
HAL Id: hal-01060327
https://onera.hal.science/hal-01060327

Submitted on 3 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mauve: a Component-based Modeling Framework for
Real-time Analysis of Robotic Applications.

Charles Lesire, David Doose, Hugues Cassé

To cite this version:
Charles Lesire, David Doose, Hugues Cassé. Mauve: a Component-based Modeling Framework for
Real-time Analysis of Robotic Applications.. 7th full day Workshop on Software Development and
Integration in Robotics (ICRA2012 - SDIR VII), May 2012, MINNESOTA, United States. �hal-
01060327�

https://onera.hal.science/hal-01060327
https://hal.archives-ouvertes.fr


Mauve: a Component-based Modeling Framework for

Real-time Analysis of Robotic Applications

Charles Lesire and David Doose and Hugues Cassé

I. INTRODUCTION

Robots are more and more used in very diverse

situations (services to persons, military missions, crisis

management, . . . ) in which robots must give some

guarantees of safety and reliability. To be really inte-

grated in everyday life, robots must fulfil some require-

ments. Among these requirements, we focus on the non-

functional requirements on embedded software [1], and

more specifically on real-time software requirements.

These requirements are most of the time fulfilled by

proving the schedulability of the embedded software.

Analysing and validating such properties on an ex-

isting hand-coded software requires some reverse mod-

elling of the software, leading to approximations of its

behaviour. These approximations may have certification

authorities not be confident on the robot dependability.

This paper proposes an integrated development

methodology that starts from software component mod-

elling, and leads to both validation of the embedded soft-

ware and generation of deployable embedded software.

II. MOTIVATIONS

Component-Based Software Engineering (CBSE) is

an essential design paradigm for robotic software devel-

opment [2], applied in many applications [3], [4], [5],

[6]. Resulting components are reusable and composable,

which ease their development, the architecture deploy-

ment, and its validation.

Recent practices in robotic software development

intensively use middlewares (such as Orocos [7],

Genom [8] or ROS [9]) to help engineers to focus on

the robotic aspects of development without having to

manipulate low-level OS primitives for task management

or communication policies.

This paper presents a methodology for robotic ap-

plication design that first requires a specification of the

robotic software architecture inspired by both CBSE and

separation of concerns [10]. Then, runtime execution is

ensured by the generation of embedded code for the

Orocos middleware, which is renowned for its real-time

skills.

Although such model-driven engineering frameworks

targeting Orocos already exist (BRIDE [11] – devel-

oped in the BRICS project [12] –, Proteus [13]), the

methodology proposed in this paper focuses on real-

time validation of the robotic application, by directly

analysing the architecture specification, and limiting the

middleware usage to its verifiable subset.

III. MAUVE

The Mauve (Modeling Autonomous Vehicles)

methodology settles on a formal model, that clearly

separates the component Computation (modelled

as codels [8]), and the component and system

Configuration, modelled through a validable formal

language. Finally, the schedulable software architecture

is deployed by targeting a subset of the Orocos

middleware [7] that offers OS abstraction and

portability of the application.

The Mauve implementation relies on a domain

specific language (DSL, partially represented on

Fig. 2(a)). The abstract syntax of the Mauve DSL is

used by the real-time analysis. The Mauve framework

also provide a concrete syntax of the Mauve DSL used

by engineers to specify their architecture (Fig. 2(b)).

The complete process is shown on Fig. 1 and is

detailed in this section.

A. Codels

Codels, that stand for ”elementary codes”, concern

the computation of a component, i.e. data processing

and algorithms. A codel is a function directly imple-

mented in a programming language, without any depen-

dence neither on the component specification, nor on

the targeted middleware, OS or hardware architecture.

This separation makes codels framework-independent,

reusable, maintenable, and shareable [14].

B. Component model

Mauve allows to model libraries of reusable compo-

nents. A component is described by several elements:

• Properties: each component has a set of properties

that define the component parameters;

• Methods: each component can provide services to

the other components or require specific services

from other, unknown components;

• Ports: components can exchange data through ports;

a component defines its input and output ports, with

the type of the received or sent data;



Mauve DSL

Codel
specification

Component
model

Architecture
specification

Deployment
specification

Codel
implantation

WCET:
Otawa

Runtime
deployment:

Orocos

Real time
analysis

Fig. 1: The Mauve process

• Behaviour: each component has a specific be-

haviour defined by a Finite State Machine (FSM);

A state machine is made of states and transitions

between states.

Mauve also contains a simple expression language

with assignments, conditional instructions, method calls,

codel execution, etc. This expression language is used

to specify the behaviour of a component:

• the entry expression is executed at the step when a

state is entered;

• the run expression is executed at each step when a

state is active;

• the exit expression is executed at the step when a

state is left.

This component description is consistent with a lot

of component-based middlewares classically used in

robotics [3], [8], [7], [9].

C. Architecture specification

The specification of the software architecture defines

component instances and specifies interactions between

those instances. For safety reasons engineers may need

to duplicate or triplicate some components. This need

is satisfied by the segregation of component models and

component instances in the Mauve process.

The architecture specification consists in:

• creating and naming the components instances;

• linking each required method of the component in-

stances to a provided method of another component

instance (that satisfies signature consistency);

• connecting each input port of the component in-

stances to an output port of another component (that

satisfies data-type consistency); port connections

are defined by connectors that specify the connec-

tion policy (buffered or not) and some parameters

(size of the buffer, . . . )

D. Deployment specification

In the proposed process, the architecture specification

and the deployment specification are strictly separated

for different reasons:

• experiments may lead to deploy the same software

architecture on different hardware architectures;

• real-time parameters of some components may be

adapted to their environment (e.g. effective sensor

rate);

• schedulability analysis depends on hardware spec-

ification and codel implementation.

The deployment consists in specifying the worst case

execution time (WCET) of each used codel and defining

the real-time parameters of component instances (prior-

ity, period, deadline, . . . ). The WCET computation is

accomplished using the Otawa framework [15] which

statically analyses the assembled code mapped to an

hardware architecture specification.

E. Real-time analysis

Each component instance is mapped into a real-time

task. The tasks are executed on a real-time operating

system [16] with a fixed priority scheduler. The schedu-

lability analysis consists in computing the worst case

response time (WCRT: worst delay between the task

release and the end of its execution) of each task (i.e.

component instance). A component instance meets its

deadline if its WCRT is lower or equal to its deadline.

We have defined a new method to compute with preci-

sion the WCRT of component instances. This method

extends the well known schedulability analyses [17] by

taking into account the state-machine of the real-time

tasks.

F. Runtime deployment

For runtime deployment and execution, the Mauve

specifications have not be mapped to an OS. Mauve



(a) The Mauve DSL (b) Mauve concrete syntax

Fig. 2: Mauve component model

implements this mapping by generating code for the

Orocos middleware [7]. This generation consists in

C++ code for the component models, that is linked to

the codels implementation, and in Orocos scripts for

architecture and deployment specification.

IV. CONCLUSIONS

The design process based on the Mauve DSL provides

best practices for robotic software development and

deployment, by (1) clearly separating the computation

(i.e. codels) from the architecture configuration (i.e.

component models, architecture and deployment spec-

ifications), and (2) limiting the language to what can be

analysed (e.g., some Orocos synchronization primitives1

are not available in the Mauve language because they

may lead to unsafe real-time behaviours or pessimistic

analysis).

Finally, we plan to extend the runtime deployment

process, by supporting other robotic middlewares, such

as ROS [9], and investigating the generation of bare

Xenomai tasks. These mappings will allow to further

1namely Send/ClientThread for Orocos users

evaluate the real-time behaviours of the different run-

time.

REFERENCES

[1] K. Wiegers, “The Essential Software Requirement,” in Software

Requirements. Microsoft Press, 2003, ch. 1, pp. 3–25.

[2] D. Brugali and A. Shakhimardanov, “Component-Based Robotic
Engineering (Part II),” IEEE Robotics and Automation Magazine,
vol. 17, no. 1, pp. 100–112, 2010.

[3] A. Basu, M. Gallien, C. Lesire, T.-h. Nguyen, S. Bensalem,
F. Ingrand, and J. Sifakis, “Incremental component-based con-
struction and verification of a robotic system,” in Eureopean

Conference on Artificial Intelligence (ECAI), Patras, Greece,
2008.

[4] A. Steck and C. Schlegel, “Towards quality of service and
resource aware robotic systems through model-driven software
development,” in International Workshop on Domain-Specific

Languages and models for Robotic systems (DSLRob’10), 2010.

[5] C. Schlegel, A. Steck, D. Brugali, and A. Knoll, “Design
Abstraction and Processes in Robotics: From Code-Driven to
Model-Driven Engineering,” in International Conference on Sim-

ulation, Modeling, and Programming for Autonomous Robots

(SIMPAR 2010), 2010, pp. 324–335.

[6] D. Alonso, C. Vicente-chicote, F. Ortiz, J. Pastor, and B. Alvarez,
“V3CMM: a 3-View Component Meta-Model for Model-Driven
Robotic Software Development,” Journal of Software Engineer-

ing for Robotics (JOSER), vol. 1, pp. 3–17, 2010.



[7] P. Soetens and H. Bruyninckx, “Realtime hybrid task-based con-
trol for robots and machine tools,” in International Conference

on Robotics and Automation (ICRA), Barcelona, Spain, 2005.
[8] A. Mallet, C. Pasteur, and M. Herrb, “GenoM3: Building

middleware-independent robotic components,” in International

Conference on Robotics and Automation (ICRA), Anchorage,
AK, USA, May 2010, pp. 4627–4632.

[9] G. Bradski, K. Conley, B. Gerkey, E. Marder-Eppstein,
M. Quigley, and M. Wise, “Tutorial on ROS,” in International

Conference on Robotics and Automation (ICRA), Anchorage,
AK, USA, 2010. [Online]. Available: http://www.ros.org/wiki/
Events/ICRA2010Tutorial

[10] M. Radestock and S. Eisenbach, “Coordination in evolving
systems,” in Trends in Distributed Systems (TreDS), 1996.

[11] BRIDE, “BRICS Integrated Development Environment,” 2012.
[Online]. Available: http://www.best-of-robotics.org/bride/

[12] R. Bischoff, T. Guhl, E. Prassler, W. Nowak, G. Kraetzschmar,
H. Bruyninckx, P. Soetens, M. Haegele, A. Pott, P. Breedveld,
J. Broenink, D. Brugali, and N. Tomatis, “BRICS - Best practice
in robotics,” in International Symposium on Robotics (ISR),
Munich, Germany, 2010.

[13] Proteus, “Platform for RObotic modeling and Transformations
for End-Users and Scientific communities,” 2012. [Online].
Available: http://www.anr-proteus.fr/

[14] A. Makarenko, A. Brooks, and T. Kaupp, “On the Benefits of
Making Robotic Software Frameworks Thin,” in International

Conference on Robots and Systems (IROS), San Diego, CA,
USA, 2007.

[15] C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat, “OTAWA:
an Open Toolbox for Adaptive WCET Analysis,” in IFIP

Workshop on Software Technologies for Future Embedded and

Ubiquitous Systems (SEUS), Waidhofen, Austria, 2010.
[16] P. Gerum, Xenomai-Implementing a RTOS emulation framework

on GNU/Linux. GNU Free Documentation License, 2004.
[17] F. Zhang and A. Burns, “Schedulability analysis for real-time

systems with EDF scheduling,” IEEE Transactions on Comput-

ers, vol. 58, no. 9, 2009.

http://www.ros.org/wiki/Events/ICRA2010Tutorial
http://www.ros.org/wiki/Events/ICRA2010Tutorial
http://www.best-of-robotics.org/bride/
http://www.anr-proteus.fr/

	Introduction
	Motivations
	Mauve
	Codels
	Component model
	Architecture specification
	Deployment specification
	Real-time analysis
	Runtime deployment

	Conclusions
	References

