Sergio Pizziol

Catherine Tessier

Frederic Dehais

What the heck is it doing? Better understanding Human-Machine conflicts through models

This paper deals with human-machine conflicts with a special focus on conflicts caused by an "automation surprise". Considering both the human operator and the machine autopilot or decision functions as agents, we propose Petri net based models of two real cases and we show how modelling each agent's possible actions is likely to highlight conflict states as deadlocks in the Petri net. A general conflict model is then be proposed and paves the way for further on-line human-machine conflict forecast and detection.

Introduction

There is a growing interest in unmanned vehicles for civilian or military applications as they prevent the exposure of human operators to hazardous situations. As the human operator is not embedded within the system [START_REF] Tvaryanas | Visual scan patterns during simulated control of an Uninhabited Aerial Vehicle (UAV)[END_REF] hazardous events may interfere with the human-machine interactions (e.g. communication breakdowns and latencies). The design of authority sharing is therefore critical [START_REF] Inagaki | Automation and the cost of authority[END_REF] because conflicts between the machine and the human operator are likely to compromise the mission [START_REF] Parasuraman | Humans : Still vital after all these years of automation[END_REF][START_REF] Van Ginkel | Flexible authority allocation in unmanned aerial vehicles[END_REF]. Interestingly these findings are consistent with research in aviation psychology: crew-automation conflicts known as "automation surprises" [START_REF] Sarter | How in the world did we ever get into that mode? Mode error and awareness in supervisory control[END_REF][START_REF] Sarter | Automation surprises[END_REF] occur when the autopilot does not behave as expected by the crew (e.g. the autopilot has disconnected and the pilots, who are not flying, are not aware of that [START_REF] Mumaw | Analysis of pilots' monitoring and performance on an automated flight deck[END_REF]). These situations can lead to accidents with an airworthy airplane if, despite the presence of auditory warnings [START_REF] Beringer | Automation in general aviation: Two studies of pilot responses to autopilot malfunctions[END_REF], the crew persist in solving a minor conflict [START_REF] Billings | Aviation automation : the search for a human-centered approach[END_REF] "instead of switching to another means or a more direct means to accomplish their flight path management goals" [START_REF] Woods | Learning from automation surprises and going sour accidents[END_REF].

In this paper we will consider the human-machine system as a twoagent system (see figure 1), i.e. the human agent (the operator) and the automation agent (the autopilot or the embedded decision and planning functions). Indeed both agents can perform actions so as to control the physical system, which may be subject to uncontrolled events (e.g. failures). Notice that an autopilot is considered an agent because some mode changes can be performed by the autopilot itself without prior consent of the pilot, and sometimes despite the pilot's actions.

Conflicts in a human-machine system stem from the fact that both agents can decide and act on the physical system and their actions may not be consistent, either because the expected plan for the human operator or the machine is not followed anymore, or the Figure 1: A human-machine system as a two-agent system operator has a wrong situation awareness [START_REF] Wickens | Situation awareness: review of Mica Endsley's 1995 articles on situation awareness theory and measurement[END_REF], or both. In order to prevent a mission degradation, the agents' plans, and possibly the authority allocation (i.e. which agent is controlling what), have to be adapted [START_REF] Mercier | Authority management in humanrobot systems[END_REF]. This is a real challenge as in human-machine systems the human agent is hardly controllable and no "model" of the human's decision processes is available.

We define a conflict as the execution of globally (i.e. at the system level) incoherent actions i.e. one action tends to take the system to state Sa and another one tends to take it to state S b , and Sa = S b . Locally (i.e. at the single agent level) the actions may be coherent with a local plan and the conflict may come from a wrong interaction between the agents. If one agent's local actions are incoherent (e.g. because of a failure) either a local diagnosis and reconfiguration are possible; or they are not (e.g. human operator's error) and the wrong behaviour of this agent is likely to create a conflict with the other agent. Actions in a multi-agent system [START_REF] Jennings | Controlling cooperative problem solving in industrial multi-agent systems using joint intentions[END_REF] are incoherent if:

• Physically [START_REF] Tessier | Agents' conflicts: new issues[END_REF][START_REF] Su | Conceptualizing the co-evolution of organizations and information systems[END_REF]: at least a depletable or not shareable resource 3 is the cause of a competition, the agents preemptively take over the resource. Example: one agent is in charge of the vertical control of an aircraft and another agent is in charge of the longitudinal control. The thrust is a limited resource and may be not enough to grant the climbing rate required by the first agent and the turn rate required by the second one.

• Epistemically [START_REF] Tessier | Agents' conflicts: new issues[END_REF]: the agents performing the actions do not share the same point of view on at least two relevant pieces of information. Example: two agents are both in charge of the vertical control of an aircraft. They both want to reach altitude 5000 ft. One agent estimates the current altitude to be at 6000 ft and the other one at 4000 ft.

• Logically [START_REF] Su | Conceptualizing the co-evolution of organizations and information systems[END_REF]: at least two goals are logically contradictory, the agents have opposite desires. Example: two agents are in charge of the vertical control of an aircraft. The altitude is 4000 ft. One wants to climb to 6000 ft and the other one wants to descend to 2000 ft.

Conflicts are situations where incoherent actions, or their consequences, matter in terms of mission achievement, safety, etc. [START_REF] Tessier | Agents' conflicts: new issues[END_REF][START_REF] Dehais | Approche générique du conflit[END_REF]. We distinguish three classes of conflicts that are directly inspired by the classification of incoherent actions: logical conflicts, physical conflicts and knowledge (epistemic) conflicts. Logical conflicts are when the agents' goals are logically contradictory and a tradeoff must be found. Note that the goals are not necessarily incompatible: an agent's incapability to accept a trade-off could lead to a conflict. Game theory techniques have been proposed to solve this case of conflict [START_REF] Kraus | Negotiation and cooperation in multi-agent environments[END_REF]. Physical conflicts are when the agents' goals are independent but incompatible because of the resources required to achieve plans and actions that are associated to the goals, therefore a wise resource sharing is needed. Knowledge conflicts are when the agents' goals are coherent [START_REF] Wilensky | Planning and understanding: A computational approach to human reasoning[END_REF][START_REF] Su | Conceptualizing the co-evolution of organizations and information systems[END_REF], and the agents' information for decision-making about how to reach the goals is not the same. Such conflicts may concern agents' beliefs, knowledge, procedures, opinions.

This paper focuses on knowledge conflicts in human-machine systems, especially the conflicts caused by "automation surprises". Section 2 will focus on two real cases of "automation surprise". Our approach is to assess whether a formal model of those cases could give us avenues for automatic conflict identification and detection. Petri nets (see Appendix) have been chosen for formal modelling since they are well suited to scripted domains with a state dynamics linked to discrete events. From those two cases, we present a generalized conflict model (section 3).

What the heck is it doing?

This section presents two real cases of human-machine conflicts caused by "automation surprises", i.e. the machine agent not behaving as expected by the human agent. The first case -a "kill-thecapture" surprise with an MD-88 autopilot has been reported by [START_REF] Palmer | Oops, it didn't arm." A case study of two automation surprises[END_REF] and investigated by [START_REF] Rushby | An automated method to detect potential mode confusions[END_REF][START_REF] Rushby | Using model checking to help discover mode confusions and other automation surprise[END_REF]. The second case occurred during an experiment campaign involving one of Onera's Ressac VTOL UAVs 4 in July 2011. For both cases we will show that modelling the agents' possible actions (i.e. what they have the right to do, especially the right to take over the authority from the other agent) enables the conflict to be identified in a formal way. Both cases will be modelled with Petri nets.

The kill-the-capture surprise

The two agents involved are the Autopilot of the MD-88 and the Pilot. The actions that are considered are the mode transitions of the Autopilot that are triggered either by the Autopilot-agent or by the Pilot-agent. Unlike Rushby [START_REF] Rushby | Using model checking to help discover mode confusions and other automation surprise[END_REF], we do not make any assumption about a "mental model" of the Pilot, but we take the objective viewpoint of what the Pilot actually does. For the sake of clarity only the relevant modes and mode transitions are represented. In our Petri nets, we use the same colour code as in [START_REF] Rushby | An automated method to detect potential mode confusions[END_REF]: green for done by the Pilot, red for done by the Autopilot 4 Vertical Take-Off and Landing Unmanned Aerial Vehicles

In the Initial state Alt-Capture mode of the Autopilot is not armed (initial marking "Alt-Capture not Armed") -figure 2. The Pilot sets altitude to Target altitude. This causes Autopilot Alt-Capture mode to arm, therefore the target altitude set by the Pilot will not be overshot. The Pilot also sets Pitch mode to VSPD (Vertical Speed -aircraft climbs at constant rate), then to IAS (Indicated Air Speed -climb rate adjusted, constant air speed) -figure 3. The "Oops, it didn't arm" uttered by the pilot reveals that he does not understand why the aircraft goes on climbing. In fact, his actions on the Autopilot modes have destroyed the Autopilot sequence. Formally the Petri net is blocked on the Autopilot side (i.e. no transition can be fired anymore). This is a knowledge conflict [START_REF] Tessier | Agents' conflicts: new issues[END_REF] as the consequences of the agents' actions were neither assessed properly nor explained to one another.

Rain and automation

The second case of "automation surprise" occurred by chance during an experiment involving an Onera Ressac VTOL UAV in July 2011. Indeed the experiment was meant to test some properties of the Ressac planner and was not an ad-hoc scenario to bring about "automation surprise". The UAV mission requires two nominal pilots: the ground control station pilot (Gp) and the field pilot (Fp). For regulatory issues a third operator, the security pilot (Sp), can take over the manual piloting (as long as he wants) to deal with any unexpected event. About a dozen of other members of the Ressac team were checking the mission plan execution and performing other tasks.

There are five piloting modes (cf Table 1), one is totally automated (Nominal autopiloting-Autonav), three are partially automated modes and have been developed by Onera (Nominal autopiloting-Operator flight plan, Nominal manual-high level, Nominal manualassisted), and the last one is a direct piloting mode (Emergency manual) using the on-the-shelf equipment of the vehicle (Yamaha RMax). This last mode can be engaged only by the Safety pilot who has always pre-emption rights, activating an exclusion switch cutting off the automatism. Notice that the Ressac software architecture has no visibility on the state of the switch. Flight phase transitions are allowed only in Nominal autopiloting mode. In the Nominal autopiloting configuration the occurrence of Event A (waypoint alpha reached by Ressac) fires transition Phase 1/Phase 2 for the software agent. This transition emits Event B (information waypoint alpha reached displayed on the Gp interface) which updates the procedure: human agent state is Phase 2, so as software agent state.

Phase 2/ Phase 3 operates the same way with Event C (waypoint beta) and D (information displayed on the Gp interface and procedure updated). The rain stopped and the Sp decided that the nominal plan could be resumed. Transition Emergency manual to Nominal autopiloting is fired (figure 11). The nominal plan was resumed (Phase 2) and Ressac headed waypoint beta. The human operators, who were expecting Phase 1 to be resumed, did not understand what Ressac was doing and began to panic. This is again a knowledge conflict [START_REF] Tessier | Agents' conflicts: new issues[END_REF] in which the human operators considered the behaviour of the machine as a failure. Indeed none of the test team members properly interpreted the behaviour of Ressac. Notice that the marking of the Petri net (figure 11) is such that: (i) place Phase 2 is marked on the software agent side whereas place Phase 1 is marked on the human agent side ; (ii) one place Nominal piloting is marked (software agent side) whereas the other one is not marked (human agent side). Nevertheless it is a matter of semantic inconsistencies and not of formal inconsistencies within the Petri net model. Indeed for case (ii), the two places Nominal piloting do not represent the same state, otherwise a unique place would have been used: one is the software agent state and the other one is the human agent state.

Identifying conflicts through semantic inconsistencies would involve an explicit enumeration of all possible inconsistencies, which is hardly possible. Therefore what is relevant here from a formal point of view is not the semantic inconsistencies but the fact that the human agent part of the Petri net model is blocked (Event B will never occur again and Phase 2 will never be marked).

The next section will focus on a generalization of agent conflict representation, detection and solving.

3 Towards a model of human-automation conflict

Conflict model

In a multi-agent system different agents are often interested in the knowledge of the same state variables. Those variables can seman-tically describe the physical environment state or the agent internal state. The values of those state variables can be affected by the agents' actions.

Let us consider two agents A1 and A2 that both have the right to act on a common device to change its state. The state of the device must be successively S1 then S2 and the agents must always have the same knowledge about the device state. The initial state is S1 In figure 12, both agents' knowledge is the same, i.e. the device state is S1 (left). The result of the firing of T1 is that both agents' knowledge is that system state is S2 (right). Note that transition T1 represent a synchronization of both agents about their shared decision. As far as figure 13 is concerned, A2 need A1 to fire transition T2, i.e. both agents' knowledge must be S1 to make the device evolve to S2. On the contrary the firing of transition T1 only makes A1's knowledge state evolve to S2 (transition T1 is "hidden" from A2)(left). If T1 is fired, the result is that A1's knowledge is S2 whereas A2's is S1 and transition T2 is dead (right). This is a conflict.

Conflict solving

In figure 13 T1 is a 'hidden transition" so far as agent A2 cannot see it neither the consequences of its firing. That is the case for the "Rain and automation" example, figure 10. Two solutions are then possible. The first one is to remove T1, i.e. agent A1 has no right to fire T1. In this case we get the ideal case in figure 12, we allow only shared decisions represented by transi-tion T1. The second solution is to inform A2 of the firing of T1, see figure 14. For that reason the second solution proposed (inform the other agent) has an uncertain effect if A2 is human. This kind of transition is considered as a vulnerability by some researchers [START_REF] Feary | A toolset for supporting iterative human automation interaction in design[END_REF]. In other works the not nominal effect of a transition can be restored informing the human operator again or differently [START_REF] Dehais | The perseveration syndrome in the pilot's activity: guidelines and cognitive countermeasures[END_REF].

Conclusion and further work

Starting from two real cases of "automation surprises", we have shown that a formal model allows us to characterize a Human-Machine conflict: for both cases the Petri net model features a deadlock (i.e. at least one transition cannot be fired). We have then proposed a general Petri net based conflict model that paves the way for automatic conflict detection through "hidden" transitions identification and liveliness properties checking. We have also given two possible design solutions to prevent conflicts: share the decision or inform the other agent.

Nevertheless if the agent being informed is human the problem of the correct reception and interpretation of the information has to be considered. Therefore uncertainty has to be modelled so as to feed an estimator of the human agent's knowledge state: such an estimator, which is further work, can be based on the human agent's actions and "internal state" [START_REF] Pizziol | Towards human operator "state" assessment[END_REF].

Current work focuses on further aircraft autopilot-pilot interaction modelling -especially some cases that led to accidents -so as to put to the test the generic conflict model we have proposed. The next steps will be on-line conflict forecast and detection and experiments in our flight simulator.

Appendix: Petri Nets

A Petri net < P, T, F, B > is a bipartite graph with two types of nodes: P is a finite set of places; T is a finite set of transitions [START_REF] David | Discrete, continuous, and hybrid petri nets[END_REF]. Arcs are directed and represent the forward incidence function F : P × T → N and the backward incidence function B : P × T → N respectively. An interpreted Petri net is such that conditions and events are associated with places and transitions. When the conditions corresponding to some places are satisfied, tokens are assigned to those places and the net is said to be marked. The evolution of tokens within the net follows transition firing rules. Petri nets allow sequencing, parallelism and synchronization to be easily represented.

Figure 2 :

 2 Figure 2: Alt-Capture not Armed

Figure 3 :

 3 Figure 3: Alt-Capture armed and IAS

Figure 4 :

 4 Figure 4: Alt Cap; Alt-Capture disarmed

Figure 5 :

 5 Figure 5: Pitch mode VSPD

Figure 6 :

 6 Figure 6: Event target altitude lost -"Oops, it didn't arm" [13].

Table 1 :

 1 Piloting modes, agents' involvement and phase achievement So two nominal modes are possible i.e. Nominal autopiloting and Nominal manual piloting. When Nominal autopiloting is engaged, Ressac flies autonomously according to its plan, i.e. for this particular experiment: • Phase 1: heading from the initial position to waypoint alpha • Phase 2: heading from waypoint alpha to waypoint beta • Phase 3: heading from waypoint beta to waypoint gamma The following Petri nets represent the actions (transitions) and states (places) of the Ressac software agent (right) and of the human operator agent, i.e. what happens on the Gp's interface and the possible actions of the Sp (left). The procedure to follow (see figure 7 left) matches the plan (see figure 7 right) except the fact that it includes the case of the Sp taking control of Ressac to deal with an emergency: in that case the procedure is stopped. Initial state is human agent and software agent both in the state Phase 1.

Figure 7 :

 7 Figure 7: Initial state

Figure 8 :

 8 Figure 8: Rain and emergency manual mode

Figure 9 :

 9 Figure 9: Software state update

Figure 10 :

 10 Figure 10: Lost of the event for the procedure update

Figure 11 :

 11 Figure 11: What the heck is it doing?

Figure 12 :

 12 Figure 12: Two-agent system, correct design

Figure 13 :

 13 Figure 13: Two-agent system, incorrect design

Figure 14 :Figure 15 :

 1415 Figure 14: Two-agent system, another correct design

ONERA(France) name.surname@onera.fr

ISAE(France) name.surname@isae.fr

As resource we generically refer to a physical object, information, task, goal.