
HAL Id: hal-01061111
https://onera.hal.science/hal-01061111

Submitted on 5 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Landmark-based Meta Best-First Search Algorithm
for Classical Planning.

S. Vernhes, G. Infantes, V. Vidal

To cite this version:
S. Vernhes, G. Infantes, V. Vidal. The Landmark-based Meta Best-First Search Algorithm for Classical
Planning.. Sixth Starting AI Researchers’ Symposium (STAIRS’2012 at ECAIS’2012), Aug 2012,
MONTPELLIER, France. �hal-01061111�

https://onera.hal.science/hal-01061111
https://hal.archives-ouvertes.fr

The Landmark-based Meta Best-First

Search Algorithm for Classical Planning

Simon VERNHES, Guillaume INFANTES and Vincent VIDAL

<firstname.lastname@onera.fr> — Onera Toulouse, France

Abstract. In this paper, we revisit the idea of splitting a planning prob-
lem into subproblems hopefully easier to solve with the help of land-
mark analysis. This technique initially proposed in the first approaches
related to landmarks in classical planning has been outperformed by
landmark-based heuristics and has not been paid much attention over
the last years. We believe that it is still a promising research direction,
particularly for devising distributed search algorithms that could ex-
plore different landmark orderings in parallel. To this end, we propose a
new method for problem splitting based on landmarks, which has three
advantages over the original technique: it is complete (if a solution ex-
ists, the algorithm finds it), it uses the precedence relations over the
landmarks in a more flexible way (the orderings are explored by way
of a best-first search algorithm), and finally it can be easily performed
in parallel (by e.g. following the hash-based distribution principle). We
lay in this paper the foundations of a meta best-first search algorithm,
which explores the landmark orderings and can use any embedded plan-
ner to solve each subproblem. It opens up avenues for future research:
among them are new heuristics for guiding the meta search towards the
most promising orderings, different policies for expanding nodes of the
meta search, influence of the embedded subplanner, and parallelization
strategies of the meta search.

Keywords. Artificial Intelligence, automated planning, landmarks,
search algorithms

Introduction

Automated Planning in Artificial Intelligence [1] is a general problem solving
framework which aims at finding solutions to combinatorial problems formulated
with concepts such as actions, states of the world, and goals. For more than
50 years, research in Automated Planning has provided mathematical models,
description languages and algorithms to solve this kind of problems. We focus in
this paper on Classical Planning, which is one of the simplest model but has seen
spectacular improvements in algorithm efficiency during the last decade.

Landmark-based analysis are actually among the most popular tools to build
efficient planning systems, either optimal or suboptimal. Landmarks are facts that
must be true at some point during the execution of any solution plan, and can
be approximated, as well as an ordering between them, in polynomial time [2,3].

STAIRS 2012

K. Kersting and M. Toussaint (Eds.)

© 2012 The Authors and IOS Press.

This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License.

doi:10.3233/978-1-61499-096-3-336

336

Landmarks have been used in two main ways. The most successful one is the
definition of heuristic functions to guide a best-first search algorithm, such as the
landmark-counting heuristic used in the LAMA suboptimal planner [4] or the LM-
Cut heuristic for optimal cost-based planning [5]. An anterior method proposed
in [2] was to divide the initial planning problem into successive subproblems
whose goals were disjunctions of landmarks to be reached in turn by any kind
of embedded planner. This method was not as efficient as using landmark-based
heuristics: among the most prominent problems were its incompleteness and its
lack of flexibility with respect to an initial ordering of the landmarks.

We aim in this paper to revisit this last method, with two objectives in mind:
(1) to devise a complete algorithm for subproblem splitting based on landmarks,
and (2) to devise an algorithm that could be easily parallelized in order to ben-
efit from the computational power offered by actual parallel architectures. The
algorithm we present in the following has reached these goals, although its per-
formance in a sequential setting is generally worse than that of the subplanner
it embeds to solve the successive subproblems (actually, YAHSP [6,7]). Its paral-
lelization is also not studied in this paper, but as it is based on a best-first search
algorithm, this would be easily made with the hash-based distribution principle
previously used in [8,9].

Roughly speaking, our method consists in performing a best-first search al-
gorithm in the space of landmark orderings, in which node expansion implies the
search of a subproblem by an embedded planner. This search algorithm is per-
formed at a meta level, the low level being the search made by the embedded
planner that can itself use a best-first search algorithm, such as in YAHSP. After
giving some background about classical planning and landmark computation, we
define the basic components later used to describe the landmark-based meta best-
first search algorithm. We propose several heuristics to guide the meta search,
and experimentally evaluate their influence on the planner efficiency. We finally
conclude and draw some future works.

1. Background on Classical Planning

1.1. STRIPS

The basic STRIPS [10] model of planning can be defined as follows. A state of the
world is represented by a set of ground atoms. A ground action a built from a set
of atoms A is a tuple 〈pre(a),add(a),del(a)〉 where pre(a) ⊆ A, add(a) ⊆ A and
del(a) ⊆ A represent the preconditions, add effects and del effects of a respectively.

A planning problem can be defined as a tuple Π = 〈A,O, I,G〉, where A is
a finite set of atoms, O is a finite set of ground actions built from A, I ⊆ A
represents the initial state, and G ⊆ A represents the goal of the problem. The
application of an action a to a state s is possible if and only if pre(a) ⊆ s and the
resulting state is s′ = (s\del(a))∪add(a). A solution plan is a sequence of actions
〈a1, . . . , an〉 such that for s0 = I and for all i ∈ {1, . . . , n}, the intermediate states
si = (si−1 \ del(ai)) ∪ add(ai) are such that pre(ai) ⊆ si−1 and G ⊆ sn. S(Π)
denotes the set of all solution plans of the planning problem Π.

S. Vernhes et al. / The Landmark-Based Meta Best-First Search Algorithm for Classical Planning 337

We denote ◦ the concatenation of two plan, i.e. 〈a1, . . . , ai〉 ◦ 〈aj , . . . , ak〉 =
〈a1, . . . , ai, aj , . . . , ak〉.

1.2. Landmarks

All landmark definitions state that landmarks are facts that must be true at
some point during the execution of any solution plan [3,2]. In this section, we
will summarize some types of landmarks, some techniques for finding ordered
landmarks and some approaches to exploit them [11].

Definition 1 (Landmark [2]). Given a planning problem Π = 〈A,O, I,G〉, an atom
l is a landmark for Π if (∀P ∈ S(Π))(∃a ∈ P) l ∈ add(a)

Definition 2 (Causal landmark [12]). Given a planning problem Π = 〈A,O, I,G〉,
an atom l is a causal landmark for Π if either l ∈ G or (∀P ∈ S(Π))(∃a ∈ P) l ∈
pre(a).

Definition 1 and 2 have some subtle differences. The causal landmark defini-
tion gives landmarks that are only useful to achieve the goal, whereas the defini-
tion 1 gives landmarks which are true at some point in all solution plans even if
they are not useful to achieve the goal. For example, in a simple problem with an
empty initial state I = ∅, a problem goal G = {α} and only one action with no
precondition and two produced atom α and β, then both α and β are landmarks
according to definition 1, while only α is a causal landmark. In other words, from
a goal point of view, definition 1 can produce irrelevant landmarks.

1.2.1. Landmark Graph

Definition 3 (Precedence relation ≤L). A precedence relation ≤L can be defined
on a set of landmarks L. It means that (∀(l, l′) ∈ L2) if l ≤L l′ then l should be
obtained earlier than l′ in every solution plan.

Definition 4 (Landmark graph Γ). Given a set of landmarks L and a precedence
relation ≤L, let us define Γ = (V, E), the corresponding landmark directed graph,
where V = L is the set of vertices and E = {(l, l′) ∈ L2 | l ≤L l′} the set of edges.

We denote PaΓ(l) the set of parents of l in the graph Γ = (V, E), i.e. PaΓ(l) =
{l′ ∈ V|(l′, l) ∈ E}. We also denote PΓ(l) or P(l) when non-ambiguous the set of
landmarks in the transitive closure of PaΓ(l), that is the set of parents of l and
the set of parents of these parents and so on.

An example of a landmark graph is given in figure 1 (vertices with grey
background are atoms in the goal G).

We now introduce the following (non-standard) definition that we will heavily
rely on for our contribution. First, we denote root landmarks of the landmark
graph Γ = (V, E) as all vertices in the graph Γ with no parents:

Definition 5 (Root landmark set). roots(Γ) = {l ∈ V | PaΓ(l) = ∅}

We now define the subgraph Γ \F where Γ = (V, E) is a landmark graph and
F is a set of landmarks.

S. Vernhes et al. / The Landmark-Based Meta Best-First Search Algorithm for Classical Planning338

���������	
���
�

��
���
�
�������	
���
����

����

����
������
�

�����
���������������	
���
� ��
���
�
�������	

�������

���������	
���
� ���������	

����

���������
��
� ���������
����

Figure 1. An example of a landmark graph (problem 1 in the Trucks domain of the 5th IPC)

Definition 6 (Landmark subgraph). Γ\F = (V \F, {(v, v′) ∈ E | v /∈ F ∧v′ /∈ F})

Γ \ F is the subgraph of Γ build from Γ by removing vertices associated to
landmarks in F and corresponding edges.

1.2.2. Landmark Graph Generation

All methods proposed to produce such landmark graphs for landmarks [2] and
causal landmarks [3] are based on a Relaxed Planning Graph (RPG) of Π.
Let us define Π+, the relaxed problem of Π, which is obtained by removing the
delete effects of each action of Π. The RPG is the planning graph [13] of Π+ until
the goal is achieved or until a fixed point is reached (no more atoms are added).
More specifically, the RPG is generated layer by layer. First, an atom layer λ1

which is the set of all initial atoms is computed. From the first layer, an action
layer λ2, with all actions a where pre(a) ⊆ λ1 is generated. Then, another atom
layer is computed: λ3 = λ1 ∪

⋃

a∈λ2
add(a), and so on by interleaving action and

atom layers until the goal or a fixed point is reached.
By using a forward propagation technique in a pre-computed RPG [3], we can

compute a sound and complete causal landmark graph. Let ∆λi
(f) (respectively

∆λi
(a)) be a set of atoms for each atom f (respectively action a) of the layer

λi called label of atom f at layer λi (which will contain the causal landmarks
for the current atom). For the first layer λ1, the label corresponds to its atoms:
(∀f ∈ λ1) ∆λ1

(f) = { f }. Then, for each other layers:

{

action layer: (∀i, even)(∀a ∈ λi) ∆λi
(a) =

⋃

f∈λi−1
∆λi−1(f)

atom layer: (∀i, odd > 1)(∀f ∈ λi) ∆λi
(f) = f ∪

⋂

a∈λi−1
∆λi−1(a)

The union of all labels of the goal atoms at the last layer are the sound and
complete causal landmarks (when the RPG is computed until a fixed point). By
nature (propagation through the RPG), this method gives an acyclic landmark
graph.

Finding all landmarks from definition 1 and ordering them is harder: it has
been proven to be PSPACE-Complete [2]. Thus practical methods for finding
landmarks are incomplete and unsound but various relaxed versions of these land-
marks and various ways to order them have been discussed in [2].

S. Vernhes et al. / The Landmark-Based Meta Best-First Search Algorithm for Classical Planning 339

1.3. Related Work on Using Landmarks

Previous approaches used landmarks in two different ways. One approach is com-
puting heuristics. For example, the LAMA heuristic [4] estimates the remain-
ing number of landmarks to reach for a state s and a plan ρ: hlama(s, ρ) =
|L \ (Accepted(s, ρ) \ReqAgain(s, ρ))|, where L is the set of all the landmarks,
Accepted(s, ρ) is the set of landmarks already reached at state s through the plan
ρ, and ReqAgain(s, ρ) is the set of required again landmarks (already accepted
landmarks, but required again to reach another landmark).

Another approach is to split a planning problem into subproblems. Disjunc-
tive Search Control (DSC) [2] is a search control algorithm based on the landmark
graph. It runs a subplanner on the problem Π whose goal is the disjunction of the
leafs of the landmark graph or G. If the subplanner finds a valid plan, then the
found landmark is removed from the landmark graph and the algorithm iterates
(the reached state is used as the new initial state) until the landmark graph is
empty. Finally, the subplanner is called a last time with G as goal.

2. The Landmark-based Meta Best-First Search (LMBFS) Algorithm

Our approach is based on the DSC idea [2] which splits a general STRIPS problem
into subproblems using a landmark graph. This choice is motivated because we
think that DSC could be enhanced by using a more flexible exploitation of the
landmark graph. LMBFS performs a best-first search algorithm in the space of
landmarks ordering.

In the following, the landmark graph is generated using causal landmarks.
Thus, LMBFS relies on the acyclicity and soundness of the landmark graph.

2.1. Metanode and Associated Planning Problem

Given a planning problem Π = 〈A,O, I,G〉, a corresponding landmark set L and
a set of landmarks F , we define a metanode as the following:

Definition 7 (Metanode). A metanode is a tuple m = 〈s, h, F, l, ρ〉 where:

• s is a state of the planning problem Π;
• h is a heuristic evaluation of the node;
• F is a set of landmarks (F ⊆ L);
• l is a landmark (l ∈ L);
• ρ is a solution plan from the initial state I to the state s.

We now define the action restriction associated to a landmark subgraph:

Definition 8 (Landmark subgraph action restriction). For a problem Π and a
metanode m = 〈s, h, F, l, ρ〉, we define opsΓ(l, F) = {a ∈ O | l ∈ add(a)∨add(a)∩
roots(Γ \ F) = ∅}.

In other words, opsΓ(l, F) is the set of ground actions which does not produce
any root landmark of the subgraph Γ\F except l. We can see here that F is used
as a set of forbidden landmarks.

Finally, a metanode m defines a planning (sub-)problem in the following way:

S. Vernhes et al. / The Landmark-Based Meta Best-First Search Algorithm for Classical Planning340

Definition 9 (Metanode-associated planning problem). The planning problem as-
sociated to a metanode m = 〈s, h, F, l, ρ〉 is Π(m) = 〈A, opsΓ(l, F), s, l〉

We consider the planning problem where s is the initial state, A is the set of
ground atoms of the initial problem Π, l is the goal. The set of ground actions
ops(l, F) is a subset of O computed using the landmark graph, used to forbid some
actions. The restriction of the possible actions of the subproblem is motivated
by the fact that for a given metanode, we want to be able to force the search to
achieve a given landmark l and not any other one. The generation of subproblems
and particularly action restriction is delegated to the generation of metanodes
itself.

2.2. Expansion of Metanodes

There are several ways to generate sons of a metanode. Let us recall that a
metanode m = 〈s, h, F, l, ρ〉 defines a problem starting from s and focusing on
achievement of landmark l by forbidding achievement of any landmark in F .

2.2.1. First Approach

The first version tries to follow the landmark graph Γ as close as possible. The
idea is when the goal landmark of the metanode can be reached, to generate sons
that will try to reach one of the remaining root landmarks in the landmark graph
Γ.

We thus define the nextLM operator as:

Definition 10 (Next landmarks metanode generation). nextLM(〈s, h, F, l, ρ〉) =
{〈s′, h′, F ∪{l}, l′, (ρ◦ρ′)〉 | ρ′ �= ⊥∧ l′ ∈ roots(Γ\ (F ∪{l}))} where, if a solution
plan from s to l exists (if not, nothing is generated):

• ρ′ the solution plan from s to l;
• s′ the state obtained by applying ρ′ to s;
• h′ is the heuristic evaluation of the new metanode, discussed in section 2.4.

In other words, in a metanode m, we try to reach the landmark l; and if there
is a plan, we generate metanodes by looking at next landmarks in the landmark
graph. The achieved landmark becomes forbidden, and the partial plan is updated
accordingly. But, even if the landmark graph Γ is sound and complete, using only
this nextLM operator for metanode generation makes the algorithm incomplete,
as shown in following counter-example.

Let us consider the example in Figure 2 where circles are atoms, squares are
actions, arrows mean consumption or production of an atom and dashed arrows
mean deletion of an atom. The initial state is {a, f, d} and the goal set is {c}.
As we can see, g and c are landmarks, and g has to be reached before c. If we
only have metanodes generated by nextLM, then the first metanode will have the
landmark g as a goal. The subplanner can give the simple plan 〈α〉 (which is valid
and optimal for this subproblem). Only one metanode will be added to the open
list for the state {f, g} and {c} as a goal, which is an impossible problem. Then,
the loop stops (no more metanode to explore).

S. Vernhes et al. / The Landmark-Based Meta Best-First Search Algorithm for Classical Planning 341

�����

� � �

	

 � �

� � �

Figure 2. Planning Graph of "open metanode" problem

2.2.2. Cut-parents Metanode Generation

We then introduce other metanode generators, in order to take into account only
a subpart of the landmark graph Γ.

Definition 11 (Cut-parents metanode generation). cutParent(〈s, h, F, l, ρ〉) =
{〈s′, h′, F ∪P(l′), l′, (ρ◦ρ′)〉 | ρ′ �= ⊥∧l′ ∈ roots(Γ\(F ∪{l}))} where, if a solution
plan from s to l exists (if not, nothing is generated):

• ρ′ is the solution plan from s to l;
• s′ is the state obtained by applying ρ′ to s;
• P(l′) denotes the set of landmarks in the transitive closure of PaΓ(l

′);
• h′ is the heuristic evaluation of the new metanode, discussed in section 2.4.

A variant is the restartCutParent metanode generation, defined as :

Definition 12 (Restart cut-parents metanode generation). restartCutParent(〈s,
h, F, l, ρ〉) = {〈I, h′, F ∪ P(l′), l′, ∅〉 | l′ ∈ roots(Γ \ (F ∪ {l}))} where:

• I is the initial state of the original planning problem;
• P(l′) denotes the transitive closure of PaΓ(l

′);
• h′ is the heuristic evaluation of the new metanode, and will be discussed in

section 2.4.

The idea is that sometimes, a total order constructed on the partial order
defined by the landmark graph is too restrictive, like in the counter example, and
one may skip some landmarks and just try to achieve landmarks in the graph in
a “depth-first” way, ignoring landmarks that should be achieved before.

2.2.3. Delete Landmark Metanode Generation

Finally, we introduce the very generic landmark deletion operator, meaning that
the metanode will be generated as if the landmark simply did not exist:

Definition 13 (Delete landmark metanode generation). deleteLM(〈s, h, F, l, ρ〉) =
{〈s, h′, F ∪ {l}, l′, ρ〉 | l′ ∈ roots(Γ \ (F ∪ l))} where h′ is the heuristic evaluation
of the new metanode.

This operator simply “skips” a landmark, and will cause the main search to
directly try to achieve a “following” landmark. One can see that applying this last

S. Vernhes et al. / The Landmark-Based Meta Best-First Search Algorithm for Classical Planning342

operator enough times on the first metanode (that has I as initial state) simply
“empties” the landmark graph, eventually giving a metanode with the original
planning problem. Another important point is that the cut-parents operator is a
shortcut for several delete landmark operators, guided by the PaΓ relation.

2.3. Algorithm

LMBFS (see Algorithm 1) is a best-first search algorithm with deferred heuristic
evaluation [14] where nodes are the previously defined metanodes. The heuristic
evaluation of the metanodes are not computed upon generation but instead they
are inserted into the open list with the heuristic evaluation of their parent.

Algorithm 1: LMBFS

input : STRIPS problem Π = 〈A,O, I,G〉, landmark graph Γ
output: solution plan

1 open ← ∅; closed ← ∅;
2 ∀l ∈ roots(Γ) : add 〈I, h, ∅, l, ∅〉 to open;
3 while open �= ∅ do
4 m ← argmin〈s,h,F,l,ρ〉∈open h;

5 open ← open \ {m};
6 if m /∈ closed then
7 closed ← closed ∪ {m};
8 ρ′ ← subplanner(Π(m));
9 if ρ′ �=⊥ then

10 s′ ← result of executing ρ′ in s;
11 if G ⊆ s′ then /* Global goal G found ? */

12 return ρ ◦ ρ′;

/* Node expansion, see section 2.2 */

13 open ← open ∪ successors(m);

14 return subplanner(Π);

First, the algorithm adds the metanodes associated to each root landmark of
Γ in the open list. Then, at each iteration of the loop, the algorithm extracts the
best metanode m from the open list, and runs a subplanner on the associated
subproblem Π(m). If the subplanner returns a valid plan, then the metanode m
is expanded by adding its successors to the open list. Next, the algorithm iterates
until the open list is empty or the global goal G has been reached. Eventually, if G
has not been reached before the end of the process, LMBFS runs the subplanner
a last time on the global problem Π = 〈A,O, I,G〉.

The set successors(m) (Algorithm 1 line 13) is the set obtained by an operator
or the union set of several operators described in section 2.2. In our current
implementation, successors(m) = nextLM(m)∪restartCutParent(m) (because we
want to use nextLM and be sure to have the completeness; and restartCutParent
was the first operator we thought about to do so).

S. Vernhes et al. / The Landmark-Based Meta Best-First Search Algorithm for Classical Planning 343

2.4. Heuristics for Metanode Selection from the Open List

One way to improve the algorithm effectiveness is to select the most promising
metanode to expand from the open list. Two simple approaches have been imple-
mented, yet many variations and new possibilities could be envisaged.

The first one, inspired by the landmark-counting heuristic of LAMA [4], uses
the landmark graph Γ and counts the remaining landmarks to be reached. The
metanode with the least number of remaining landmarks is chosen. This heuristic
is not admissible because even if the landmarks are sound, one action can achieve
more than one landmark. We will refer to this heuristic as hLleft .

Definition 14 (hLleft for metanodes). For a metanode m = 〈s, h, F, l, ρ〉 and
an associated landmark graph Γ = (V, E), the heuristic hLleft is defined by
hLleft(m) = |V \ F |.

Another approach is to compute a standard heuristic on the starting state of
the metanode. We decided to use the well-known non admissible heuristic hadd,
as it is the one employed in our actual subplanner to order states in its open list.

Definition 15 (hadd heuristic [15] for metanodes). Let us define hadd for each
possible state and for each atom:

{

(∀s ∈ 2A) hadd(s) =
∑

f∈s h
add(f)

(∀f ∈ A) hadd(f) = mina∈O{h
add(f), 1 + h(pre(a))}

For a metanode m = 〈s, h, F, l, ρ〉, the heuristic hadd is hadd(m) = hadd(s).

2.5. Subplanner Embedded in LMBFS

For subproblem resolution, we chose YAHSP [7] for several reasons.
Firstly, because a planner already using landmarks such as LAMA is (hope-

fully) not useful in our context, because LMBFS tries to navigate from landmark
to landmark by forbidding to reach landmarks which are not its current goal.
Generally, subproblems contain very few landmarks not discovered by our land-
mark generation procedure and most of the time, there are none. So a landmark-
based subplanner would work blindly in its space search. Besides, the extra land-
marks that might be found on the subproblems should be used to feed directly
the LMBFS algorithm, thus splitting even more the global problem Π.

Secondly, because the successive subproblems solved during metanode expan-
sion should, and generally are, easy to solve with very few lookaheads computed
in YAHSP. Moreover, directly embedded in the form of a C library, YAHSP does
not require any preprocessing when faced with a new subproblem extracted from
a global planning problem. It can thus generally answer very fast. It has also al-
ready been embedded with some success in another planner based on evolutionary
algorithms [16].

Thirdly, because a parallel version of YAHSP already exists [9], which uses
the hash-based distribution principle we intend to employ in future works for
parallelizing LMBFS. The evaluation of this parallelization will then be more
thorough thanks to a comparison of both approaches.

S. Vernhes et al. / The Landmark-Based Meta Best-First Search Algorithm for Classical Planning344

������

�������

������

�����

����

��

���

����

�� �	�� �
�� ���� ���� ����� ��	�� ��
�� �����

�����������������

(a) Landmark graph generation WC time

������

�����

����

��

���

����

�����

������

�� ���� ���� ���� �	�� ����� ����� ����� �����

���
����������
��

(b) WC search time

������

�����

����

��

���

����

������ ����� ���� �� ��� ����

�
�
�
�
�

��	�

�

�
�

�

�
�
�

�
��

��

��

��

�
�

� �
�
� �
�� �� ��
 ��

�
�
�
�
�

��	�

��	�
���������������

(c) WC resolution time for YAHSP and
LMBFS with h

Lleft

�
�

�

�
�
�

�
��

��

��

��

�
�

� �
�
� �
�� �� ��
 ��

�
�
�
�
�

��	�

�

�
�

�

�
�
�

�
��

��

��

��

�
�

� �
�
� �
�� �� ��
 ��

�
�
�
�
�

��	�

��	�
���������������

(d) WC resolution time for YAHSP and
LMBFS with h

add

Figure 3. Experimental results

3. Experimental Evaluation

We conducted a set of experiments with 1794 benchmarks from the 1st to the 7th

International Planning Competition (IPC) within a 30 minutes CPU time limit.
The experiments were all run on an Intel X5670 processor (using only one core as
it is a sequential algorithm) running at 2.93Ghz with 24GB of RAM. In the next
figures, each plot will represent an IPC problem.

On a subset of these planning tasks (from the 3rd to the 7th IPC), YAHSP, the
subplanner used by LMBFS, resolve 1026 out of 1163 problems (88.2%) within a
10 minutes CPU time limit.

3.1. Efficiency of Landmark Graph Generation

As we can see in figure 3(a), the computation time is less than one second for most
problems. It takes longer for large problems like the nontemporal STRIPS airport
problem (4th IPC) because the size of the computed RPG is high (128 layers for
the biggest problem). LMBFS is designed to be a suboptimal algorithm (i.e. it
not necessarily outputs the optimal solution but answers as fast as possible). So
as it is now, computing the landmark graph on the initial state is acceptable. But
it cannot be processed for each metanode during search (for example, to enhance
the value of a heuristic).

3.2. Efficiency of LMBFS with the hLleft Heuristic

Using the hLleft heuristic, LMBFS solves 1466 out of the 1794 problems (nearly
81.7%) under 30 minutes. Figure 3(b) shows the Wall-Clock (WC) time for all the

S. Vernhes et al. / The Landmark-Based Meta Best-First Search Algorithm for Classical Planning 345

problems (sorted out by increasing WC time). Figure 3(c) shows a comparison
of the WC time of LMBFS and the subplanner we used (YAHSP [7]) launched
on the global problem Π (below y = x, LMBFS was faster than YAHSP, and
above vice versa). As we can see, most of the problems quickly solved by YAHSP
(under 0.1s) are solved by LMBFS nearly as fast. The slow down probably comes
from the landmark graph generation which induces a non-amortized overhead for
small problems. For larger problems, we can see that LMBFS sometimes improves
the speed of YAHSP and sometimes finds a solution where YAHSP did not. But
it also does worse on a large part of the problems (as we can see on top of the
figure). Even if these results are not a real improvement compared to YAHSP
itself, we believe it is a good start. Moreover, the hLleft is a really simple and
probably not truly informative heuristic. Thus, using an appropriate one might
greatly enhance the LMBFS algorithm.

3.3. LMBFS with hadd

Using the hadd heuristic, LMBFS solves 1382 out of the 1794 problems (nearly
77%) under 30 minutes. Figure 3(d) shows a comparison of the WC time of
LMBFS and YAHSP [7]. Here the results are clearly in favor of YAHSP which
outperformed in most of the problems. The hadd heuristic is also the one used
by YAHSP during its state space search, so it is redundant to use it in our
landmark-based metasearch planner. Moreover, using a landmark-based heuristic
(eventually in combination with a standard heuristic like hadd) could be more
informative for this kind of search which is based on the landmark graph. One
more problem about using the hadd heuristic is that it gives the same heuristic
value for any son a metanode because the initial states of all sons of a metanode
are the same. One way to differentiate these metanodes would be to run hadd on
the landmark instead of on the global goal G.

4. Conclusion and Future Works

In this paper have been presented several contributions towards a new landmark-
based planning algorithm. First, we propose a sound framework for a (meta)search
based on the order of landmarks, given a landmark graph. We formalize the link
between so-called metanodes and subproblems of the original planning problem,
including restrictions on the allowed actions themselves. We give several opera-
tors that allow to explore different orders for using landmarks as subgoals, in-
cluding skipping some. We also propose a first approach for evaluating heuristic
values of such metanodes, or equivalently giving priorities to subproblems. We
put everything together in a (deferred) best-first search algorithm, leading to a
complete algorithm. Last but not least, we implemented the whole thing and give
preliminary results.

From now on, several leads will be followed.
A key point for performance is the heuristic evaluation of metanodes, linked

to the operators used for generation. For instance, nextLM-generated nodes are
always evaluated before restartCutParent-generated ones, which is not necessarily

S. Vernhes et al. / The Landmark-Based Meta Best-First Search Algorithm for Classical Planning346

good. We believe that in order to have a more informed heuristic, the landmark
subgoal has to be used for heuristic evaluation, as for now only the landmark of
the parent (more or less the starting state of the node) is used, leading to poorly
discriminating heuristic values.

Another point is the operators used. While deleteLM is very general, cut-
Parent can be seen as special case (a shortcut for a given sequence of deleteLM,
or said differently, a lookahead in the landmark graph itself), and other special
cases may be very useful.

Another next step will focus on (and indeed is a primary objective of the
algorithm design) the modification of the LMBFS algorithm to make it distributed
for execution on new parallel architectures. The objective is to integrate ideas of
the HDA*[8] algorithm into the LMBFS algorithm. The idea behind HDA* is to
distribute the nodes among the processing units based on a hash key computed
from planning states (in our case metanodes).

References

[1] M. Ghallab, D. Nau, and P. Traverso, Automated Planning, theory and practice. Morgan-
Kaufmann, 2004.

[2] J. Hoffmann, J. Porteous, and L. Sebastia, “Ordered landmarks in planning,” Journal of
Artificial Intelligence Research, vol. 22, pp. 215–278, 2004.

[3] E. Keyder, S. Richter, and M. Helmert, “Sound and complete landmarks for and/or
graphs,” in Proc. of Euro. Conf. on Artificial Intelligence (ECAI), pp. 335–340, 2010.

[4] S. Richter, M. Helmert, and M. Westphal, “Landmarks revisited,” in Proceedings of the
23rd AAAI Conference on Artificial Intelligence, pp. 975–982, 2008.

[5] M. Helmert and C. Domshlak, “Landmarks, critical paths and abstractions: What’s the
difference anyway?,” in Proc. ICAPS, 2009.

[6] V. Vidal, “A lookahead strategy for heuristic search planning,” in Proc. ICAPS, pp. 150–
159, 2004.

[7] V. Vidal, “YAHSP2: Keep it simple, stupid,” in Proc. of the 7th International Planning
Competition (IPC’11), 2011.

[8] A. Kishimoto, A. S. Fukunaga, and A. Botea, “Scalable, parallel best-first search for opti-
mal sequential planning,” in Proc. ICAPS, 2009.

[9] V. Vidal, S. Vernhes, and G. Infantes, “Parallel AI planning on the SCC,” in Proc. of the
4th Symposium of the Many-core Applications Research Community (MARC), 2011.

[10] R. Fikes and N. Nilsson, “STRIPS: A new approach to the application of theorem proving
to problem solving,” Artificial Intelligence, vol. 2, no. 3-4, pp. 189–208, 1972.

[11] J. Zhao and D. Liu, “Recent advances in landmarks research,” in Progress in Informatics
and Computing (PIC), vol. 1, pp. 238–241, 2010.

[12] L. Zhu and R. Givan, “Landmark extraction via planning graph propagation,” in ICAPS
Doctoral Consortium, pp. 156–160, 2003.

[13] A. Blum and M. Furst, “Fast planning through planning graph analysis,” Artificial intel-
ligence, vol. 90, no. 1-2, pp. 281–300, 1997.

[14] S. Richter and M. Helmert, “Preferred operators and deferred evaluation in satisficing
planning,” in Proc. ICAPS, pp. 273–280, 2009.

[15] B. Bonet and H. Geffner, “Planning as heuristic search,” Artificial Intelligence, vol. 129,
no. 1, pp. 5–33, 2001.

[16] J. Bibaï, P. Savéant, M. Schoenauer, and V. Vidal, “An evolutionary metaheuristic based
on state decomposition for domain-independent satisficing planning,” in Proc. ICAPS,
pp. 18–25, 2010.

S. Vernhes et al. / The Landmark-Based Meta Best-First Search Algorithm for Classical Planning 347

