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ABSTRACT: Design of complex physical systems most often relies on numerical simulations that may be
extremely costly. In this paper, design is formalized as the optimization of a performance index with respect
to control variables. Uncertainty is modeled via a vector of environmental variables that can take any value in
a known compact set and may have an adverse effect on performance. In this context, the determination of a
robust design requires the continuous minimax optimization of black-box functions. An algorithm combining
Kriging-based optimization with relaxation is presented, which makes it possible to find approximate solutions
to such problems on a limited computational budget. The design of a vibration absorber is presented as an
illustrative example.

1 INTRODUCTION

Most real-life computer-aided design problems re-
quire costly simulations of knowledge-based mod-
els, which may involve, e.g., partial differential equa-
tions, complicated boundary conditions, several types
of physics, etc. In such a context, one single simula-
tion of the model for a given value of the parameters
to be optimized may cost such a significant amount
of computational resources that the budget for sim-
ulations is severely limited. This has given rise to
a large number of contributions involving surrogate
models, i.e., models that are cheaper to simulate than
the initial knowledge-based model yet capture signif-
icant features of this model and are used to facilitate
optimization. A particularly interesting approach is
based on Kriging (developed about sixty years ago in
the context of geostatistics (Matheron 1963) and still
the object of much research under various names. One
of the advantages of Kriging-based surrogate model-
ing is that the prediction of the output of the com-
plex model by the surrogate model is provided with
an estimate of its quality. This has made it possible to
develop a particularly efficient method for global op-
timization known under the name of EGO (Efficient
Global Optimization) (Jones 2001). EGO optimiza-
tion has become a reference in the context of optimal
design based on complex simulations, e.g., in the au-
tomotive industry.

Most often, it is unrealistic to assume that the de-
sign problem translates into the optimization of a de-
terministic function with respect to control parame-
ters because uncertainty must be taken into account,
so EGO cannot be used directly. In this communica-
tion, we present an approach for applying Kriging to
worst-case design. We assume that performance is de-
scribed by a scalar function of two vector arguments.
The first is a vector of control variables, assumed to
belong to some known compact set and the second is
a vector of environmental variables, which encapsu-
lates all the sources of uncertainty against which the
design should be made robust. This second vector is
also assumed to belong to some known compact set.
The purpose of robust design is then to find the best
feasible control vector for the worst feasible environ-
mental conditions.

Remarkably few methods seem to have been de-
voted to such a problem of minimax optimization
when performance is costly-to-evaluate. This commu-
nication presents a method that we recently devel-
oped (Marzat, Walter, & Piet-Lahanier 2012) based
on a relaxation procedure (Shimizu & Aiyoshi 1980).
By combining two optimization subproblems via
EGO, it becomes possible to compute an approximate
solution to the minimax problem from a limited num-
ber of evaluations of the performance function. The
practical applicability of the method is demonstrated
on a realistic robust mechanical design problem.



2 MINIMAX OPTIMIZATION FOR
BLACK-BOX FUNCTIONS

Before presenting the new algorithm, MiMaReK (for
MiniMax Optimization via Relaxation and Kriging),
we recall the fundamentals of Kriging-based opti-
mization.

2.1 Kriging-based optimization

The problem to be solved is finding

x̂ = arg min
x∈X

f(x), (1)

where f(·) is a function from X ⊂ Rd → R, x a d-
dimensional vector of real variables and X a known
compact set. Assume that f(·) has already been eval-
uated at xi, for i = 1, . . . , n, and let Xn = {x1, ...,xn}
and fn = [f(x1), ..., f(xn)]T. Based on these data,
Kriging (Matheron 1963) builds a surrogate approx-
imation of f(·), by modeling it as a Gaussian Process
(GP) F (·). In this paper, for the sake of simplicity,
F (·) is assumed to be a zero-mean GP with covari-
ance function cov(·, ·), though additional parametric
priors may also be employed (Santner, Williams, &
Notz 2003). The covariance function is usually mod-
eled as

cov (F (xi) , F (xj)) = σ2
FR (xi,xj) , (2)

where σ2
F is the GP variance and R (·, ·) is a paramet-

ric correlation function. The widely-used correlation
function adopted here is the power exponential corre-
lation function,

R (xi,xj) = exp

(
−

d∑
k=1

∣∣∣∣xi(k)− xj(k)

θk

∣∣∣∣pk
)
, (3)

where the parameters 0 < pk ≤ 2 reflect the smooth-
ness of the approximation (the smoothest one being
obtained for pk = 2), while the parameters θk are scale
factors. Other correlation functions may also be em-
ployed (Rasmussen & Williams 2006).

Under these hypotheses, Kriging provides a con-
tinuous interpolation of the data that is the best linear
unbiased predictor of the value taken by f(·) at any
x ∈ X,

F̂ (x) = r (x)T R−1fn, (4)

where{
R|ij = R (xi,xj)
r (x) = [R (x,x1) , . . . ,R (x,xn)]T

. (5)

This surrogate model is much less costly to evaluate
than the original function f(·). An important property
of Kriging is that the variance of the prediction error,
which quantifies confidence on the prediction (4), is

readily computed as

σ̂2(x) = σ2
F

(
1− r(x)TR−1r(x)

)
. (6)

Variance will be small near already sampled val-
ues of x and much higher where the black-box func-
tion is less well known. An interesting application is
the development of Kriging-based optimization algo-
rithms that sample iteratively new points in X where
the function should be evaluated to enhance the es-
timate of the global optimum (Jones 2001). One
of these strategies is Efficient Global Optimization
(EGO) (Jones, Schonlau, & Welch 1998), which pro-
ceeds as indicated in Algorithm 1.

Algorithm 1 EGO
1. Choose Xn and compute fn.

2. Fit a Kriging model on Xn and fn via (4) and (5).

3. Find fnmin = min
i=1,...,n

{y(xi)}.

4. Find x̂n+1 = arg max
x∈X

EI(x, fnmin, F̂ , σ̂).

5. If n = nmax or {max
x∈X

EI} < εEI,

then return fnmin as an optimal solution.
Else, append x̂n+1 to Xn and f (x̂n+1) to fn
and go to Step 2 with n← n+ 1.

This iterative algorithm replaces the initial opti-
mization problem (1) by the repeated optimization of
a much easier-to-compute function called Expected
Improvement (EI at Step 4), which is given (Schon-
lau, Welch, & Jones 1996) by

EI(x, fnmin, F̂ , σ̂) =
(
fnmin − F̂ (x)

)
Φ

(
fnmin − F̂ (x)

σ̂(x)

)

+ σ̂(x)φ

(
fnmin − F̂ (x)

σ̂(x)

)
,

(7)

where φ and Φ are respectively the probability density
and cumulative distribution functions of the normal
distribution with zero mean and unit standard devia-
tion. EI is simple and fast to evaluate, since it only in-
volves the Kriging linear prediction (4) and standard
deviation, trivially computed from the variance (6).
It could thus be optimized at each step via an aux-
iliary algorithm to be chosen (DIRECT (Jones, Pert-
tunen, & Stuckman 1993) in our experiments). Latin
Hypercube Sampling (LHS) (Montgomery 2008) is
used for initialization at Step 1, a usual heuristic be-
ing to draw ten points per dimension of X. EGO



stops when the number of evaluations of f(·) becomes
greater than the budget alloted nmax, or when the ex-
pected improvement obtained at Step 4 gets lower
than εEI. Variations of EGO can be found in (Sasena
2002, Huang, Allen, Notz, & Zeng 2006, Villemon-
teix, Vazquez, & Walter 2009), and convergence re-
sults in (Vazquez & Bect 2010, Bull 2011).

(a) Iteration 1 (b) Iteration 3

(c) Iteration 8 (d) Iteration 10

Figure 1: Minimization by EGO (big dot: current es-
timated global minimizer)

The potential of EGO is illustrated in Figure 1 for
a one-dimensional test case with multiple local opti-
mizers. The initial sampling consists of 8 points cho-
sen randomly, which leads to an adverse situation
where many local optimizers of the actual cost func-
tion have not been sampled. After a few iterations
of EGO, the global optimum is nevertheless spot-
ted. The Kriging interpolation has also improved with
the sequential acquisition of new samples. Figure 2
displays the corresponding 95% confidence intervals,
computed as [F̂ (x)− 2σ̂(x), F̂ (x) + 2σ̂(x)].

2.2 Black-box continuous minimax optimization

Design is now formalized as the optimization of a per-
formance index y with respect to a vector xc of con-
trol variables. Uncertainty is modeled via a vector xe
of environmental variables that can take any value in
a known compact set and may have an adverse effect
on performance. Optimal design then boils down to
finding a feasible value of xc that optimizes y for the
worst feasible value of xe. This can be written as the
continuous minimax optimization problem

{x̂c, x̂e} = arg min
x̂c∈Xc

max
x̂e∈Xe

y(xc,xe), (8)

where y (xc,xe) is evaluated through costly numerical
simulations and where Xc and Xe are feasible spaces
for xc and xe, assumed to be known compact sets.

(a) Iteration 2

(b) Iteration 10

Figure 2: Confidence intervals for Kriging prediction

This is a delicate issue, especially when the sim-
ulation budget is severely limited. Previous theoreti-
cal work on continuous minimax optimization has fo-
cused on the development of algorithms for functions
with a closed-form expression, which is not assumed
to be the case here. Few algorithms applicable to
functions known only through numerical simulation
have been reported. Most of them are based on evolu-
tionary optimization (Parsopoulos & Vrahatis 2002,
Viana, Kotinda, Rade, & Steffen Jr 2008, Cramer,
Sudhoff, & Zivi 2009, Zhou & Zhang 2010, Lung
& Dumitrescu 2011), which is usually extremely de-
manding in terms of function evaluations.

The procedure described in Algorithm 2 aims at
finding an approximate minimax solution by itera-
tively relaxing the infinite set Xe into a finite one Re.
It has been shown in (Shimizu & Aiyoshi 1980) to
converge to the minimax solution in a finite number
of steps under realistic hypotheses.

Relaxation is achieved at Step 2, where the func-
tion to be minimized is the maximum of the perfor-
mance index over the finite setRe. Steps 2 and 3 leave
open the choice of the optimization algorithms to be
employed. Since the performance index is evaluated
via costly simulations, the algorithm should be able
to cope with a restricted simulation budget.



Algorithm 2 MiniMax optimization via Relaxation

1. Pick x(1)
e ∈ Xe, setRe =

{
x(1)

e

}
and i = 1.

2. Compute x(i)
c = arg min

xc∈Xc

{
max
xe∈Re

y(xc,xe)

}
3. Compute x(i+1)

e = arg max
xe∈Xe

y(x(i)
c ,xe)

4. If y(x(i)
c ,x

(i+1)
e )− max

xe∈Re
y(x(i)

c ,xe) < ε then re-

turn {x(i)
c ,x(i+1)

e } as an approximate solution to
the initial minimax problem (8). Else, append
x(i+1)

e toRe, increment i by 1 and go to Step 2.

MiMaReK (Marzat, Walter, & Piet-Lahanier 2012)
combines minimax optimization via relaxation with
Kriging-based optimization, by using two indepen-
dent Kriging models at Steps 2 and 3 of Algorithm 2.
The first one depends only on xc, and interpolates
the function max

xe∈Re
{y(xc,xe)}. The second one depends

only on xe and interpolates y(x(i)
c ,xe). Two initial de-

signs should thus be built (e.g., by LHS), one from Xc
and one from Xe. To save computation time, they can
be reused at each new call to Steps 2 and 3. This is
especially useful at Step 2, where the computation of
the optimized function requires to pick the maximum
over all the elements xe in Re. Only one additional
evaluation per sample in Xc is then needed when the
same design is used.

The parameters of the complete procedure are fi-
nally the stopping threshold ε and the parameters of
the two EGO procedures, namely the budget of eval-
uations nmax and stopping threshold εEI. These bud-
get constraints are taken into account at each itera-
tion of the global procedure, which means that at most
(dimRe + 1) ·nmax evaluations of the black-box func-
tion are allowed during one iteration of the main loop
(i.e., the sequence of Steps 2, 3 and 4 of Algorithm 2).
Note that the set Re is extended by one element at
each iteration (Step 4), which implies that the num-
ber of evaluations grows linearly with the number of
iterations of the main loop. Note that the relaxation
procedure yields a suboptimal minimax solution even
if it is interrupted before the threshold ε is reached,
which may be used to limit the total number of itera-
tions.

3 ROBUST DESIGN OF A VIBRATION
ABSORBER

The optimal design of a vibration absorber for a struc-
ture with an uncertain forcing frequency is a classi-
cal benchmark problem, initially proposed in (Randall
1978). It can be formalized as a minimax optimiza-
tion problem, for which various algorithms, ranging

from analytical optimization to evolutionary strate-
gies, have already been employed (Pennestri 1998,
Viana, Kotinda, Rade, & Steffen Jr 2008, Brown &
Singh 2011). The results found in these papers are
very similar, which make it possible to use them as
reference solutions to assess the behavior of the pro-
cedure advocated in the present paper.

The system is described in Figure 3. A primary
structure with mass m1 is subjected to a sinusoidal
force of amplitudeX0 and unknown frequency ω. The
amplitude of the resulting harmonic motion of m1 is
denoted by X1. A smaller structure with mass m2 is
used to compensate for the oscillations generated by
this disturbance through a viscous damping action.
The design problem is to determine the characteris-
tics of this damper so as to be robust to the worst case
of forcing frequency.

Figure 3: Vibration absorber

The performance index to be optimized is the nor-
malized maximum displacement of the primary struc-
ture, which can be expressed (see (Randall 1978,
Pennestri 1998)) as

y =
k1X1

X0

=
1

Z

√(
1− β2

T 2

)2

+ 4

(
ζ2β

T

)2

, (9)



where

Z2 =

[
β2

T 2

(
β2 − 1

)
− β2 (1 + µ)− 4

ζ1ζ2β
2

T
+ 1

]2

+ 4

[
ζ1β

3

T 2
+
ζ2β

3 (1 + µ)− ζ2β
T

− ζ1β
]2
.

(10)

These definitions involve the reduced variables

ωi =

√
ki
mi

, ζi =
bi

2
√
kimi

, β =
ω

ω1

, T =
ω2

ω1

, µ=
m2

m1

.

(11)

The parameters of the main system are fixed to µ=
0.1, ζ1 = 0.1 and ω1 = 100. The control variables to
be determined are ζ2 and T , while the environmental
variable to the effect of which the optimization should
be robust is β. The design problem can thus be written
as the search for{
ζ̂2, T̂ , β̂

}
= min

ζ2,T
max
β
y. (12)

Following (Randall 1978, Pennestri 1998, Brown &
Singh 2011), we assume that ζ2 ∈ [0,1], T ∈ [0,2] and
β ∈ [0,2.5]. Note that, in spite of the analytical char-
acter of the performance index, it is considered here
as a black-box.

The results obtained with our procedure (640 eval-
uations of the function (9) were required) are indi-
cated in Table 1, together with those reported in pre-
vious works. The algorithm was tuned with the pa-
rameters ε = 10−4, εEI = 10−6 and nmax = 20 for
both EGO algorithms. Figure 4.a shows the behav-
ior of the performance index for the resulting tuning
on the range of the environmental variable, while Fig-
ure 4.b compares our result with those from the liter-
ature around the location of the worst case. An ade-
quate solution is thus found on this benchmark with
the proposed strategy. For comparison, a similar de-
sign problem has been addressed in (Viana, Kotinda,
Rade, & Steffen Jr 2008) using ant colony optimiza-
tion, and required more than 104 evaluations. In (Ran-
dall 1978, Pennestri 1998, Brown & Singh 2011), the
results were obtained based on the analytical proper-
ties of the performance index, which makes it diffi-
cult to extend these approaches to more complicated
mechanical designs. MiMaReK, on the other hand,
can deal with, e.g., multiphysics finite-element mod-
els with complicated boundary conditions.

(a)

(b)

Figure 4: Performance with the estimated optimal de-
sign on the range of the environmental variable (a)
and zoom near the worst-case value (b)

Table 1: Approximate minimax result obtained, com-
pared to references

ζ̂2 T̂ β̂ ymax

Randall 0.204 0.861 1.038 2.6271

Pennestri 0.202 0.861 1.04 2.6272

Brown & Singh 0.1986 0.8619 1.043 2.6227

Our result 0.1978 0.8619 1.044 2.6229

4 CONCLUSIONS AND PERSPECTIVES

By combining EGO, a well-known global optimiza-
tion procedure based on Kriging, with a relaxation
procedure, one can handle complicated problems of
optimal design under uncertainty. The performance
index may take the form of a black-box function that
can only be studied through costly numerical evalua-
tions. A classical benchmark in mechanics has been
used to compare the results provided by the new
methodology with those of the literature. For the time
being, constraints can only be incorporated in the def-
initions of Xc and Xe. The case of more complicated
and possibly uncertain constraints remains to be in-
vestigated.
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