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Robust Gain Scheduling techniques for Adaptive control

Patrice Antoinette and Gilles Ferreres

Abstract— Robust and gain-scheduling analysis and design ~ Results now exist on the key stability and robustness
techniques are used to realize an adaptive controller. LFT issues of adaptive control, see e.g. [5], [1], [6], [7]. Toreo
representations of the plant and controller are used so thathe extent, our technique could be considered as reminiscent of

stability and performance properties of the adaptive schera . . . .
can be studied off-line, and the on-line computational timgor (€ theoretical framework proposed in [5]. It is especially

implementing the LFT controller is reduced. This controller is ~ Possible to use Lyapunov and passivity techniques exttacte

scheduled as a function of the parameters to be estimated. from nonlinear analysis tools, i.e. the adaptive controlle
is considered as a nonlinear one [8], [9]. Despite their
. INTRODUCTION popularity, the application to adaptive control of lineabust

control techniquesH ., design and. analysis) and of gain-

A controller is said to beadaptivewhen it adapts to the scheduled control (LPV methods) has been (much) less
unknown plant. Generally, measurements of input and oupitivestigated, see for instance [10], [11].
signals are used to adjust the controller. To achieve this It is worth emphasizing that several issues can be studied,
type of control, two schemes can be identified : direct andamely the mere asymptotic stability of the adaptive scheme
indirect schemes. In the latter, using input and outputa&n or its performance, i.e. the quality of its transient (befor
of the plant, parameters of thelant modelare estimated, the estimator converges in the context of indirect adaptive
and this estimation is used to adjust on-line the controllegontrol) or asymptotic responses. It is also possible inesom
The situation is described by figure 1, where the vector afases to prove the finite-time convergence of the direct or
parametersd) is estimated {) thanks to the measurementsindirect adaptive scheme [2], [3], [10], [1]. Noting that
of input (u € R™*) and output { € R"™) signals of the controlling the transient response is a key issue in practic
plant (f (s,0)). These estimations are transmitted to thetherwise the plant (e.g. an airplane) could be endangered.
controller (5 (s,6)) to adjust it.d € R™< is an unmeasured  In the present article, only indirect adaptive control of
perturbation, and € R’» is a controlled output. On the linear time invariant plants is dealt with. As a consequence
contrary, in direct adaptive schemes, the controller isadly ~ the vectorf is constant. The approach is distinguished by
adjusted from the input and output signals of the planthe fact that the estimator doesn't “physically” appeartia t
without any estimator : this is the case of the well knowr@nalysis and synthesis schemes. Only design features on the
Model Reference Adaptive Control (MRAC). See [1] andestimation errors are considered.
included references. Another example is the STAC technique The article is organised in 7 sections. The problem is stated
(Set Theoretic Adaptor Control) that is based on the conceffitsection Il. Then synthesis (l11) and validation (IV) metts

of falsification [2], [3], [4]. for an adaptive controller are described : a modal LFT gain
design and a robustness analysis techniques extracted from
d p [12], [13] are used. Section V deals with the estimation
N —’ of a continuous state space representation with a standard
— K(&é) T H(s,0) y recursive least squares algorithm [14]. All these metheds s
out are then applied to a transport aircraft in section VI,

before the conclusion in section VII.

Estimator Il. PROBLEM STATEMENT

| 0 During the realization of an indirect adaptive controller i
is essential to face up to two crucial problems. The firstés th
. o . _ on-line computational time of the controller implementati
Fig. 1. General scheme of indirect adaptive contéos a vector of plant yhich muyst be reasonable. The second is to ensure closed
parametersf is the estimation of, H (s, 0) is the plant, andK (s, 0) is -
the controller. loop stability and performance. In fact, the parametersate
directly measured but estimated. This estimation intreduc
a differencedd = 0 — 6 £ 0. This difference is produced b
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figure 2 is proposed, where the controller and the plant are [1l. GAIN SCHEDULING CONTROL DESIGN

both under an LFT form. _ _ A. Synthesis of the LFT gain
NOTATIONS = In  the fO"(;W'ng’ notatl(?ns ar? %‘e' Contrary to the assumptions made later for the analysis,
fined by 6 = [01,....0,], 0 = [91,---,971} during the synthesis, th€ertainty Equivalencerinciple is
and 60 = [561,...,60,)". Without loss of general- applied, and it is considered thaft) = 6 for all ¢. Then
ity, it is supposed that§; € [-1,1]. Then it is @ gain scheduled controller synthesis algorithm preseinted
assumed thatA,(0) = diag(611,,...,0,1,,) and [1?;:1 is used. 1 (Algorithm of modal design: A0)
AW() = diag (011, ... 0,1, ), with integershy. . ... b, roposition gorithm of modal design)-et ):
£(0) wg( Pk k) Wi Integersaa, - - B(9), C(#), D(9)) be a state space representation, with

Faseoo ke Let states andr, outputs. If the number of measurements is

@ greater or equal than the numberof dominant modes the
following algorithm can be proposed :

be the matrix obtained by merging and ordering the el- 1) Chooser, closed loop eigenvalues;(6).

ements of matrices\,,(f) and A.(6), with ¢; = h; + 2) Computery pairs (v;(9), w;(0)) so that :

ki, and Bo = {A(e)|91,...,9ne[f1,1]}, Bso = vi(6)

(A(66) 601,80, € [~1, 1]}, [ A®) = Xl0)n, BO) | [ wi(0) ] =0 @
It is worth emphasizing that the set of possible values of

0, the true values of the plant parameters, is assumed to be a

V(e

priori given. After normalization, ald; belong to the interval K(G)[ c6) D) ] (9) —W©®) @)

[—1,1]. W(o)

with W(0) = [wi(0),...,w,,(0)] and V(0) =

Ap(0) [v1(6), - .. » Urg (0)].

A(6) In this algorithm,A(6), B(8), C(6), D(9), K(6) and \;(6)
are under an LFT form.

— Its worth noting that no more than, eigenvalues can be
d ] Haug(s) —P assigned. In practice, only dominant modes are assignéd, an
m — for instance the actuator modes placement is uncontrolled.
So, contrary to LPV methods which offer a guarantee of
robust stability, in the algorithm used, the stability okth
closed loop must be checked a posteriori. But in another
Fig. 2. Adaptive control scheme with LFT modelinga.y(s) is the  respect, a# is time invariant parameter, in the modal design
part of the controller designed off-linedy,(¢) and Ay (6) represent the  thare js no loss of performance due to conservative stabilit
dependence of the plant and the controller on respectivelyparametef . . .
and its estimated valué. requirements, contrary to LPV methods which deal with
time varying parameters.

A = diag(011,,,...,0.1,,)

3) ComputeK (#) as a solution of the equation :

Kaug(s)

The LFT modeling presents two interests :

o First of all, thanks to this controller pattern, the com-
putation time of the controller adjustment is expected The result of the previous synthesis is a static LFT gain
to be reduced. In fact, in this case, the computation qf(( ) = Fu (Kaug, Ar(0)), with Ky = ( ?1 gm
K(s,0) = Fu(Kaug(s), Ax(0)) is made of two parts : Then 21 22
K .4 is designed off-line, and only\,(6) is adjusted
on-line [15] K(@) = Koo + KglAk(e)([ — KHAk(H))_lKlg (4)

o Futhermore, this pattern allows the off-line analysi
of stability and performance properties of the adaptlvstérhte ILFTKgaE '(S ;’;’ el;podc, etljn|f;r(;c;ro?(l)y \'fﬁ(}i; 2{hi B;QZ]-
closed loop with the help of robustness analysis tOOISosednesschke structured singular value is used ([16]).

[12]. Definition 1: Let M be a complex matrix with the same
In this scheme, the adaptive controller is a set composefimensions asA in equation (1). The structured singular
of an estimator and a gain-scheduled controller. Th@alueu(M) associated ta\/ and to a real perturbatioA
robustness of the controller in the face of estimation &rrolis defined as
on @ and other modeling errors is ensured thanks to methods ~ ~
of robust synthesis and analysis. WD) min {k| JA € kBo, s.t.det(l — MA) = 0}

(®)

B. Well-posedness problem

To design a controlletr, (Kaug, Ak(é)), a method in  and (M) = 0 if no A satisfiesdet(I — MA) =0
two stages is presented : the first is the synthesis of an LHThe well-posedness ok () can be checked with the fol-
controller, and the second is its validation. lowing proposition.



Proposition 2: F,, (Kqug, Ak(0)) is well-posed for all Ag
A(#) € Bso if and only if u(Ki11) < 1. A sufficient
condition is that there exist scaling matricBg = Dj > 0
and Gy = G, with DoA(0) = Ax(0)Dy and GoAg(0) = A

Ak(0)*Gp which satisfy L
K11DoK7, + 3 (GoK{, — K11Go) < Dy (6) w

|
Condition (6) can be checked with standard Matlab routines f e
of the u Analysis and Synthesis Toolbox or of the LMI . N(s) .
Control Toolbox. N P,
Once the well-posedness of the controller is checked, as
explained previously, the next stages are to verify that the
designed controller ensures the stability of the closeg loo
for all considered values of, and then to compute the
maximal allowable estimation error.

Fig. 4. Scheme used to validate the adaptive control scheme.

A*G(w). The interconnection structure of figure 4 is stable
for As = 0 and A € Bo if there existD;(w) and G (w)

IV. VALIDATION WITH p-ANALYSIS satisfyingvw € [0, +-00)
A. Building of the validation scheme Ni1(gw)D1(w) N1y (gw) +
Applying the “Certainty Equivalence” principle, so far it 7(G1(w)N{; (jw) — N11(w)G1(w)) < Di(w) (7)

was supposed thal(t) = 6. In the following, this principle B validation procedure
is not valid anymore and it is considered tifaft) = 0, (1 +
50;(t)), wheredf;(t) is the relative error on parametéy.
Noting that A, (6) = Ax(0) [T + Ax(56)], the scheme of
figure 2 is transformed into the one of figure 3. Then, keeping Qi = max{r € RT |VA € Bo, VAs € rBso,

Then, the robust stability margin considering errors of
estimation is dealt with. Let.,,, be this margin defined by :

the connexions between the blocks,, (s) and Kq,(s) the transfer matrip — 7, (N(s),diag(A,Ag)) d
are merged into the block (s) of figure 4. Its first inputs are _
the vectorsf; and f, merged and ordered following the order is stable} (8)

of A, see equation (1). Next comg and the unmeasured  This margin allows to determine the maximal magnitude

perturbationd. The outputs ofV(s) follow the same logic. that the error of estimation can reach without causing the

Noting As = Ay (d0), the described scheme is presented Ofhstability of the closed loop. However, the computation of

figure 4. a,, is difficult because the incertainties considered are both

time invariant(A) and time varying(As). To deal with

Fel ap(50) 12 them, the Robust Feedforward Design Toolbox (RFDT)[12]

N is used. Thanks to it, a lower bound af,, is determined.

f2 es X4 f An(0) 2 Futhermore, for a margin of stability = (1 — €)«,,, (e > 0

Ak®) [ given), one computes a guraranteed value of the worst case
induced L, norm of the time varying uncertain transfer
matrix, i.e a valuey such thatYA € Bo, andVA; € aBso,
|Fu (N(s), diag(A, As)) iz, <7 (©)

The algorithms of this toolbox are based on the next propo-
sition. y
Fig. 3. Adaptive control scheme emphasizing the estimatioar. Proposition 4: Let ® = diag(A, As, Ac), where A, €
CmaxTr js an unstructured complex matrix. LBt= D* > 0
. o . . and G = G* be scaling matrices such that for aii
First of all, as indicated previously, in order to end th%aving the indicated pattern they satisijd — ®D and
synthesis, the stability of the scheme of figure 4 whithouts — ¢+ The matricesD and & are divided asD —
estimgtion error;l(i.eﬁé = 0) must be checked with the diag(Dy, Do, I) andG = diag(G1, G, 0) in order to corre-
following proposition. spond to the decomposition éf in A, A; andA.. D, and

Proposition 3: Let Ny1(s) be the asymptotically stable G, are constant, whild; and G, vary with the frequency.
transfer matrix betweew andz on figure 4. Robust stability | ot p — Ao, y)N, with A(a,y) = diag(I,,, L1,

1
of the closed loop of figure 4 is ensured forAlle Bo, with "/ L0 andry = ky + ..+ k. v alt )
As =0, if and only if (N1 (w)) < 1, Vw € [0,+00). A ¢ D(w) and G(w) exist such that/w € [0, +o0)
sufficient condition is that there exist frequency dependen
scaling matricesD;(w) = Di(w) > 0 and Gi(w) = P(w)D(w)P*(jw) +
G (w) which satisfy D; (w)A = AD;(w) and G (w)A = 1 (G(w)P*(yw) — P(jw)G(w)) < D(w)  (10)

d | Haug(s) —F
Y




thenVA € Bo, andVAs € aBso, the scheme of figure 4 is doesn’t vary much in practice, only variations &f, will
stable and (9) holds. be considered. By the same wa¥, is close to0 and
doesn’t vary much in practice, only variations iff, will be
considered. Thus the vector of parameteis be estimated is
Let (A(0), B(0),1,0) be a state space representation of = [M,,, M,]". To move the elevator, a first order actuator
H(s,0) whose states are measured. The derivative of the usedAct(s) = ﬁ and the variables, ¢ and [« are

state z is rebuilt through a band-pass filt%- Noting used by feedback. The scheme of figure 5 is obtained.
iy = [ﬁé)} z, it's supposed thatr; = [ﬁ] z, and

. S B A,6)
up = [—} u. Then : a [

D(s) 3
. } Al B 9y i
:Ef—A:EerBUf (11) =T iq +\J|\ 3 K,

V. THE ESTIMATOR

So, assuming that matrices and B are affine with respect 3"""";((5'@) fffffff : 1
to 0, it's possible to rewrite (11) as 5
B(t) = 0Te(t) (12 ? ”””””””
. d
where(t) and ¢(t) are measured vector signals.
To obtain an estimation of, a recursive least squares Fig. 5. Scheme used to design the LFT gain.

estimator is used. To be coherent with the implementation
of this estimator, it is considered to be discrete. Thus, the
time variablet is considered to be ilN. The recursive least A. Synthesis

squares algorithm is given by : First of all, the synthesis is realized on the following vters

e(t) = 67 (H)o(t) — B(t) (13) case model a—g
j j e” . 17
o) - LSO g {0 an
P)¢)o)T P(t) with the normalized inpuf) = M,u. In order to keep the

P(t+1)=P(t) — TP (15) same frequency for open and closed loops eigenvalues, an
1+ ¢T(t)P(t)o(t) affine approximation of\/,, with respect tav, is realized
with P(0) > 0. If the plant input is exciting enough then
limg o0 O(2) — 0. wp =ax Mo +b (18)
In futur works, slowly time varying parameters will be with fixed « andb. As there are three outputs, no more than
taken into account. In order to deal with these variationshree eigenvalues can be assigned.

the algorithm of recursive least squares can be modified to

add a forgetting factor [17], [18], [14] or to initialize the M (M) = (51 + /1 g%) wp (19)
matrix of covarianceP(t). But to ensure a good working
order of the estimator on-line, algorithms without inversi A2(Ma) = —&1wp (20)

or initialization of the covariance matrix will be favoured .. hosen with the damping ratin = 0.7. Ao(Ma)

VI. APPLICATION is the closed loop value of the integrator pole. Then an
LFT gain is designed with the functiohb_sched of the

A linearised longitudinal model of a transport aircraft is, . . X
considered. This model is extracted from the IMMUNE (In-LInear Fractional Representation Toolbox (LFRT) [19]. The

telligent Monitoring and Managing of UNexpected Events FT design model (17) depends OT"V on the_ scheduling
A . . arameterM,,. A controller K;(M,,) is synthesized. The
project in collaboration with Onera and DLR. The model. . . .
: ) ) . L inal controller betweeria, ¢) and () is obtained with the
considered is a transport aircraft 660 7". The linearization following formula
is realized during the cruise phase, at the heigh9aio0 ft g

and with a number of Mach 00.83. Only the angle of 1 10
attack () and the pitch rateq) are considered. The right Fy (Kaug(s), Ak(0)) = VxKl(Ma)x 0 1 (21)
and left elevators move together. The model is defined by “ 10

the following equations

a= Zoa + Zgq + Zyu
q=Mya+ Mg+ Myu

The parameteh/,, is repeated times in the LFT controller,

(16) and the paramete¥/,, appears only one time.

B. Results of validation
The natural frequency of longitudinal mode is given by

. SO .
wp = ZaMg — ZgMa. C(;nj;derlng nominal values of the ot fi re 4 is obtained. A lower bound of its robust stability

model, it is noticed tha1M‘ =~ 0.2. Consequently, the margin is computed as,,, > 16%. In other words, if the
term Z,M, is dominant, and ag, is very close tol and relative estimation error doesn’t exceti, of the parameter

Following the procedure described in IV-A, the closed loop



nominal value, the stability of the closed loop is ensuredjashed curves. But on this figure, the difference between
even during the transient states. Futhermore, the guadntehe dashdot and dashed curves are not visible, because the
value v (9) of the inducedL, norm of the transfer matrix estimator converges very quickly. The graph 9 shows the
betweend andp = [a,¢]T is visualized on figure 6 as a evolution of the estimation error.

function of the sizen of the estimation error. It is noticed that the time response is improved when the
estimator is added and is very close to the response without
] any estimation error. The pattern proposed guarentees good
] performances despite the initial unsuitable controller.

Reference signal

o 0.05 01 015 02 o

[T

Fig. 6. Variation of the upper bound of the induced norm wité minimal 0 1 2 3 4 5 6 7 8 E 10
relative estimation erroAs ensuring the stability.

C. Time simulation

Time

As indicated in the paragraph V, the estimation of param-
eters is obtained from measurements of the state[o, ¢]”  Fig. 8. Time responses of the simulation. The dashed cuneestztained

and the input: of the system. These signals are filtered usingher?dée = 0, the solioll_ or&es .vrv]ith an initial error e_stt1imation, and the
. 1 . ashdot ones were realized without estimator, so withoyt @rection
the second order filte D(s)} with on the estimation error. The difference between the solil the dashed
curves is not visible.
D(s) = (14 78) (14 729) (22)
andr =5x 1072, 7, = .
The estimator is discrete, and its sampling interval is . ‘ | Reate oref the esimatonof
0.01 s. From equation (16), assumingt) = [ay,us]” and —oo1] |

B(t) = 4y — Myqy, one obtaing3(t) = 67 ¢(t). Then, using -0zl
the recursive least squares algorithm described by eaqsatio
(13, 14, 15), an estimatiof is obtained.

The time simulation scheme is described by figure 7.

Noting 6y = [Muo, M.o]T the nominal values of the

Relative error
!
S
9
@

-0.04

-0.05

-0.06
0

Relative error of the estimation of M,

Relative error

A 0 1 2 3 4 5 6 7 8 9 10
Kuut) fact(s)] —u L 2o 2
0 0 [

I—’ I‘—ql Fig. 9. Evolution of relative errors during the simulatiorittwrespect to
il the number of iterations.
G
Fig. 7. Scheme of time simulation. (ZOH=Zero-Order Hold) VIl. CONCLUSION

In this article, robust and gain-scheduling analysis and
parametersf was chosen such that/, = 1.01 x Mo, design techniques were used to realize an adaptive cantroll
M, = 1.7 x M. The initial relative estimation error was To analyse the stability and the performances of the closed
set such thadd = [0.06 x Mg, —0.16 x M,]7. loop, and to minimize the computational time of the con-

The graph 8 shows the time responses to the inpuThe troller adjustment, the plant and the controller are madigle
dashdot curves were obtained without the estimator, and th&T form. This pattern allows the use of algorithms of modal
controller parameters are not adjusted while the solid oneesign and validation through-analysis. The approach is
correspond to the time responses with the estimator. Thistinguished by the fact that the estimator doesn’t appear
time responses when there is no estimation error are tle&plicitly in the analysis and synthesis schemes. Only deun



on the estimation errors are determined.

This technique is applied to control a transport aircraft.
The model used is extracted from the IMMUNE project. A
time domain simulation illustrates the nice transient rep
ties of the adaptive scheme.

In the application, the scheme of the adaptive control
gathers a continuous controller with a discrete estimator.
An improvement of this scheme would be an adaptation of
synthesis methods to a discrete plant in order to obtain a
discrete controller, or an adaptation of analysis methads i
order to take into account the hybrid nature of the scheme.

To apply this technique to the non-linear model of the
transport aircraft of the IMMUNE project, another goal is
to realize a “satisfactory” estimator of slowly time-vanyi
parameters. Some tracks are given in the paragraph V.
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