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What the heck is it doing?
Better understanding Human-Machine conflicts through

models

Sergio Pizziol1,2 and Catherine Tessier1 and Frederic Dehais2

Abstract.

This paper deals with human-machine conflicts with a special fo-

cus on conflicts caused by an “automation surprise”. Considering

both the human operator and the machine autopilot or decision func-

tions as agents, we propose Petri net based models of two real cases

and we show how modelling each agent’s possible actions is likely to

highlight conflict states as deadlocks in the Petri net. A general con-

flict model is then be proposed and paves the way for further on-line

human-machine conflict forecast and detection.

1 Introduction

There is a growing interest in unmanned vehicles for civilian

or military applications as they prevent the exposure of human

operators to hazardous situations. As the human operator is not

embedded within the system [22] hazardous events may interfere

with the human-machine interactions (e.g. communication break-

downs and latencies). The design of authority sharing is therefore

critical [8] because conflicts between the machine and the human

operator are likely to compromise the mission [14, 23]. Interestingly

these findings are consistent with research in aviation psychol-

ogy: crew-automation conflicts known as “automation surprises”

[18, 19] occur when the autopilot does not behave as expected

by the crew (e.g. the autopilot has disconnected and the pilots,

who are not flying, are not aware of that [12]). These situations

can lead to accidents with an airworthy airplane if, despite the

presence of auditory warnings [1], the crew persist in solving a

minor conflict [2] ”instead of switching to another means or a more

direct means to accomplish their flight path management goals” [26].

In this paper we will consider the human-machine system as a two-

agent system (see figure 1), i.e. the human agent (the operator) and

the automation agent (the autopilot or the embedded decision and

planning functions). Indeed both agents can perform actions so as to

control the physical system, which may be subject to uncontrolled

events (e.g. failures). Notice that an autopilot is considered an agent

because some mode changes can be performed by the autopilot itself

without prior consent of the pilot, and sometimes despite the pilot’s

actions.

Conflicts in a human-machine system stem from the fact that

both agents can decide and act on the physical system and their

actions may not be consistent, either because the expected plan for

the human operator or the machine is not followed anymore, or the
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Figure 1: A human-machine system as a two-agent system

operator has a wrong situation awareness [24], or both. In order

to prevent a mission degradation, the agents’ plans, and possibly

the authority allocation (i.e. which agent is controlling what), have

to be adapted [11]. This is a real challenge as in human-machine

systems the human agent is hardly controllable and no “model” of

the human’s decision processes is available.

We define a conflict as the execution of globally (i.e. at the system

level) incoherent actions i.e. one action tends to take the system to

state Sa and another one tends to take it to state Sb, and Sa 6= Sb.

Locally (i.e. at the single agent level) the actions may be coherent

with a local plan and the conflict may come from a wrong interaction

between the agents. If one agent’s local actions are incoherent (e.g.

because of a failure) either a local diagnosis and reconfiguration are

possible; or they are not (e.g. human operator’s error) and the wrong

behaviour of this agent is likely to create a conflict with the other

agent. Actions in a multi-agent system [9] are incoherent if:

• Physically [21, 20]: at least a depletable or not shareable re-

source3 is the cause of a competition, the agents preemptively take

over the resource. Example: one agent is in charge of the vertical

control of an aircraft and another agent is in charge of the longitudi-

nal control. The thrust is a limited resource and may be not enough

to grant the climbing rate required by the first agent and the turn rate

required by the second one.

• Epistemically [21]: the agents performing the actions do not

share the same point of view on at least two relevant pieces of in-

formation. Example: two agents are both in charge of the vertical

control of an aircraft. They both want to reach altitude 5000 ft. One

agent estimates the current altitude to be at 6000 ft and the other one

3 As resource we generically refer to a physical object, information, task,
goal.



at 4000 ft.

• Logically [20]: at least two goals are logically contradictory, the

agents have opposite desires. Example: two agents are in charge of

the vertical control of an aircraft. The altitude is 4000 ft. One wants

to climb to 6000 ft and the other one wants to descend to 2000 ft.

Conflicts are situations where incoherent actions, or their conse-

quences, matter in terms of mission achievement, safety, etc. [21, 5].

We distinguish three classes of conflicts that are directly inspired

by the classification of incoherent actions: logical conflicts, physi-

cal conflicts and knowledge (epistemic) conflicts. Logical conflicts

are when the agents’ goals are logically contradictory and a trade-

off must be found. Note that the goals are not necessarily incom-

patible: an agent’s incapability to accept a trade-off could lead to a

conflict. Game theory techniques have been proposed to solve this

case of conflict [10]. Physical conflicts are when the agents’ goals

are independent but incompatible because of the resources required

to achieve plans and actions that are associated to the goals, therefore

a wise resource sharing is needed. Knowledge conflicts are when the

agents’ goals are coherent [25, 20], and the agents’ information for

decision-making about how to reach the goals is not the same. Such

conflicts may concern agents’ beliefs, knowledge, procedures, opin-

ions.

This paper focuses on knowledge conflicts in human-machine sys-

tems, especially the conflicts caused by “automation surprises”. Sec-

tion 2 will focus on two real cases of “automation surprise”. Our ap-

proach is to assess whether a formal model of those cases could give

us avenues for automatic conflict identification and detection. Petri

nets (see Appendix) have been chosen for formal modelling since

they are well suited to scripted domains with a state dynamics linked

to discrete events. From those two cases, we present a generalized

conflict model (section 3).

2 What the heck is it doing?

This section presents two real cases of human-machine conflicts

caused by “automation surprises”, i.e. the machine agent not behav-

ing as expected by the human agent. The first case – a “kill–the–

capture” surprise with an MD–88 autopilot has been reported by [13]

and investigated by [17, 16]. The second case occurred during an ex-

periment campaign involving one of Onera’s Ressac VTOL UAVs4

in July 2011. For both cases we will show that modelling the agents’

possible actions (i.e. what they have the right to do, especially the

right to take over the authority from the other agent) enables the con-

flict to be identified in a formal way. Both cases will be modelled

with Petri nets.

2.1 The kill-the-capture surprise

The two agents involved are the Autopilot of the MD-88 and the

Pilot. The actions that are considered are the mode transitions of the

Autopilot that are triggered either by the Autopilot-agent or by the

Pilot-agent. Unlike Rushby [16], we do not make any assumption

about a “mental model” of the Pilot, but we take the objective

viewpoint of what the Pilot actually does. For the sake of clarity

only the relevant modes and mode transitions are represented. In our

Petri nets, we use the same colour code as in [17]: green for done by

the Pilot, red for done by the Autopilot
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In the Initial state Alt-Capture mode of the Autopilot is not armed

(initial marking “Alt-Capture not Armed”) – figure 2.

Figure 2: Alt-Capture not Armed

The Pilot sets altitude to Target altitude. This causes Autopilot

Alt–Capture mode to arm, therefore the target altitude set by the Pilot

will not be overshot. The Pilot also sets Pitch mode to VSPD (Vertical

Speed – aircraft climbs at constant rate), then to IAS (Indicated Air

Speed – climb rate adjusted, constant air speed) – figure 3.

Figure 3: Alt-Capture armed and IAS

When target altitude is nearly reached, the Autopilot changes

Pitch mode to Alt Cap (provides smooth levelling off at the desired

altitude) therefore mode Alt-Capture is disarmed, so as Pitch mode

IAS – figure 4.



Figure 4: Alt Cap; Alt-Capture disarmed

The Pilot then changes Pitch mode to VSPD, therefore Pitch mode

Alt Cap is disarmed – figure 5.

Figure 5: Pitch mode VSPD

When event target altitude occurs, state Pitch mode Alt Hold

cannot be reached since neither possible precondition is true (Alt

capture armed or Pitch mode Alt Cap). Therefore event target

altitude is “lost” and the aircraft goes on climbing at the VSPD

indicated by the pilot, – figure 6.

Figure 6: Event target altitude lost – “Oops, it didn’t arm” [13].

The “Oops, it didn’t arm” uttered by the pilot reveals that he does

not understand why the aircraft goes on climbing. In fact, his actions

on the Autopilot modes have destroyed the Autopilot sequence. For-

mally the Petri net is blocked on the Autopilot side (i.e. no transition

can be fired anymore). This is a knowledge conflict [21] as the con-

sequences of the agents’ actions were neither assessed properly nor

explained to one another.

2.2 Rain and automation

The second case of “automation surprise” occurred by chance dur-

ing an experiment involving an Onera Ressac VTOL UAV in July

2011. Indeed the experiment was meant to test some properties of the

Ressac planner and was not an ad-hoc scenario to bring about “au-

tomation surprise”. The UAV mission requires two nominal pilots:

the ground control station pilot (Gp) and the field pilot (Fp). For reg-

ulatory issues a third operator, the security pilot (Sp), can take over

the manual piloting (as long as he wants) to deal with any unexpected

event. About a dozen of other members of the Ressac team were

checking the mission plan execution and performing other tasks.

There are five piloting modes (cf Table 1), one is totally automated

(Nominal autopiloting- Autonav), three are partially automated

modes and have been developed by Onera (Nominal autopiloting-

Operator flight plan, Nominal manual- high level, Nominal manual-

assisted), and the last one is a direct piloting mode (Emergency man-

ual) using the on-the-shelf equipment of the vehicle (Yamaha RMax).

This last mode can be engaged only by the Safety pilot who has al-

ways pre-emption rights, activating an exclusion switch cutting off

the automatism. Notice that the Ressac software architecture has no

visibility on the state of the switch. Flight phase transitions are al-

lowed only in Nominal autopiloting mode.

Automation Gp Fp Sp Phase achievement

Nominal autopiloting- Autonav * *

Nominal autopiloting- Operator flight plan * * * *

Nominal Manual- high level * *

Nominal Manual- assisted * *

Emergency Manual *

Table 1: Piloting modes, agents’ involvement and phase achievement

So two nominal modes are possible i.e. Nominal autopiloting and

Nominal manual piloting. When Nominal autopiloting is engaged,

Ressac flies autonomously according to its plan, i.e. for this particular

experiment:

• Phase 1: heading from the initial position to waypoint alpha

• Phase 2: heading from waypoint alpha to waypoint beta

• Phase 3: heading from waypoint beta to waypoint gamma

The following Petri nets represent the actions (transitions) and

states (places) of the Ressac software agent (right) and of the hu-

man operator agent, i.e. what happens on the Gp’s interface and the

possible actions of the Sp (left). The procedure to follow (see fig-

ure 7 left) matches the plan (see figure 7 right) except the fact that

it includes the case of the Sp taking control of Ressac to deal with

an emergency: in that case the procedure is stopped. Initial state is

human agent and software agent both in the state Phase 1.

In the Nominal autopiloting configuration the occurrence of Event

A (waypoint alpha reached by Ressac) fires transition Phase 1/Phase

2 for the software agent. This transition emits Event B (information

waypoint alpha reached displayed on the Gp interface) which updates

the procedure: human agent state is Phase 2, so as software agent

state.



Phase 2/ Phase 3 operates the same way with Event C (waypoint

beta) and D (information displayed on the Gp interface and proce-

dure updated).

Figure 7: Initial state

What happened in July 2011 is the following sequence: Ressac

was flying Phase 1 heading for waypoint alpha, when it began to

rain. This random event made the Safety pilot Sp take over the

control on Ressac. On the Petri net of figure 8 transition Random

event is fired by the human agent and Emergency manual place is

marked.

Figure 8: Rain and emergency manual mode

While operating Ressac manually in order to make it land, the Sp

unintentionally flew it over waypoint alpha. Therefore Event A is

generated, and the software agent engages Phase 2 (figure 9).

Figure 9: Software state update

Event B is emitted but lost on the human agent side, since one

precondition (Nominal autopiloting) is no longer verified (figure 10).

Figure 10: Lost of the event for the procedure update

The rain stopped and the Sp decided that the nominal plan could

be resumed. Transition Emergency manual to Nominal autopiloting

is fired (figure 11). The nominal plan was resumed (Phase 2) and

Ressac headed waypoint beta. The human operators, who were

expecting Phase 1 to be resumed, did not understand what Ressac

was doing and began to panic. This is again a knowledge conflict

[21] in which the human operators considered the behaviour of the

machine as a failure. Indeed none of the test team members properly

interpreted the behaviour of Ressac.

Figure 11: What the heck is it doing?

Notice that the marking of the Petri net (figure 11) is such that:

(i) place Phase 2 is marked on the software agent side whereas place

Phase 1 is marked on the human agent side ; (ii) one place Nominal

piloting is marked (software agent side) whereas the other one is not

marked (human agent side). Nevertheless it is a matter of semantic

inconsistencies and not of formal inconsistencies within the Petri net

model. Indeed for case (ii), the two places Nominal piloting do not

represent the same state, otherwise a unique place would have been

used: one is the software agent state and the other one is the human

agent state.

Identifying conflicts through semantic inconsistencies would in-

volve an explicit enumeration of all possible inconsistencies, which

is hardly possible. Therefore what is relevant here from a formal

point of view is not the semantic inconsistencies but the fact that

the human agent part of the Petri net model is blocked (Event B will

never occur again and Phase 2 will never be marked).

The next section will focus on a generalization of agent conflict

representation, detection and solving.

3 Towards a model of human-automation conflict

3.1 Conflict model

In a multi-agent system different agents are often interested in the

knowledge of the same state variables. Those variables can seman-



tically describe the physical environment state or the agent inter-

nal state. The values of those state variables can be affected by the

agents’ actions.

Let us consider two agents A1 and A2 that both have the right to

act on a common device to change its state. The state of the device

must be successively S1 then S2 and the agents must always have

the same knowledge about the device state. The initial state is S1 In

figure 12, both agents’ knowledge is the same, i.e. the device state is

S1 (left). The result of the firing of T1 is that both agents’ knowledge

is that system state is S2 (right). Note that transition T1 represent a

synchronization of both agents about their shared decision.

(a) (b)

Figure 12: Two-agent system, correct design

As far as figure 13 is concerned, A2 need A1 to fire transition

T2, i.e. both agents’ knowledge must be S1 to make the device

evolve to S2. On the contrary the firing of transition T1 only makes

A1’s knowledge state evolve to S2 (transition T1 is “hidden” from

A2)(left). If T1 is fired, the result is that A1’s knowledge is S2

whereas A2’s is S1 and transition T2 is dead (right). This is a conflict.

(a) (b)

Figure 13: Two-agent system, incorrect design

3.2 Conflict solving

In figure 13 T1 is a ‘hidden transition” so far as agent A2 cannot see

it neither the consequences of its firing. That is the case for the “Rain

and automation” example, figure 10.

Two solutions are then possible. The first one is to remove T1, i.e.

agent A1 has no right to fire T1. In this case we get the ideal case

in figure 12, we allow only shared decisions represented by transi-

tion T1. The second solution is to inform A2 of the firing of T1, see

figure 14.

Figure 14: Two-agent system, another correct design

If A2 is a human operator the effect of a transition on his knowl-

edge is not sure: the feedback he receives from the other agent can be

lost or misinterpreted. A pseudo-firing [3] for T1 can model this kind

of uncertainty, see figure 15 (left). The firing of T1 leads to the un-

certain marking for the agent A2 state represented in figure 15 (right)

by empty markers.

(a) (b)

Figure 15: Two-agent system, A2 is human. Pseudo firing on correct

design

For that reason the second solution proposed (inform the other

agent) has an uncertain effect if A2 is human. This kind of transi-

tion is considered as a vulnerability by some researchers [7]. In other

works the not nominal effect of a transition can be restored informing

the human operator again or differently [6].

4 Conclusion and further work

Starting from two real cases of “automation surprises”, we have

shown that a formal model allows us to characterize a Human-

Machine conflict: for both cases the Petri net model features a dead-

lock (i.e. at least one transition cannot be fired). We have then pro-

posed a general Petri net based conflict model that paves the way

for automatic conflict detection through “hidden” transitions identi-

fication and liveliness properties checking. We have also given two

possible design solutions to prevent conflicts: share the decision or

inform the other agent.

Nevertheless if the agent being informed is human the problem of

the correct reception and interpretation of the information has to be

considered. Therefore uncertainty has to be modelled so as to feed an

estimator of the human agent’s knowledge state: such an estimator,



which is further work, can be based on the human agent’s actions and

“internal state” [15].

Current work focuses on further aircraft autopilot-pilot interaction

modelling – especially some cases that led to accidents – so as to

put to the test the generic conflict model we have proposed. The next

steps will be on-line conflict forecast and detection and experiments

in our flight simulator.

5 Appendix: Petri Nets

A Petri net < P, T, F,B > is a bipartite graph with two types

of nodes: P is a finite set of places; T is a finite set of transi-

tions [4]. Arcs are directed and represent the forward incidence

function F : P × T → N and the backward incidence function

B : P × T → N respectively. An interpreted Petri net is such

that conditions and events are associated with places and transitions.

When the conditions corresponding to some places are satisfied, to-

kens are assigned to those places and the net is said to be marked.

The evolution of tokens within the net follows transition firing rules.

Petri nets allow sequencing, parallelism and synchronization to be

easily represented.
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