of the main architectural choices we made was to
separate the elements related to the test solution provider from
those related to the test solution user inside the test meta-
model. A high-level view of the test meta-model structure can
be found in Figure 2. This separation allows the test solution
provider to easily customize and maintain the test solution, by
rendering available to test solution users different SUT
interface types (e.g., types of buses, messages, engineer
variables) and associated test actions (e.g. set and get the value
of an engineer variable, start and stop the emission on a bus).

For our case study, let us assume that the following
elements are already available to the test engineer: the AFDX
bus type and the float engineer variables with the following
predefined test actions: setValue(), getValue() and
generateRampSignal(). But the test engineer will also
need access to the ARINC 429 bus type and to the
generateSineSignal() test action on float engineer

variables. Consequently, the test solution provider can add
them to the list of already existing ones using our predefined
extension points. Test actions that do not correspond to
interactions with the SUT are distributed inside toolkit
structures. Such an example is the waitDuration()
functionality, attached to a time management toolkit, that the
test solution provider also makes available. Figure 3 shows the
functionalities that are rendered available by the test solution
provider for the example discussed above. In STELAE, a
password-based access control system restricts access to the
test solution provider section.

Once these elements are rendered available by the test
solution provider, they can be used by the test engineers in
order to model the ICD of their SUT and to call test actions on
its different interface elements.

Figure 2. Test Meta-Model High-Level View

Figure 3. Test Solution Provider - SUT Interface Types and Test Actions

V. TEST STRUCTURE MODELING

First we present the different concepts that a test engineer
has access to in STELAE, and afterwards we show how these
concepts are actually used for the case study modeling.

For the definition of the structural aspects, the test engineer
employs the graphical editor (Figure 8.a). For our prototype
this editor is basic. It comprises a tree-like navigable view of
test structural elements, with contextual menus and input data
fields. In order to begin modeling the two test cases of our case
study, the test engineer must first define a test context. A test
context is a container for test cases applied to a SUT, together
with an architecture of test components. This concept is
inspired from the UML Testing Profile [14]. A conceptual view
can be found in Figure 4. We call the elements of a test context
high-level structural elements.

Test components are executable elements that run in
parallel during a test. They can access the interfaces of the SUT
and call test actions. In addition, they also have access to an
external pool of events (i.e., for synchronization) and shared
data (i.e., for communication). For fault avoidance purposes,
we defined a one producer – many consumers policy. Clashes
can thus be detected by means of OCL rules, for example when
several test components target a same SUT interface with test
actions that have side effects. Notice the SideEffectType
attribute in the “Properties” view in Figure 3.

A test component can be instantiated several times inside a
test case, with the test case being in control of the execution of
each test component instance. Only the test case is able to start,
stop or pause the execution of a test component instance.

For ever higher reuse capabilities, test components possess
formal interfaces that we call accessors. It is the test
architecture associated to a test case that indicates the
connection between the formal interfaces and the interfaces of
the SUT or the pool of events and shared data.

For our case study, a test engineer would define a unique
ADIRS_Validation test context, comprising the two test
cases: Nominal_TestCase and Degraded_TestCase.
Two test components are added as well to the test context:
Nominal_Component and Degraded_Component.
Each test component is instantiated once within each
previously mentioned test cases: Nominal_Component_1
and respectively Degraded_Component_1.

In order to render the test components reusable, we add
four formal interfaces to each one: three for the first input
engineer variables (First_IN, Second_IN and
Third_IN) and one for the output engineer variable (OUT).
The connection to the corresponding permutations of input and
output engineer variables of the ADIRS is defined within the
test architectures owned by the test cases. Figure 4 shows the
corresponding conceptual view for the nominal test case.

VI. TEST BEHAVIOR MODELING

Two types of behavior can be modeled: for the test case and
for the test components.

Test cases are in charge of controlling the execution of test
component instances. In our simplified case study the test cases
execute a startExecutableElement() command on the
two test component instances.

Let us now look at our two test components. First it is
important to mention that our analysis of test languages
revealed the fact that test engineers are accustomed to using
high-level predefined test component constructs that hide the
low-level multi-threading aspects. We identified three types of
test components: simple ones such as sequential test
components and test monitors, as well as the timed periodic
test component type. A periodic test component executes the
same behavior periodically, while the test monitor has a simple
behavior of the form condition-> action. Following
discussions with test engineers, we also defined a new test
component type: the cycle-by-cycle test component.

The test meta-model integrates all of these test component
types, although we illustrate only two of them in this paper.
The Nominal_Component is a sequential test component,
while the Degraded_Component is a cycle-by-cycle test
component. The sequential test component executes its
behavior only once, while the cycle-by-cycle test component
has different behaviors for each SUT execution cycle or set of
cycles. It can be “synchronized” with the SUT execution
cycles.

Figure 4. Conceptual View of the Test Context

Each test component type has its behavior organized inside
low-level structural elements. A sequential test component
organizes its behavior within sequential blocks. The sequential
blocks are executed one after the other, with each sequential
block comprising a list of statements. Each sequential block
can correspond to a different phase performed during a test,
such as SUT initialization and stimulation. We defined three
sequential blocks for the Nominal_Component sequential
test component: Initialization, Stimulation and
Behavior. The first sequential block initializes the SUT by
setting three coherent values for the three input engineer
variables (First/Second/Third_IN). Notice that we refer
here to the formal interfaces of the test component. The second

sequential block applies a sine signal on one of the input
engineer variables (Second_IN). The sine signal does not
render the engineer variable divergent with regard to the
remaining two. The last sequential block verifies that the value
for the output parameter (OUT) is the median.

A cycle-by-cycle test component comprises elements that
allow test engineers to precisely define the behavior of the test
component “synchronized” with each cycle of the SUT, such
as: cycle, repeated cycle or iterated cycle. A cycle has a
behavior to be executed only once, for one of the SUT cycles.
A repeated cycle has a behavior to be executed several times,
depending on the evaluation of a logical condition. For fault
avoidance purposes, we constrain the repeated cycle to be
bound by a maximum number of times it is executed. An
iterated cycle has a behavior to be executed for a fixed number
of times. Figure 5 exemplifies the cycle-by-cycle behavior for
the Degraded_Component test component. First the
ADIRS is initialized with coherent values for the three input
engineer variables. Next, one of the inputs is rendered
divergent and the fact that the divergent source has been
eliminated after three cycles is verified. Finally the divergent
source is rendered coherent and the fact that it remains
permanently eliminated is verified. Figure 6 shows the
corresponding model in the STELAE graphical editor, while
Figure 7 shows the behavior of the Initialization cycle
in the STELAE textual editor. It is important to mention that
the concrete syntax found in Figure 7 is only an example, as
several ones can be defined for the test meta-model, catering to
the individual needs and tastes of the different users.

It is worthy to mention that special instructions are used for
verifications of the SUT behavior inside a test component (e.g.,
for verifying that the output value is the median). The results of
these verifications lead to the definition of a test verdict. A test
verdict can have one of the five following possible values,
among which an order relation was defined: none > pass >
inconclusive > fail > error. This relation allows the
automatic synthesis of a global verdict from local ones: the
verdict of a test case is computed from the verdict of the
different test component instances it possesses. For this verdict
management we took inspiration from TTCN-3 [3]. In the
Degraded_Component we have two verifications. If one of
these verifications leads to a pass and the other to a fail
then the local verdict of the test component is fail. As our
Degraded_TestCase only has one test component
instance, then its global verdict would be fail as well.

Figure 5. Degraded_Component Behavior Description

Figure 6. Degraded_Component in Graphical Editor

Figure 7. Initialization Cycle Behavior in Textual Editor

We also implemented some fault avoidance functionalities
in STELAE, in order to identify and help in the removal of test
model problems, at design level. We previously gave an
example concerning clash detection.

In addition, a partition for specifiable behavior was defined
on the different low-level structural elements depending on the
test component type to which they are attached. For example,
loops are always bounded in the case of periodic and cycle-by-
cycle test components, while this constraint is relaxed for
sequential test components, where bounding is only optional.

For our periodic and cycle-by-cycle test components we
also defined verifications that guarantee that the corresponding
behavior is executed within the different periodicity time
constraints. For example, we verify that the execution of the
statements within a cycle does not exceed the duration of the
cycle. If this happens, then the runtime automatically sets the
verdict to error, informing the test engineer that the
performance expected for the execution of the test was not met
by the test platform. In addition to these verifications
performed at runtime, we can also analyze the correctness of
the test specification. For example, if a test action on a SUT
interface, such as sine, is called within a cycle with a duration
higher than the duration of the cycle, then it is clear that this
specification is incorrect. This problem would be detected at
runtime, but it is more useful to detect it before. In the case of
the Degraded_Component such a rule is validated trivially,
as we have no timed test actions that are being called. The
OCL rules that we defined allowed us to analyze aspects such
as those mentioned above.

VII. STELAE ENVIRONMENT OVERVIEW

Figure 8.a shows a screenshot of STELAE with the
graphical (“UserData” view) and textual editors (“Behavior”
view), on the Nominal_TestCase example. The “Console”
view shows the execution traces of the automatically generated
code for the Degraded_TestCase. Notice the two pass

local verdicts corresponding to the two verifications inside the
Degraded_Component. The “Tests Management” view
shows the two test cases with their corresponding global
verdicts (both are pass). The automatically generated files are
seen on the left (“Model Projects” view). As mentioned
previously, the STELAE prototype was integrated into the real
integration test platform U-TEST Real-Time System [11]
developed by Cassidian Test & Services. STELAE was
plugged in the Man-Machine Interface (MMI) software
component of the test platform as an Eclipse perspective. The
automatic code generation targeted a real Python-based test
language executable on the test platform.

The graphical editor offers intelligent contextual menus and
data input fields, while the textual editor offers syntax
checking, auto-completion and code coloration functionalities.

As can be seen in Figure 8.a – the central tree-like editor,
we implemented several other test cases for the ADIRS in
order to test our approach. This figure also shows the test
context for our second case study concerning the Flight
Warning System (FWS).

For the Nominal_TestCase, Figure 8.b shows the
“Runtime” perspective of the U-TEST MMI component, where
we can observe the modification of the values for our different
application parameters during execution. The “Array” view on
the left comprises a list of engineer variables that we observe
during the execution of the tests. Notice the three
AC_SPEED_1/2/3_STATUS variables. They are internal to
our simulation of the ADIRS (i.e., not part of the ICD),
corresponding to whether a source was eliminated or not
because of its divergence from the other two. We rendered
them observable in order to see the internal state of the
simulated SUT. Notice the sine timed stimulation on
AC_SPEED_2 in the first “Oscilloscope” view. The second
“Oscilloscope” shows the values for the
AC_SPEED_1/2/3_STATUS variables. The last
“Oscilloscope” view shows the value for the AC_SPEED_OUT
engineer variable. Notice its constant value, not influenced by
the minor sine fluctuations on one of the input engineer
variables.

VIII. RELATED WORK

Model-driven engineering is an active field of research. We
focus here on work addressing the use of model-driven
engineering for the development and implementation of tests.
Work addressing the selection of abstract tests from system
models (model-based testing) is outside the scope.

Most existing work on test development solutions uses
UML for the test models. Many projects have addressed the
integration of the standardized UML Testing Profile [14] and
TTCN-3 [3]. Among these projects, [15] uses the profile in
order to produce TTCN-3 code (or code skeletons). In addition,
a meta-model for TTCN-3 can be found in [16], later
encapsulated within the TTworkbench platform [17]. A similar
project at Motorola [18] uses the TAU tool suite [19].

Some authors proposed their own UML profiles. A UML
profile and model transformations for web applications testing

is discussed in [20]. In avionics, UML-based modeling of
simulation software for model-in-the-loop testing is proposed
in [21]. Also in avionics, [22] proposes test models conforming
to a test meta-model (integrating automata-based formalisms),
for the second generation of Integrated Modular Avionics
(IMA). Previous work by the same authors includes automata-
based test modeling for their RT-Tester platform [23] [24].

Neither UTP and UML, nor the various standardized test
languages deployed in other domains do not offer the specific
concepts our test engineers require. Moreover, UML does not
seem to be a solution showcased by our industrial context.
Consequently, the domain-specific concepts derived from our
analysis of current practice were integrated inside our own test
meta-model.

IX. FEEDBACK ON USED TECHNOLOGIES

The completion of STELAE required a total effort of 12
man-months. A team of five people, with four distinct roles,
was involved in the project: the test meta-model architect, a
software architect, a project manager and a developer. The
distribution of the required effort for the different parts of our
work was as follows:

 ~6 man-months (50%) for the definition of the test meta-
model, for a person without any prior experience in meta-
modeling/modeling (the list of domain-specific concepts
was known at the beginning of this activity),

 ~1 man-month (9%) for the development of the automatic
code generation template-based implementation,

 ~3 man-months (25%) for the development of the
graphical and textual editors and their integration within
the MMI component of the U-TEST Real-Time System,
for a person with knowledge of the software architecture
of the target test platform, but with minimal knowledge on
the model-driven technologies that were used,

 ~½ man-months (4%) for software architecture definition,

 ~1 man-month (8%) for project management,

 ~½ man-months (4%) for other activities (test model
verification rules definition, use-case implementation and
STELAE testing).

Most of the effort concerned the definition of the test meta-
model. One of the challenges was to homogenously integrate
all of the domain-specific concepts we had previously
identified. We achieved this objective, but the resulting test
meta-model is complex. It currently contains 190 EClass
elements representing the different concepts. 340 EAttribute
and EReference elements formalize their different
characteristics and relations. 18 EENum elements were
included as well. The size of the test meta-model exceeds that
of other meta-models or domain-specific languages discussed
in literature. For future industrialization purposes this
complexity could be avoided by developing wizards to guide
the test engineer and automatically instantiate a skeleton test
model.

The development of the graphical and textual editors was
very fast, as this first prototype required only basic
functionalities. In their current state, the editors do not yet offer
test engineers all the functionalities/shortcuts they would need.
Our evaluation of the development of richer, more ergonomic
editors, with technologies such as Graphical Modeling
Framework (GMF) or Graphiti [25], leads us to believe that an
industrial product would require a much greater effort than that
for our first prototype. One challenging issue we encountered
when developing the two editors was to ensure their
synchronization. The current state of the technology is not
optimized for a usage of several editors synchronized on a
same model.

As mentioned previously, we used model to text
transformations for the implementation of our test models. The
automatic code generation from test models to test language
files and code is quasi-instantaneous.

A well-known approach for an easy and rapid definition of
automatic code generation templates is to first select a source
simple example (in our case the test cases of the case study),
then define the expected target (what the corresponding files
and code are) and only afterwards develop the templates that
map the two [26]. Our experience confirms this, as we
encountered no difficulty when developing the templates while
being guided by the use case. Currently, 40% of the concepts
present in the test meta-model have been implemented. The
missing concepts where not implemented as the
simple/medium complexity case study did not require them.
Moreover, we targeted a relatively young test language that
only offered access to the application parameter level of the
SUT interfaces. Consequently, concepts related to the bus and
message ICD hierarchical levels could not be implemented. For
the implemented concepts we defined a total of 75 Acceleo
modules, each with one template.

In conclusion, with limited previous experience with
model-driven technologies, the STELAE project workgroup
succeeded in the implementation of a first prototype. We can
currently demonstrate the test model definition, automatic code
generation and execution of simple to medium complexity test
cases, on a real integration test platform.

ACKNOWLEDGEMENTS

The authors would like to thank all those implicated in the
STELAE project: Gilles BALLANGER, Guilhem
BONNAFOUS, Mathieu GARCIA and Etienne ALLOGO.

REFERENCES

[1] 716-1995 - IEEE Standard Test Language for All Systems -

Common/Abbreviated Test Language for All Systems (C/ATLAS)

[2] 1671-2010 - IEEE Standard for Automatic Test Markup Language
(ATML) for Exchanging Automatic Test Equipment and Test
Information via XML

[3] ES 201 873 - Methods for Testing and Specification (MTS); The Testing
and Test Control Notation version 3; Part 1: TTCN-3 Core Language.
2012

[4] Thomas Stahl, Markus Voelter, and Krzysztof Czarnecki. 2006. Model-
Driven Software Development: Technology, Engineering, Management.
John Wiley & Sons.

[5] Guduvan, A., Waeselynck, H., Wiels, V., Durrieu, G., Schieber, M., and
Fusero, Y.: A Meta-Model for Tests of Avionics Embedded Systems, to
appear in Proceedings of MODELSWARD 2013 – 1st International
Conference on Model-Driven Engineering and Software Development,
SciTePress, 9 pages, February 2013

[6] Eclipse Modeling - EMFT - Home,
http://www.eclipse.org/modeling/emft/?project=ecoretools

[7] Guduvan, A., Waeselynck, H., Wiels, V., Durrieu, G., Schieber, M., and
Fusero, Y.: Test Languages for In-the-Loop Testing of Avionic
Embedded Systems, LAAS Report N°12151, Mars 2012, 21p.
http://homepages.laas.fr/waeselyn/Reports/TR-12151.pdf

[8] OCL, Object Constraint Language, Version 2.3.1, January 2012,
http://www.omg.org/spec/OCL/2.3.1/

[9] Xtext, http://www.eclipse.org/Xtext/
[10] Acceleo, http://www.eclipse.org/acceleo/
[11] Cassidian T & S - U-Test Software,

http://www.eads-ts.com/web/products/software/utest.html
[12] Aliki Ott. System Testing in the Avionics Domain. Ph.D. Dissertation,

University of Bremen, Germany, 2007
[13] Guy Durrieu, Hélène Waeselynck, Virginie Wiels. LETO - A Lustre-

Based Test Oracle for Airbus Critical Systems. In Darren D. Cofer,
Alessandro Fantechi, editors, Formal Methods for Industrial Critical
Systems, 13th International Workshop, FMICS 2008, L Aquila, Italy,
September 15-16, 2008, Revised Selected Papers. Volume 5596 of
Lecture Notes in Computer Science, pages 7-22, Springer, 2008.

[14] UTP, UML Testing Profile, Version 1.1. 2012.
 http://www.omg.org/spec/UTP/1.1/

[15] J. Zander, Z. Ru Dai, I. Schieferdecker, G. Din. From U2TP models to
executable tests with TTCN-3: An approach to model driven testing, in
Proc. international conference on testing of communicating systems
(TestCom 2005), pp. 289-303, 2005.

[16] Ina Schieferdecker, George Din. A Meta-model for TTCN-3. FORTE
2004 Workshops The FormEMC, EPEW, ITM, Toledo, Spain, October
1-2, 2004. Volume 3236 of Lecture Notes in Computer Science, pages
366-379, Springer, 2004

[17] TTworkbench - The Reliable Test Automation Platform, Testing
Technologies.
http://www.testingtech.com/products/ttworkbench.php

[18] Paul Baker and Clive Jervis, Testing UML2.0 Models Using TTCN-3
and the UML2.0 Testing Profile, Proc. SDL 2007, LNCS 4745,
Springer, pp. 86-100, 2007.

[19] Rational Tau, IBM, http://www01.ibm.com/software/awdtools/tau/

[20] Yanelis Hernandez, Tariq M. King, Jairo Pava, Peter J. Clarke: A Meta-
model to Support Regression Testing of Web Applications. SEKE 2008:
500-505

[21] Yin, Y. F., Liu, B., Zhong, D. M., & Jiang, T. M.. (2009). On modeling
approach for embedded real-time software simulation testing. Journal of
Systems Engineering and Electronics, 20(2), 420-426.

[22] C. Efkemann and J. peleska. Model-Based Testing for the Second
Generation of Integrated Modular Avionics. In Proceedings of the 2011
IEEE 4th International Conference on Software Testing, Verification and
Validation Workshops, ICSTW ’11, pages 55-62, Washington, DC,
USA, 2011, IEEE Computer Society, ISBN 978-0-7695-4345-1, doi:
10.1109/ICSTW.2011.72.,
URL http://dx.doi.org/10.1109/ICSTW.2011.72.

[23] RT-Tester 6.X Product Information,
URL:http://www.verified.de/_media/en/products/rt-
tester_information.pdf.

[24] M. Dahlweid, O. Meyer, and J. Peleska. Automated Testing with RT-
Tester – Theoretical Issus Driven by Practical Needs. In Proceedings of
FM-Tools 2000, number 2000-07 in Ulmer Informatik Bericht, 2000.

[25] Graphiti Home, http://www.eclipse.org/graphiti/

[26] K. Czarnecki and S. Helsen. 2006. Feature-based survey of model
transformation approaches. IBM Syst. J. 45, 3 (July 2006), 621-645.
DOI=10.1147/sj.453.0621 http://dx.doi.org/10.1147/sj.453.0621

http://www.eclipse.org/modeling/emft/?project=ecoretools
http://homepages.laas.fr/waeselyn/Reports/TR-12151.pdf
http://www.omg.org/spec/OCL/2.3.1/
http://www.eclipse.org/Xtext/
http://www.eclipse.org/acceleo/
http://www.eads-ts.com/web/products/software/utest.html
http://www.omg.org/spec/UTP/1.1/
http://www.testingtech.com/products/ttworkbench.php
http://www01.ibm.com/software/awdtools/tau/
http://dx.doi.org/10.1109/ICSTW.2011.72
http://www.verified.de/_media/en/products/rt-tester_information.pdf
http://www.verified.de/_media/en/products/rt-tester_information.pdf
http://www.eclipse.org/graphiti/
http://dx.doi.org/10.1147/sj.453.0621

Figure 8.a. “STELAE” Perspective

Figure 8.b. “Runtime” Perspective

