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Abstract — Ground wave radiation of Low Frequency 

Antennas is well known for the canonical case of a flat, 

azimuthally homogeneous, soil. In this paper, more complex 

kinds of environment are considered in the surroundings of the 

antenna or in the far field. Both of them are treated by FDTD. 

Some realistic environments are studied in the near field zone 

including forest and slopes. An original methodology is proposed 

for the far field zone. It rests on the use of the direct numerical 

integration of Sommerfeld’s integrals which is presented also. 

Keywords—FDTD; low frequency antennas; natural 

environments;  Sommerfeld’s problem; ground wave  

I.  INTRODUCTION  

Ground wave radiation of Low Frequency Antennas is well 
known for the canonical case of a flat, azimuthally 
homogeneous soil. In this paper, more complex kinds of 
environment are considered in the surroundings of the antenna 
or in the far field. Both of them are treated by The Finite-
Difference in Time Domain (FDTD). Some realistic 
environments are studied in the near field zone including forest 
and slopes. An original methodology is proposed for the far 
field zone. It rests on the use of the direct numerical integration 
of Sommerfeld integrals which is presented also. FDTD 
method is a well-known method used for computational 
electromagnetics [1]. For the aim of this paper, the main 
advantage of using this technique is the ability to treat 
materials with any electromagnetic properties and any shape. 
In a previous paper [2], 2D FDTD is applied to obtain the 
electric field in the direction of propagation.  

In section II, low frequency antennas are placed in a forest 
and on the top of a hill, the Earth’s soil being considered as an 
infinite homogeneous half-plane elsewhere. In the last part of 
this paper, the method for computing the effect of 
discontinuities are computed far from the antennas using 
numerical integration of Sommerfeld’s problem. 

II. NEARFIELD MODELING 

A. Principles 

An inverted L antenna is computed at 100 kHz, geometry 
of the system is shown on Fig. 1. The antenna is made up off 

two parts, a radiating wire modelled with Holland formalism 
[3] and a square shaped metallic ground.  

 

Fig. 1. Geometry of the computed antennas 

 The Earth’s soil is characterized with the dielectric 

constant εrs and the conductivity σs , which depend of the 
humidity, see Tab. 1, and can be found in the literature. 

TABLE I.  DIECLECTRIC CONSTANT  AND CONDUCTIVITY  FOR 

DIFFERENCT SOILS 

 
Earth’s soils εrs σs (S.m

-1
) 

Dry 5 10-4

Medium wet 15 10-3

Wet 30 10-2

 

At this frequency range, caution should be taken in 
extending infinitely the soil so UPML [4] are the boundary 
conditions applied here.  

B. Antenna in a large forest and medium wet soil 

With FDTD method, a forest can be represented by a 

dielectric slab [5] with correspondent dielectric constants εrf 

and σf. In our case, we chose the medium wet case (εrf =1.065; 
σf =10−3 S.m−1) applied for a 25 m high and square shaped 
(width= 12 km) forest [5]. Fig. 2 shows the results of an 
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inverted L antennas placed at the center of the forest at the 
frequency f =100 kHz. The power is sampled at 9 km around 
the antenna, 1 m over the ground and then normalized by the 
input power antennas. One can see that the shape of the 
radiation pattern is not affected by the introduction of the forest 
but that significant losses occur.  

 
Fig. 2. Simulations of an inverted-L antenna with and without the forest on a 

medium wet soil. 

C. Antenna on the top of a hill and dry soil 

An inverted L antenna at the frequency f =100 kHz is 
placed on the top of a hill made up off 4 square shaped 
dielectric blocs. All of them are 25 m high, their widths are 
calculated so as to create an eleven percent average slope and 
their dielectric constants are the same as the soil. Fig. 3 shows 
the results of the computation, the power is sampled at 9 km 
around the antenna, 1 m over the ground and then normalized 
by the input power antennas. The shape of the radiation pattern 
is not modified but in this case the radiated power is enhanced. 

 

Fig. 3. Simulations of an inverted-L antenna with and without the hill on a 

dry soil. 

III. FAR FIELD MODELING 

A. Sommerfeld’s problem Principles 

In 1909 [6], Sommerfeld calculated the radiation of an 
infinitesimal vertical electric current element I = I0dlz situated 
at a height h above a homogeneous dielectric half-space. The 
XOY plane separates the two media, the medium 1 is free 

space in the upper half-space with constants μ0, ε0 and soil is 

the medium 2 in the lower half-space with constants μ1 = μ0, ε1 

and σ1. The problem is presented on Fig. 4. 

 

Fig. 4. Vertical z-directed electric current element I0dl at height h above 

planar lossy gruound with electrical parameters (μ1, ε1,σ1). 

Using Maxwell’s equation, one can write the relations 

between Hertz’s potential vector Π and the electromagnetic 
field E and H. Symmetries and translations show that only the 

vertical z-component of Π is not equal to zero and depends on 
the distance r and the height z of the observation point M. This 

leads to calculate the components Eρ, Ez and Hϕ. The problem 

is separated into two parts: the source (Π0) and the boundary 

conditions between medium 1 and medium 2 (Π1 and Π2). The 

potential vector Π0 created by an electric dipole in air equals to 

a spherical wave with the magnitude of (μ0I0dl/4π). It has been 
shown by Sommerfeld [6] that the spherical wave expanding 
from a current element I0l can be represented by a spectrum of 

cylindrical waves. Each of which travels as J0(λr) in the radial 

r-direction and as exp[-|z-h|(λ2-k0
2)1/2] in the z-direction with a 

magnitude of (μ0I0dl/4π)λdλ/(λ2-k0
2)1/2. Here, J0 refers to the 

Bessel function of the first kind and k0 is the free space 

wavenumber given by ω(μ0ε0)
1/2. Potential Vectors Π1 and Π

can be written with the same expansion in (1). 
2 

 
Here, k2 is the soil wavenumber given by ω(μ1ε1)

1/2(1+σ1/jωε1)1/2, R = (r2+(z-h)2)1/2 is the distance 

between the dipole and the observation point, Rλ and Tλ are 



coefficients which depend on integration variable λ and 
calculated with the boundary conditions at height z=0 in (2). At 

this height, components Eρ and Hϕ between the two media 
have to be continuous. 

 

This leads to a two equations system (3) with two 

unknowns Rλ and Tλ. 

 

The values of Rλ and Tλ are finally obtained in (4). Their 

expressions can be interpreted as a reflection coefficient Rλ and 

a transmission coefficient Tλ. 

 

Using these formulas, one obtains in (5) all components of 
the electromagnetic field E and H in both media [7]. 

 

In medium 1, decomposition leads to three other equations 
in (6) which can be physically interpreted. 

 

Here, R’ = (r2+(z+h)2)1/2 is the distance between the image 
element at distance h below the plane and the observation point 
on Fig. 5. 

 

Fig. 5. Vertical z-directed current element source at height h and image at 

height –h above perfectly conducting plane. 

In (6), the components are expressed as the sum of three 
terms. The first represents a wave travelling directly from the 
current element I0dl, the second is from a negative image    -
I0dl and the third is called a surface wave term. 

B. Numerical integration  

The integrands in all components in both media are made 
up of three parts. The first element is the quotient whose 

denominator is (k0
2(λ2-k2

2)1/2+k2
2(λ2-k0

2)1/2). An oscillating 
term is created by spherical Bessel functions J0 and J1 and 
finally there is an exponential attenuation factor depending on 
the height of the dipole and the observation point.  



Here, integral from z-directed electric field in (7) is studied 
but the same approach is correct for the other components of 
the electromagnetic field. 

 

The denominator does not have special values because 

integration path of λ is the real axis. When the real and 
imaginary part of the integrand is plot for a distance r, one can 
observe four principle parts. The first one has low oscillations, 
the second is the most important because it has the most data. 

In fact, it is where the real part of (k0
2(λ2-k2

2)1/2+k2
2(λ2-k0

2)1/2 

appears (λ ≈ k0). The third part is the effect of the Bessel 
Function because both real and imaginary values of integrand 
are oscillating. The last part is where the exponential is most 
important and it is negligible despite the oscillating behavior. 

This analyze shows that different integration methods can 
be used for each part of the integrand. Third degree Newton-
Cotes method is chosen for part one and three integrations and 
Gauss-Legendre quadrature with more than ten points is chosen 
for the integration of part two. 

An adaptative integration algorithm was realized and tested 
for vertical component Ez over a medium wet soil, along the 
direction of propagation. Fig. 6. shows the comparison between 
three different methods, the numerical integration, the FDTD 
and integral equations computed with an industrial software 
FEKO. In the following, the integration algorithm will be 
named NISP which stand for Numerical Integration of 
Sommerfeld’s Problem. 

 

 

Fig. 6. Solution comparison of vertical electric component in Sommerfeld’s 

problem. 

C. NISP - 3D FDTD hybridisation  

The main of this part is to compute the effect of a 
discontinuity in/on the soil with NISP – 3D FDTD 
hybridization. An object is placed in the far field of an 
infinitesimal vertical electric dipole. Incident electric Einc and 
incident magnetic Hinc fields are computed around a cube with 

numerical integration algorithm and added as an incident wave 
source in the 3D FDTD. The situation with a homogeneous flat 
ground is shown on Fig 7.  

First the Total Field / Scattered-Field technique is used with 
an object in the air to observe the scattering and validate the 
method and then a homogenous flat ground will be introduced. 
This part will be detailed in the presentation.  

IV. CONCLUSIONS 

The effects of natural environments in the near field and in 
the far field of antennas have been studied. First, FDTD is used 
to find a configuration where the system is more efficient and 
hybridization is realized with numerical integration in order to 
obtain the scattering of objects far from the source. The 
common use of these techniques will be helpful to better design 
LF antennas on irregular ground with emphasis on ground 
wave.  

 

 

Fig. 7. NISP – 3D FDTD Hybridation. An infinitesimal vertical electric 

dipole creates electric and magnetic fields (Einc , Hinc). 
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