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Coordinated Control of Multiple UAVs :

Theory and Flight Experiment

Yoko Watanabe∗∗

ONERA - The French Aerospace Laboratory, Toulouse 31055, France

This paper proposes a nonlinear control law to realize a coordinated flight of multiple
UAVs and evaluates its performance through flight experiments of small fixed-wing UAV
platforms. Assuming all-to-all communication, a decentralized coordination control system
is designed based on a virtual leader approach. The proposed control design uses a po-
tential function defined on a phase distribution of multi agents. Two advantages of this
coordination controller are; i) it can be applied to make different coordination configura-
tions, ii) it is applicable to any number of UAVs, and so it can easily treat an event of
addition/deletion of UAV units in a coordination team. The proposed coordination control
law is proven to be locally asymptotically stable by using Lyapunov indirect method, and
its large domain of attraction is observed in simulation. Furthermore, the controller is im-
plemented onboard ONERA fixed-wing UAV platforms and tested with a mission scenario
which includes four different coordination configurations.

I. Introduction

Coordinated operation of multiple unmanned aerial vehicles (UAVs) has aroused many researchers’ in-
terest in recent years, due to its great potential for increases in overall mission performance and robustness
without augmenting a capacity of each UAV unit. The followings are some examples showing advantages of
multi-UAV operation over mono-UAV one. For a surveillance mission, even though each vehicle can carry
a limited number/type of sensors, data fusion of several of them distributed over an operation site in a
desired configuration can provide further information and a wider sensing coverage. Communication relay
can be established between vehicles to extend a range of datalink connection with a ground control station.
System robustness can be improved by making redundancy so that a functional failure of one UAV among
a team does not necessarily lead a mission failure. There is also an aerodynamic benefit to reduce a power
consumption of each aircraft when flying in formation1.

Various strategies for multi-agent coordination have been investigated in robotics community since many
years. Especially, formation control of multiple robots, aircrafts, underwater vehicles or satellites has been
intensively studied2. There are two objectives in a coordination control problem. One is to make each agent
maintain a desired geometric configuration with respect to others. The other is to make an entire team
achieve a mission objective such as reference trajectory tracking. Two main approaches for such coordination
control are i) leader-follower approach and ii) virtual structure approach. In the leader-follower approach, an
agent designated as a leader takes charge of a mission objective and the other agents designated as followers
maintain a desired configuration with respect to the leader. A big advantage of using this approach lies in
its facility of implementation. As shown in Figure 1, the leader-follower coordination control architecture
does not have any feedback loop from followers to the leader (C and D blocks in the figure denote a local
controller and an agent dynamics respectively, for each agent.). This is why most of the existing work of
successful UAV formation flight adopt this approach. Bayraktar et al.3 and Dong et al.4 realized a formation
flight between two fixed-wing airplanes and between two helicopters respectively, by updating a follower’s
flight plan using a current leader’s position in real-time on ground control station. In the work of Gu et al.5,
three airplanes flew in formation by transmitting a leader’s position directly to the two followers by radio
communication. Johnson et al.6 developed a vision-based system onboard a follower aircraft to localize a

∗Research Engineer, Systems Control and Flight Dynamics Department, Yoko.Watanabe@onera.fr

1 of 25

American Institute of Aeronautics and Astronautics



Figure 1: Leader-Follower Coordination Control
Architecture

Figure 2: Virtual Structure Coordination Con-
trol Architecture

Figure 3: Virtual Leader-Follower Coordination Control Architecture

leader and achieved a two-UAV closed-loop formation flight without any communication between the UAVs.
However, this leader-follower approach has a weakness in its robustness. As followers’ motion is determined
relative to their leader’s, an error in the leader’s maneuver is fully propagated to all the followers and both
the mission and coordination objectives fail once losing the leader’s performance.

In order to overcome this robustness issue, the virtual structure approach was introduced by Tan and
Lewis7. Virtual structure (VS) is defined as a collection of agents, which maintains a desired geometric
configuration. This approach consists of the following three steps; 1) VS is aligned with the current agent
positions; 2) mission control is applied to VS to obtain a desired trajectory for each agent; and 3) each
agent tracks its own desired trajectory. The mission and coordination objectives are both managed by a
centralized VS control system with a feedback of every agents’ states, as shown in Figure 2. However, it can
be easily decentralized by duplicating the VS control system on each agent. Due to its capability to maintain
a highly precise formation, many propose a spacecraft or satellite formation control law based on the VS
approach8. For multi-UAV control application, only few work applies the VS approach. This is because of
a high computational complexity of the VS position and orientation fitting from the current agents’ states.
Although Low and Ng9 suggest using a dynamic virtual structure along a maneuver-constrained trajectory
for UAV formation control, it omits the first VS alignment step by assuming a given formation trajectory.
So to be exact, this work does not apply the original VS approach but rather the virtual leader approach.

The virtual leader (VL) approach introduced by Leonard and Fiorelli10 is a combination of the two
approaches discussed above, although it is often categorized as a family of the VS approach. Virtual leader
state is determined by all the agents’ current states, as a virtual structure in the VS approach. Then
each agent tries to maintain a desired geometric configuration relative to the VL, as in the leader-follower
approach. Figure 3 depicts a control architecture of the VL approach. Commonly, the VL position is taken
at a center of mass of a team of all the agents. Hence the VL determination does not require a complex
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optimization process as required in the VS alignment step. Moreover, the VL approach remains more robust
than the leader-follower approach in a sense that a failure of one agent will be only partially propagated to
the others via the VL position. Since the VL approaches overcome the drawbacks of both the leader-follower
and the VS approaches, some have proposed its application to UAV formation flight11, but not yet many
examples of actual flight result using this approach can be found.

In many literatures2,8, a behavioral approach is listed as the third approach of coordination control. This
approach derives a control strategy as a weighted average of several different task controls such as trajectory
tracking, formation keeping and obstacle avoidance12. The coordination/formation keeping task control is
essential in the behavioral approach, and it can be designed based on the two approaches mentioned above.
For this reason, we prefer to distinguish this approach from the other two.

In this paper, a coordination control law for multiple UAVs is designed based on the decentralized VL
approach. Inspired by a notable work of Leonard et al.13 and Sepulchre et al.14 on multi-agent collective
motion control, we propose a controller with which each agent achieves;

• a stable circling motion at constant radius and speed around a VL position,

• a splay or synchronized phase distribution with the other agents on the circle orbit, and

• a global mission objective.

A global stability and local asymptotic stability of the desired coordination state using the proposed controller
are theoretically proven by using Lyapunov direct and indirect methods. An interesting aspect of this
controller is that it can be applied to make different types of coordination flight by choosing different
configuration settings. For example, a splay or synchronized circling is realized by taking a fixed beacon as
a virtual leader with a non-zero circling speed. Trajectory tracking in formation can be attained by taking
a reference trajectory as a virtual leader with zero circling speed. We can also take a virtual leader in a
conventional way, at a center of mass of the team, and use this coordination controller in combination with a
VL mission controller. Another feature is that the proposed controller is applicable to any number of agents
in the team. A number of agents is used as a parameter in the controller, and there is no limitation on
it. This feature allows the coordination control system to handle easily an event of addition/deletion of an
agent to/from the team even during operation.

The coordination controller proposed in this paper is implemented onboard three of the ONERA fixed-
wing UAV platforms, shown in Figure 4, developed based on Multiplex TwinStarII R/C airplane. A mission
scenario is defined by a sequence of four different coordination phases; 1) coordinated circling; 2) synchronized
circling; 3) circling in formation; and 4) waypoint tracking in formation. As mentioned above, all of these
phases can be realized by the same coordination control algorithm. Transitions between the phases are made
autonomously by changing the configuration settings of the controller when certain conditions are satisfied.
In most of the related experimental work of UAV formation flight, a transition from non-coordinated to
coordinated flight phases is performed deliberately. It is often the case that a safety pilot manually places the
follower UAV at a desired relative position to the leader before activating an automatic formation control4,5.
Unlike those work, we have achieved a completely automatic coordination flight of multiple airplane UAVs
without any manual adjustment. The flight test results are shown as a highlight of this paper.

II. Multi-Agent Coordination Control

This section provides a coordination control design and its proof of stability. As stated in Section I,
this paper proposes a coordination controller based on the decentralized virtual leader approach. Assuming
all-to-all communication, each agent determines independently the virtual leader state and coordination
control inputs by using available information on other agents’ states. Before presenting the control design,
an (M,N)-pattern phase distribution defined in Leonard et al.13 and in Sepulchre et al.14 is introduced.
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Figure 4: The ONERA Fixed-Wing UAV Platforms

A. (M,N)-pattern phase distribution

Let θ ∈ TN be a vector of N phase (angle) states, where T = (0, 2π]. Define the m-th moment of the phase
distribution θ as follows.

pm(θ) =
1

mN

N∑

k=1

[
cosmθk

sin mθk

]
(1)

Then its potential can be defined by

Um(θ) =
N

2
‖pm‖2 =

1
2m2N

N∑

k=1

N∑

j=1

cosm(θk − θj) (2)

Theorem II.1 The potential Um reaches its unique minimum of Um = 0 when pm = 0, and its unique
maximum of Um = N/2m2 when the phase difference between any two phases is an integer multiple of
2π/m.

Proof See Theorem 5 in Sepulchre et al.14

Let 1 ≤ M ≤ N be a divisor of N . An (M, N)-pattern is a symmetric arrangement of N phases consisting
of M clusters uniformly spaced around the unit circle, each with N/M synchronized phases. Figure 5 shows
an example of the (M, N)-pattern phase distributions when N = 12. Then the (M, N)-potential function,
denoted by UM,N , is defined by

UM,N (θ) =
M∑

m=1

KmUm(θ) (3)

Figure 5: (M,N)-Pattern Phase Distributions (Case N = 12) : Size of a circle corresponds to a number of
agents (= N/M) in a synchronized phase.
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Theorem II.2 θ ∈ TN is an (M,N)-pattern if and only if it is a global minimum of the potential function
UM,N (θ) with Km > 0 for m = 1, 2, ...,M − 1 and KM < 0.

Proof See Theorem 6 in Sepulchre et al.14

Two special cases of (M,N)-pattern phase distribution are; i) synchronized state when M = 1 and ii) splay
state when M = N . In this paper, those two cases are applied to a coordination/formation control of
multi-agents.

B. Coordination Control Design with Given Virtual Leader Trajectory

Let Xk (k = 1, 2, . . . , N) and Xvl be a 2D position of the k-th agent and a virtual leader in an inertial
reference frame. Define a relative position and velocity of the k-th agent to the virtual leader by

rk = Xk −Xvl = rk

[
cos θk

sin θk

]
(4)

ṙk = Ẋk − Ẋvl = ṙk

[
cos θk

sin θk

]
+ rkθ̇k

[− sin θk

cos θk

]
(5)

where rk ≥ 0 is distance and θk ∈ T is phase. Define the following sets.

P = {k ∈ {1, 2, . . . , N} | rk = 0, ṙk = 0}
Q = {k ∈ {1, 2, . . . , N} | rk = 0, ṙk 6= 0}
R = {k ∈ {1, 2, . . . , N} | rk 6= 0}

The polar coordinate system states for each set can be determined from rk and ṙk as shown in Table 1.

Table 1: The Polar Coordinate System States

rk ṙk θk θ̇k

k ∈ P 0 0 unspecified unspecified

k ∈ Q 0 ‖ṙk‖ tan−1
(

ṙkY

ṙkX

)
unspecified

k ∈ R ‖rk‖
[

cos θk

sin θk

]T

ṙk tan−1
(

rkY

rkX

) [− sin θk

cos θk

]T
ṙk

rk

Theorem II.3 Given a virtual leader trajectory (position, velocity and acceleration). With the following
control law (6-8) for each agent, every agent’s trajectory converges to a circle orbit around the virtual leader
trajectory with a radius ro(> 0), an angular velocity ωo and a phase configuration in a critical set of UM,N (θ).

Ẍk = urk

[
cos θk

sin θk

]
+ uθk

[− sin θk

cos θk

]
+ Ẍvl (6)

where

urk =





Krr0, k ∈ P
Krr0 −Kṙ ṙk, k ∈ Q
−Kr (rk − ro)−Kṙ ṙk −Krθrk(θ̇k − ωo)2 − rkθ̇2

k, k ∈ R
(7)

uθk =





0, k ∈ P
2ṙkω0, k ∈ Q
− 1

rk

(
Kθ

∂UM,N (θ)
∂θk

+ Kθ̇(θ̇k − ωo)
)
− (1−Krθ)ṙk(θ̇k − ωo) + 2ṙkθ̇k, k ∈ R

(8)

with positive gains, and θk for k ∈ P is chosen so that ∂UM,N (θ)/∂θk = 0. Furthermore, the splay and
synchronized states are locally asymptotically stable when M = N and M = 1, respectively.
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Proof With the controller (6-8), the relative distance dynamics of the k-th agent become

r̈k =





Krr0, k ∈ P
Krr0 −Kṙ ṙk, k ∈ Q
−Kr (rk − ro)−Kṙ ṙk −Krθrk(θ̇k − ωo)2, k ∈ R

The relative phase dynamics are not specified for k ∈ P, θ̇k = ω0 for k ∈ Q, and

θ̈k = − 1
r2
k

(
Kθ

∂UM,N (θ)
∂θk

+ Kθ̇(θ̇k − ωo)
)
− (1−Krθ)

ṙk

rk
(θ̇k − ωo)

for k ∈ R. Define the system state by

x =




r
ṙ
θ
θ̇




where r = [ r1 · · · rN ]T and θ = [ θ1 · · · θN ]T , and its domain by D = (R+N × RN × TN × RN ). The
dynamic system of the state x has the following limit cycle.

{
rk = r0, ṙk = 0, θ̇k = ω0 ∀ k ∈ {1, 2, ..., N}
θ of an (M,N)-pattern phase distribution

(9)

Define a potential function as below.

V M,N (x) =
1

2Kθ

N∑

k=1

{
Kr (rk − ro)

2 + ṙ2
k + r2

k(θ̇k − ωo)2
}

+ UM,N (θ) (10)

where UM,N (θ) defined in (3). This function is lower-bounded by KMN/2M2, which is attained uniquely
at the limit cycle (9). A time-derivative of this potential function V M,N (x) is derived as follows.

V̇ M,N (x) =
N∑

k=1

θ̇k
∂UM,N (θ)

∂θk
+

Kr

Kθ

N∑

k=1

(rk − ro) ṙk +
1

Kθ

N∑

k=1

(
ṙk(r̈k + rk(θ̇k − ωo)2) + r2

k(θ̇k − ωo)θ̈k

)

= −Kṙ

Kθ

∑

k/∈P
ṙ2
k −

Kθ̇

Kθ

∑

k∈R
(θ̇k − ωo)2 + ω0

∑

k/∈P

∂UM,N (θ)
∂θk

+
∑

k∈P
θ̇k

∂UM,N (θ)
∂θk

The last two terms vanish as

∂UM,N (θ)
∂θk

= 0 for ∀ k ∈ P,
∑

k/∈P

∂UM,N (θ)
∂θk

=
N∑

k=1

∂UM,N (θ)
∂θk

= 0

Hence, we have

V̇ M,N (x) = −Kṙ

Kθ

∑

k/∈P
ṙ2
k −

Kθ̇

Kθ

∑

k∈R
(θ̇k − ωo)2 ≤ 0 (11)

In result, the potential function V M,N (x) defined in (10) is a Lyapunov function and the limit cycle (9) is
stable. Let S be a set of all points in the system domain where V̇ M,N (x) = 0, i.e.,

S =
{

x ∈ D ∣∣ ṙk = 0 for ∀k, θ̇k = ω0 for ∀k /∈ P
}

(12)

A point in an invariant set in S first needs to satisfy r̈k = 0 for ∀k, which implies rk = r0 for ∀k (and hence
the sets P and Q are null). At the same time, it also needs to satisfy θ̈k = 0 for ∀k, which implies the critical
set of the (M,N)-potential function UM,N (θ). Therefore, the largest invariant set in S can be given by

M =
{

x ∈ S
∣∣ rk = r0,

∂UM,N (θ)
∂θk

= 0 for ∀k
}
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From LaSalle’s invariant set theorem15, every trajectory starting in D approaches to the invariant set M.
In other words,

rk → r0, ṙk → 0, θ̇k → ω0 for ∀ k ∈ {1, 2, ..., N}
and the phase configuration θ converges to one in the critical set of UM,N (θ) as t →∞.

Now we prove an asymptotical stability of the splay and synchronized state by using Lyapunov indirect
method. Let δx be a small disturbance from the state in the limit cycle (9)) denoted by

x∗ =




r01
0
θ∗

ω01


 where 1 =




1
...
1


 , 0 =




0
...
0


 , θ∗ =




θ∗1
...

θ∗N




Then its dynamics can be linearized as below.

δẋ = F (θ∗)δx =




O I O O
−KrI −KṙI O O

O O O I
O O −Kθ

r2
0

A(θ∗) −Kθ̇

r2
0

I


 δx (13)

where (i, j)-element of the matrix A(θ∗) in (13) is defined by

Aij(θ∗) =
∂2UM,N (θ)

∂θi∂θj

∣∣∣
θ=θ∗

= β∗ij − α∗i δij ,
i = 1, 2, . . . , N
j = 1, 2, . . . , N

where δij is the Kronecker delta and

α∗i =
1
N

M∑
m=1

Km

N∑

k=1

cos m(θ∗k − θ∗i ), β∗ij =
1
N

M∑
m=1

Km cosm(θ∗j − θ∗i )

Note that, since β∗ij = β∗ji, the matrix A(θ∗) is symmetric and so has N real eigenvalues denoted by
λAj (j = 1, 2, . . . , N). The matrix F (θ∗) has eigenvalues at

λr± =
−Kṙ ±

√
K2

ṙ − 4Kr

2
(14)

with multiplicity N associated with the relative distance dynamics, and also at

λθj± =
−Kθ̇ ±

√
K2

θ̇
− 4r2

0KθλAj

2r2
0

, j = 1, 2, . . . , N (15)

with multiplicity 1 associated with the phase dynamics. The eigenvalues λr± have a strictly negative real
part for any Kr > 0 and Kṙ > 0. Recall that λAj is real. A real part of λθj− is strictly negative for any
Kθ > 0 and Kθ̇ > 0. A real part of λθj+ is strictly positive for λAj < 0, zero for λAj = 0 and strictly
negative for λAj > 0. Consider the cases of θ∗ being the splay and the synchronized state.

i) Splay state (M = N) : Without loss of generality, the splay phase distribution can be represented
as θ∗k = 2πk/N for k = 1, 2, . . . , N . With this θ∗, the matrix A(θ∗) becomes a cyclic matrix given by

A(θ∗) =




c0 c1 · · · cN−2 cN−1

cN−1 c0 c1 cN−2

... cN−1 c0
. . .

...

c2
. . . . . . c1

c1 c2 · · · cN−1 c0




where

c0 =
1
N

N∑
m=1

Km −KN , ci =
1
N

N∑
m=1

Km cos mi
2π

N
, i = 1, 2, . . . , N − 1
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This cyclic matrix has the following eigenvalues and eigenvectors16.

λAj =
N−1∑

k=0

ckeijk 2π
N (16)

vAj = [ 1 eij 2π
N ei2j 2π

N . . . ei(N−1)j 2π
N ]T (17)

for j = 1, 2, . . . , N . By substituting ck into (16), λAj is expanded as follows.

λAj = c0 +
1
N

N−1∑

k=1

N∑
m=1

Km cosmk
2π

N
cos jk

2π

N

= c0 +
1

2N

N−1∑

k=1

N∑
m=1

Km cos (m + j)k
2π

N
+

1
2N

N−1∑

k=1

N∑
m=1

Km cos (m− j)k
2π

N

= c0 +
1

2N

N∑

l=1

(K̄l + K̃l)

(
N∑

k=1

cos lk
2π

N
− 1

)

where

K̄l =
{

N + l − j, 1 ≤ l ≤ j
l − j, j + 1 ≤ l ≤ N

, K̃l =
{−l + j, 1 ≤ l ≤ j − 1

N − l + j, j ≤ l ≤ N

As we have
N∑

k=1

cos lk
2π

N
=

{
0, 1 ≤ l ≤ N − 1
N, l = N

the eigenvalues λAj becomes

λAj =
{

1
2 (Kj + KN−j − 2KN ) > 0, j = 1, . . . , N − 1
0, j = N

(18)

ii) Synchronized state (M = 1) : For the synchronized phase distribution, θ∗i = θ∗j for ∀i 6= j. Hence,
the matrix A(θ∗) becomes

A(θ∗) = K1

(
1
N

11T − I

)

By solving the characteristic equation, an eigenvalue at 0 with an eigenvector vA = 1, and (N − 1)
eigenvalues at −K1 > 0 with eigenvectors vA satisfying 1T vA = 0 are obtained.

From the discussion above, in the both cases of the splay and synchronized states, the matrix A(θ∗) has one
zero eigenvalue and the other (N − 1) eigenvalues strictly positive. Also in the both cases, the eigenvector
associated with the zero eigenvalue is vA = 1. This corresponds to a steady rotation within the same limit
cycle (9). All the other positive eigenvalues of A(θ∗) lead the eigenvalues λθj± in (15) to have a negative
real part. From the Lyapunov indirect method, the limit cycle (9) of the splay and synchronized states is
locally asymptotically stable when using the proposed controller (6-8) with M = N and M = 1 respectively.

C. Coordination Control Design with Virtual Leader at Center of Mass

In Section II.B, a coordination controller is designed with a virtual leader trajectory determined indepen-
dently from the agents’ motion. However, in formation control problem, it is common to take a virtual leader
at a center of mass of the team of agents. In this case, the VL position and velocity are given by

Xvl =
1
N

N∑

j=1

Xj , Ẋvl =
1
N

N∑

j=1

Ẋj (19)

This section modifies the coordination controller in Theorem II.3 by replacing a VL acceleration Ẍvl by its
desired one, and analysis stability of the limit cycle (9) with the modified controller.
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Theorem II.4 Define virtual leader position and velocity by (19), and suppose a controller Ẍvl = ud gives
a desired VL motion. With the control law (20) for each agent, a circle orbit around the VL with a radius
ro, an angular velocity ωo and a phase configuration in a critical set of UM,N (θ) is stable. Furthermore, the
splay state is locally asymptotically stable when M = N .

Ẍk = urk

[
cos θk

sin θk

]
+ uθk

[− sin θk

cos θk

]
+ ud (20)

where urk and uθk given in (7-8).

Proof Consider a domain D′ = {x ∈ D | rk > 0 ∀ k}. In this domain, with the controller (20), the relative
distance and phase dynamics of the k-th agent become

r̈k = −Kr (rk − ro)−Kṙ ṙk −Krθrk(θ̇k − ωo)2 +
[

cos θk

sin θk

]T (
ud − Ẍvl

)

θ̈k = − 1
r2
k

(
Kθ

∂UM,N (θ)
∂θk

+ Kθ̇(θ̇k − ωo)
)
− (1−Krθ)

ṙk

rk
(θ̇k − ωo) +

1
rk

[− sin θk

cos θk

]T (
ud − Ẍvl

)

Since ud − Ẍvl = 0 when urk = uθk = 0 for ∀ k, this system also has a limit cycle described in (9) which
is included in the domain D′. On this limit cycle, the VL motion follows the dynamics of Ẍvl = ud. Define
a potential function as in (10), which has its unique minimum at the limit cycle (9). By using the relative
distance and phase dynamics above, its time derivative is derived as follows.

V̇ M,N (x) = −Kṙ

Kθ

N∑

k=1

ṙ2
k −

Kθ̇

Kθ

N∑

k=1

(θ̇k − ωo)2 +
1

Kθ

(
N∑

k=1

ṙk − ωo

N∑

k=1

rk

[− sin θk

cos θk

])T

(ud − Ẍvl) (21)

From the definitions (4-5) and (19), the last term in (21) vanishes. Hence,

V̇ M,N (x) = −Kṙ

Kθ

N∑

k=1

ṙ2
k −

Kθ̇

Kθ

N∑

k=1

r2
k(θ̇k − ωo)2 ≤ 0 (22)

and the limit cycle (9) is stable.
Similarly to the previous section, an asymptotical stability of the splay state (when M = N) is proven

by using Lyapunov indirect method. Let δx be a small disturbance from the state in the limit cycle (9) with
the splay phase distribution. Then its dynamics can be linearized as below.

δẋ = F̃ (θ∗)δx =




O I O O
−KrI + Cr −KṙI + Cṙ Cθ Cθ̇

O O O I
Dr Dṙ −Kθ

r2
0

A(θ∗) + Dθ −Kθ̇

r2
0

I + Dθ̇


 δx (23)

Define N ×N matrices C and S whose (i, j)-elements are

Cij =
1
N

cos
(

(j − i)
2π

N

)
, Sij =

1
N

sin
(

(j − i)
2π

N

)
,

i = 1, 2, . . . , N
j = 1, 2, . . . , N

Then, the matrices C∗ and D∗ (∗ = r, ṙ, θ, θ̇) in F̃ (θ∗) are given by

Cr = (Kr + ω2
0)C, Dr =

1
r0

(Kr + ω2
0)S

Cṙ = KṙC + 2ω0S, Dṙ =
1
r0

(KṙS − 2ω0C)

Cθ = −r0

(
Kθ

r2
0

λA1 + ω2
0

)
S, Dθ =

(
Kθ

r2
0

λA1 + ω2
0

)
C

Cθ̇ = 2r0ω0C −
Kθ̇

r0
S, Dθ̇ =

1
r0

(
2r0ω0S +

Kθ̇

r0
C
)
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where λA1 = 1
2 (K1 + KN−1− 2KN ) > 0 given in (18). Let λ be an eigenvalue of the matrix F̃ (θ∗) and v be

its corresponding eigenvector. Then, λ and v can be obtained by solving the following equations.

(λ2 + Kṙλ + Kr)vr = (λCṙ + Cr)vr + (λCθ̇ + Cθ)vθ (24)

(λ2 +
Kθ̇

r2
0

λ)vθ +
Kθ

r2
0

A(θ∗)vθ = (λDṙ + Dr)vr + (λDθ̇ + Dθ)vθ (25)

where v = [ vT
r λvT

r vT
θ λvT

θ ]T . When N = M = 2, we have

C =
1
2

[
1 −1
−1 1

]
, S = O, A(θ∗) = λA1C

By solving the equations (24, 25) with those matrices, the eigenvalues of the matrix F̃ (θ∗) are obtained as
λ = 0, −Kθ̇/r2

0, λr± with multiplicity 1, and λ = ±iω0 with multiplicity 2. When N = M > 2, the matrices
C and S have the following characteristics;

CS = SC =
1
2
S, C2 = −S2 =

1
2
C (26)

which leads the relationship D∗ = 2SC∗/r0. By using this relationship in the equations (24, 25), the
eigenvalues are derived by λ = 0, −Kθ̇/r2

0, λθj± for j = 2, 3, . . . , N − 2 with multiplicity 1, λ = λr± with
multiplicity N − 2, and λ = ±iω0, λrθ± with multiplicity 2, where

λrθ± =
−(Kṙ + Kθ̇

r2
0

)±
√

(Kṙ + Kθ̇

r2
0

)2 − 8(Kr + Kθ

r2
0

λA1)

4
(27)

In any case, all the eigenvalues of the matrix F̃ (θ∗) have a strictly negative real part except λ = 0 and
λ = ±iω0. While the zero eigenvalue corresponds to a steady rotation within the same limit cycle, the
eigenvalues λ = ±iω0 correspond to a translational shift of the limit cycle which was not appeared in the
previous case because the VL motion was given independently from the state x. From Lyapunov indirect
method, the limit cycle (9) of the splay state is proven to be locally asymptotically stable with the proposed
controller (20) with M = N .

D. Phase Constraint

In the previous two subsections, we have seen that the controllers (6, 20) stabilize a team of multi-agents
on a circle orbit around a VL position with a radius r0 and an angular velocity ω0, and that the splay and
synchronized phase distributions are asymptotically stable. Whereas a relative phase configuration among
all the agents is controlled to be a desired one with those controllers, an absolute phase trajectory cannot
be specified. For example, in a case of ω0 = 0 and M = N , the agents will be equally distributed on a
circle orbit around a virtual leader, but an orientation of the configuration is arbitrary. In this subsection,
we impose a phase constraint on one of the agents in the team so that its phase trajectory tracks a given
reference.

First, consider the case in which the virtual leader motion is known.

Corollary II.5 Let θd be a phase reference where θ̇d = ω0. The following controller (28) stabilizes the limit
cycle (9), with a phase trajectory of the j-th agent converging to θd.

Ẍk = urk

[
cos θk

sin θk

]
+

(
uθk −

δjk

rj
Kθd

sin (θj − θd)
) [− sin θk

cos θk

]
+ Ẍvl (28)

where urk and uθk are given by (7, 8). Furthermore, the splay state is locally asymptotically stable when
M = N .

Proof Define a new potential function by

WM,N (x) = V M,N (x) +
Kθd

Kθ
(1− cos (θj − θd)) (29)
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where V M,N (x) is given by (10). WM,N (x) is lower-bounded by KMN/2M2, which is attained uniquely at
the limit cycle (9) with θj = θd. A time derivative of WM,N (x) can be derived as follows.

ẆM,N (x) = −Kṙ

Kθ

N∑

k=1

ṙ2
k −

Kθ̇

Kθ

N∑

k=1

r2
k(θ̇k − ωo)2 ≤ 0

Therefore, WM,N (x) is a Lyapunov function and the limit cycle with θj = θd is stable.
An asymptotical stability of the splay state can be also proven. Consider a small disturbance δx from

the desired splay state with the phase constraint θj = θd. Its dynamics can be linearized as below.

δẋ = G(θ∗)δx =




O I O O
−KrI −KṙI O O

O O O I
O O −Kθ

r2
0

A(θ∗)− Kθd

r2
0

eje
T
j −Kθ̇

r2
0

I


 δx (30)

The eigenvalues of G(θ∗) associated with the relative distance dynamics remains the same as those of F (θ∗)
given in (14). Those associated with the relative phase dynamics need to satisfy

(λ2 +
Kθ̇

r2
0

λ)vθ +
Kθ

r2
0

A(θ∗)vθ +
Kθd

r2
0

eje
T
j vθ = 0 (31)

Without loss of generality, we can take j = 1 and θd = 2π/N . Suppose vθ =
∑N

k=1 αkvAk
6= 0, where vAk

given in (17). By using the fact of
∑N

k=1 vAk
/N = e1, the equation above becomes

N∑

k=1

(
(λ2 +

Kθ̇

r2
0

λ +
Kθ

r2
0

λAk
)αk +

Kθd

r2
0

ᾱ

)
vAk

= 0 (32)

where ᾱ =
∑N

k=1 αk/N and λAk
given by (18). This is satisfied when αk for k = 1, 2, . . . , N is chosen so that

every coefficients in (32) are zero. When ᾱ = 0, the following condition is required for any k = 1, 2, . . . , N .

αk = 0 or λ2 +
Kθ̇

r2
0

λ +
Kθ

r2
0

λAk
= 0

This happens only when αN−i = −αi 6= 0 (i < N/2) and all the other αk’s are zero. Such α’s give eigenvalues
of λ = λθi± with multiplicity 1. Now suppose ᾱ 6= 0. By taking αN = 1 without loss of generality, we have

λ2 +
Kθ̇

r2
0

λ +
Kθd

r2
0

ᾱ = 0 (33)

αk =
Kθd

ᾱ

Kθd
ᾱ−KθλAk

=
ᾱ

ᾱ−K ′
θλAk

, k = 1, 2, . . . , N − 1 (34)

where K ′
θ = Kθ/Kθd

> 0. By substituting this αk in the definition of ᾱ and by multiplying it by
∏N−1

i=1 (ᾱ−
K ′

θλAi), ᾱ can be obtained by solving the following Nth-order polynomial equation.

(Nᾱ− 1)

(
N−1∏

i=1

(ᾱ−K ′
θλAi)

)
− ᾱ

N−1∑

k=1




N−1∏

i=1,i 6=k

(ᾱ−K ′
θλAi)


 = N

(
ᾱN +

N−1∑

i=0

(−1)N−ifiᾱ
i

)
= 0 (35)

where the coefficients fi > 0 for all i = 0, 1, . . . , N − 1 since K ′
θ > 0 and λAk

> 0 for k = 1, 2, . . . , N − 1.
The equation (35) has (N + 1)/2 solutions for odd N and (N/2 + 1) solutions for even N since αk = αN−k,
and they are all strictly positive. The eigenvalues of G(θ∗) associated with each solution ᾱ can be obtained
from (33), and they have a strictly negative real part since ᾱ > 0. Therefore, the splay state with θj = θd

is locally asymptotically stable. It should be noted that the zero eigenvalue disappeared because the phase
constraint will be violated after the steady rotation.

Now we consider the case in which the VL position is given by a center of mass of the team of multi-agents.
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Corollary II.6 VL position and velocity are defined by (19). The following controller (36) stabilizes the
limit cycle (9) with θj = θd and the VL motion following Ẍd = ud.

Ẍk = urk

[
cos θk

sin θk

]
+

(
uθk −

δjk

rj
Kθd

sin (θj − θd)
) [− sin θk

cos θk

]
+ ud (36)

where urk and uθk are given by (7, 8). Furthermore, the splay state is locally asymptotically stable when
M = N .

Proof Consider a domain D′ = {x ∈ D | rk > 0 ∀ k} which includes the limit cycle. Define a potential
function as in (29). Similarly to the proofs of Theorem II.4 and Corollary II.5, WM,N (x) is a Lyapunov
function and the limit cycle with θj = θd is stable.

Consider the case M = N . Dynamics of the small disturbance from the desired splay state with the
phase constraint θj = θd can be linearized as follows.

δẋ = Ḡ(θ∗)δx =




O I O O
−KrI + Cr −KṙI + Cṙ C̄θ Cθ̇

O O O I
Dr Dṙ −Kθ

r2
0

A(θ∗)− Kθd

r2
0

eje
T
j + D̄θ −Kθ̇

r2
0

I + Dθ̇


 δx (37)

where C∗ and D∗ (∗ = r, ṙ, θ, θ̇) are defined in Section II.C, and

C̄θ = Cθ − Kθd

r0
Seje

T
j , D̄θ = Dθ +

Kθd

r2
0

Ceje
T
j

Without loss of generality, we take j = 1 and θd = 2π/N .
When N = M = 2, the matrix Ḡ(θ∗) has eigenvalues of λ = λr±,

λθd± =
−Kθ̇ ±

√
K2

θ̇
− 2r2

0Kθd

2r2
0

with multiplicity 1 and λ = ±iω0 with multiplicity 2. When N = M > 2, recall that we have relationships
of (26) and D∗ = 2SC∗/r0 which holds for the new matrices C̄θ and D̄θ. The eigenvalues associated purely
with the relative distance dynamics (i.e., vθ = 0) remain the same as those of the matrix F̄ (θ∗), which is
λ = λr± with multiplicity N − 2. The eigenvalues associated purely with the relative phase dynamics need
to satisfy the equation (31) as well as (λCθ̇ + C̄θ)vθ = 0. The two equations give the eigenvalues of λθi±
defined in (15) when vθ = vAi − vAN−i

for 2 ≤ i < N/2. Now consider the eigenvalues associated with
the coupled distance-phase dynamics. From the properties of C and S given in (26), we obtain the equation
Cvr = vr/2 which leads to vr = α1vA1 + αN−1vAN−1 6= 0. Suppose vθ =

∑N
k=1 βkvAk

, then λ, α1, αN−1

and βk’s can be derived by solving
(
(λ2 − ω2

0)− i2λω0

)
(α1 − ir0β1)vA1 +

(
(λ2 − ω2

0) + i2λω0

)
(αN−1 + ir0βN−1)vAN−1 = 0 (38)

N∑

k=1

(
(λ2 +

Kθ̇

r2
0

λ +
Kθ

r2
0

λAk
)βk +

Kθd

r2
0

β̄
)
vAk

=
i

r0
(λ2 + Kṙλ + Kr)(α1vA1 − αN−1vAN−1) (39)

where β̄ =
∑N

k=1 βk/N . (38) is satisfied either i) when λ = iω0 and βN−1 = iαN−1/r0, ii) when λ = −iω0

and β1 = −iα1/r0, or iii) when β1 = −iα1/r0 and βN−1 = iαN−1/r0. (39) is satisfied if γk = 0 for ∀ k,
where

γk = (λ2 +
Kθ̇

r2
0

λ +
Kθ

r2
0

λAk
)βk +

Kθd

r2
0

β̄ +




− i

r0
(λ2 + Kṙλ + Kr)α1, k = 1

+ i
r0

(λ2 + Kṙλ + Kr)αN−1, k = N − 1
0, otherwise

When β̄ = 0, the two equations are satisfied only in the case of iii) with β1 = −βN−1 and βk = 0 for
k = 2, 3, . . . , N − 2, N . In this case, the eigenvalues are given by λ = λrθ± in (27). Now suppose β̄ 6= 0. In
the case of i),

Kθd

r2
0

β̄ =
i

r0

(
2ω2

0 −Kr − Kθ

r2
0

λA1 − iω0(Kṙ +
Kθ̇

r2
0

)
)

αN−1
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By substituting this into the equation γk = 0 for k = 1, 2, . . . , N − 2, N and using the definition of β̄, all the
coefficients βk’s and α1 are solved in function of αN−1. In the similar way, an eigenvector for λ = −iω0 can
be derived in the case of ii). In the case of iii), we have α1 = −αN−1 and

Kθd

r2
0

β̄ =
i

r0

(
(λ2 + Kṙλ + Kr) + (λ2 +

Kθ̇

r2
0

λ +
Kθ

r2
0

λA1)
)

α1

By substituting this into the equation γk = 0, βk can be written by

βk = − i

r0

(λ2 + Kṙλ + Kr) + (λ2 + Kθ̇

r2
0

λ + Kθ

r2
0

λA1)

λ2 + Kθ̇

r2
0

λ + Kθ

r2
0

λAk

α1, k = 2, 3, . . . , N − 2, N

From the definition of β̄, λ is obtained by solving

(
(λ2 + Kṙλ + Kr) + (λ2 +

Kθ̇

r2
0

λ +
Kθ

r2
0

λA1)
)(

N
r2
0

Kθd

+
N−2,N∑

k=2

1

λ2 + Kθ̇

r2
0

λ + Kθ

r2
0

λAk

)
+ 2 = 0 (40)

Since λAk
= λAN−k

> 0 and all the gains are strictly positive, this equation becomes a stable (or Hurwitz)
polynomial of order 2(N/2+2) for even N and of order 2((N−1)/2+2) for odd N . That is, all the solutions
λ have a strictly negative real part. In summary, when N = M > 2, the matrix Ḡ(θ∗) has eigenvalues of
λθi± for i = 2, . . . , N/2− 1 or (N − 1)/2, λrθ±, ±iω0 and the (N + 4) or (N + 3) solutions of the equation
(40) with multiplicity 1, and of λr± with multiplicity (N − 2).

Again in any case, all the eigenvalues of Ḡ(θ∗) have a negative real part except λ = ±iω0. From Lyapunov
indirect method, the splay state with θj = θd is locally asymptotically stable.

III. Numerical Simulation

This section demonstrates numerical simulation results which validate the theorems and the corollaries
introduced in Section II. Four examples with different coordination configurations are presented.

A. Example 1 : Splay circling around a fixed beacon

In the first example, a virtual leader is given by a fixed beacon at a known position Xvl = 0 (m). By using
the control law (6), five agents are controlled to keep a splay state (M = N) around this fixed beacon with
circling radius r0 = 50 (m) and angular velocity ω0 = 0.3 (rad/sec). The initial position and velocity for each
agent are given by normally distributed random values, with standard deviations of 50 (m) and 1 (m/sec)
respectively. Control gains used in this simulation are;

Kr = 1, Kṙ = 3
√

Kr, Kθ =
r2
0

2
Kr, Kθ̇ = 1.4r2

0

√
Kr, Krθ = 1,

and Km = 1 for m = 1, 2, . . . , N −1 and KN = −1. With those gains, the relative distance dynamics around
the limit cycle have a natural frequency of 1 and a damping ratio 1.5. The relative phase dynamics have
a natural frequency 1 and a damping ratio 0.7. Figure 6(a) shows trajectory profile for each agent. It is
seen that their states converge to the desired splay state at t = 13 (sec). Figure 6(b) is a time history of
the potential functions UM,N (θ) and V M,N (x) defined in (3) and (10). The difference V M,N (x)−UM,N (θ)
represents a sum of the distance and angular velocity tracking errors. The Lyapunov function V M,N (x)
converges to its minimum value −KN/2N , which is attained uniquely at the desired splay state.

B. Example 2 : Synchronized circling around a fixed beacon with phase constraint

The second example uses the same settings as the first example, except that the desired phase configuration
is a synchronized circling (M = 1). In addition, the phase constraint θd(t) = ω0t (rad) is imposed on the
agent 1. Each agent motion is controlled by the controller (28) with the control gain Kθd

= Kθ. Figure
7 shows trajectory profiles, relative distance and phase of each agent to the fixed beacon position, and the
potential functions UM,N (θ), V M,N (x) and WM,N (x) defined in (29). The difference WM,N (x)− V M,N (x)
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corresponds to the phase reference tracking error of the agent 1. From the phase plot, one can see that a
phase trajectory of the agent 1 (in blue) converges to its reference (in yellow). At the same time, the phases
of the other agents get to be synchronized and also converge to the reference. This convergence can be
observed clearly also in the plot of WM,N (x) which goes to its minimum.

C. Example 3 - Splay state around a moving beacon with phase constraint

The third example also uses the controller (28) with the phase constraint θd = 0 (rad) on the agent 1. The
desired state in this example is a splay state (M = N) around a moving beacon with a radius r0 = 50 (m)
and zero angular velocity ω0 = 0 (rad/sec). Let Xref , Ẋref and Ẍref be a reference position, velocity and
acceleration for the beacon. Then, motion of the beacon is controlled to track this reference, independently
from the agents’ motion, by using the following PD controller.

Ẍvl = −Kp(Xvl −Xref )−Kd(Ẋvl − Ẋref ) + Ẍref , Kp = 1, Kd = 3 (41)

In the simulation, the circle reference trajectory

Xref (t) = 100
[

cos 0.4t
sin 0.4t

]
(42)

is chosen. The initial position and velocity of the beacon are all zero. Figure 8(a) illustrates trajectories
of the five agents and the moving beacon. Figure 8(b) shows profiles of distance and phase of each agent
relative to the beacon. The agents’ states are converging to the desired phase-constrained splay state.

D. Example 4 : Splay state around a center of mass with phase constraint

In the three examples presented above, the VL motion was completely known, and so are the relative distance
and phase dynamics of each agent. In this fourth example, the VL position and velocity are given by a center
of mass of the agents, i.e., by (19). Here we take over the same simulation settings as used in Example 3. A
desired VL acceleration ud is determined in the same manner as in (41) with the circle reference trajectory
(42). It should be noted that the real VL acceleration Ẍvl does not necessary coincide with ud. Each agent
motion is controlled by the controller (36) with the phase constraint θ1 = θd = 0 (rad). The simulation
results are shown in Figure 9. Every agents’ states converge to the phase-constrained splay state, and in
addition, the motion of their center of mass (=virtual leader) follows its desired one. Figure 9(d) compares
the VL desired and real accelerations (ud in red dashed vs. Ẍvl in blue solid), and shows that the difference
between the two vanishes.
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Figure 6: Example 1 - Five agents circling around a fixed beacon with splay state
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Figure 7: Example 2 - Five agents circling around a fixed beacon with synchronized state
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Figure 8: Example 3 - Five agents in phase-constrained splay state around a moving beacon
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Figure 9: Example 4 - Five agents in phase-constrained splay state around their center of mass
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E. Conclusion of Numerical Simulation

The proposed coordination controller has been tested through simulations with different configurations;

• different numbers of agents (N)

• the splay, synchronized and other (M, N)-pattern phase distributions

• with zero and non-zero angular velocities

• with or without phase constraint

• the VL position at a fixed/moving beacon and at a center of mass of the agents

When M takes different values from 1 and N , we have seen several cases that the agent states converge to a
phase distribution in the critical set of UM,N (θ) other than the (M,N)-pattern. Figure 10 shows such a case.
In this simulation, the controller (6) is applied to six agents with M = 2. The desired phase distribution
for this case is (2, 6)-pattern where two groups of three agents have opposite phases. However, as seen in
Figure 10, the agents end up with a group of two and a group of four having opposite phases. The potential
functions V M,N (x) and UM,N (θ) are not reaching at their minimum value. Throughout simulations, such a
convergence failure has not been observed for cases of M = 1 and M = N . In conclusion, even though the
almost global asymptotical stability of the limit cycle with the splay or synchronized state is not theoretically
proven, its very large domain of attraction is empirically shown. Only problem identified in simulation is
that uθk becomes very large when having a large r0 and nearly-zero rk. This problem can be avoided by
taking a small marge δr > 0 for the classifications to the sets P and Q.
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Figure 10: Counter-example of convergence : Six agents circling around a fixed beacon, not converging to
(2, 6)-pattern phase distribution
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IV. Coordinated Flight of Multiple UAVs

In this section, the coordination controllers designed in Section II and validated in Section III is applied
to a mission of coordinated flight of multiple fixed-wing UAVs. The section first defines the entire mission
scenario, then describes how to realize the onboard coordination control system architecture.

A. Mission Scenario

A global objective of the mission defined in this work is to make multiple UAVs track a flight plan, given by
a sequence of waypoints (WP1 → WP2 → · · ·), in formation. The mission scenario consists of the following
five phases.

• Phase 0 - Take-off : Each UAV is launched at any timing and follows the automatic take-off procedure
until it reaches at a given fixed point (WP0). During this take-off phase, an UAV operates without
any coordination with other UAVs.

• Phase 1 - Coordinated circling : Once a UAV reaches within a certain distance to the point WP0,
it starts to make a circling motion around a fixed point (defined by WP0) with a constant speed and
radius while making a splay state configuration with other UAVs who are already in Phase 1 (if any).
It is achieved by applying the control law (6) with M = N where N is a number of UAVs in Phase 1
and is re-counted at each communication update. The VL position is given by the fixed circle center
position. This phase is considered as a waiting phase for all UAVs in the team to be launched in the
air and to be ready for the formation flight.

• Phase 2 - Synchronized circling : After all UAVs in the team are in Phase 1, either an operator
or a decision-making algorithm can trigger a transition from the waiting phase to the formation phase.
For a purpose of bringing all the UAVs close each other before making a formation, each UAV is
commanded to make a synchronized state configuration on the circle orbit. The transition from Phase
1 to Phase 2 is realized simply by changing a value of M from N to 1 in the control law (6).

• Phase 3 - Circling in formation : When all the UAVs in the team assemble within a certain
distance on the circle, they start to make a formation by applying the control law (20), or (36) if one
wish to impose a phase constraint, with M = N and ω0 = 0. r0 > 0 determines a formation distance
between adjacent UAVs. In this phase, the VL position are defined by a mean of the UAV positions
as in (19). A control law for the VL motion (i.e., Ẍvl = ud) is designed independently from the
coordination control law so that it makes the same circling motion as in Phase 1 and 2.

• Phase 4 - Waypoint tracking in formation : A departing point is defined on the circle in function
of the circle position (WP0) and the first waypoint of the track (WP1). When the team of the UAVs
reaches at this departing point, it quits the circle and departs for tracking a given sequence of the
waypoints (WP1 → WP2 → · · ·) while keeping the formation. The transition from Phase 3 to 4 is
realized by switching the control law for the VL motion from circling to waypoint tracking without
any change in the coordination control law.

B. Decentralized Flight Control System Architecture

The coordination control system architecture is designed based on the one already developed onboard our
fixed-wing UAV platform for mono-use, which is illustrated in Figure 11(a). The system consists of the three
components; i) mission/waypoint management which deals with flight mode and waypoint changes, ii) guid-
ance law which calculates speed, heading and altitude commands to achieve a given flight mode/waypoint,
and iii) control law which calculates UAV actuator inputs from the guidance commands. This nominal
control system architecture is modified as shown in Figure 11(b) so that it allows coordination control with
other UAVs. Note that a navigation filter which estimates the UAV current state from available onboard
sensors and its feed-back loops to each component in the control system are omitted in those figures.

The coordination control law is incorporated in the system in a decentralized manner. That is, each
UAV receives states of every other UAVs in the team via communication, manages the coordination phase,
and calculates the VL position and the coordination control commands by its own. As our coordination
controller is designed to compute the 2D acceleration command, it is converted to the horizontal velocity
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(a) Mono-use (b) Coordination control

Figure 11: UAV Onborad Flight Control System Architecture

(speed+heading) command by integration. The altitude command is maintained constant at its desired
value. Besides the coordination control law, an anti-collision controller is added to assure UAV flight safety.
It is very important to have this component especially for Phase 2, in which the UAVs try to get together.
The anti-collision controller is designed based on an artificial potential method, and is activated only when
the UAV gets closer to another UAV than a certain safety minimum distance. The guidance commands for
coordination and for anti-collision are combined into one, and then sent to the flight controller.

C. 6 DoF Flight Simulation

A 6 DoF flight simulator has been developed by ONERA/DCSD to mainly test performances of new guidance
and control laws and flight management systems before implementing them onboard our UAV platform for
their in-flight validation. This simulator is realized as a C++ program and it includes;

• a simple flight dynamics model of a fixed-wing aircraft

• measurement models of onboard sensors (GPS, INS, barometer, etc.)

• flight safety and mission management system

• navigation filter for localization

• guidance law for available flight modes

• flight controller

• 3D OpenGL graphics and interactive user interface

In this work, the simulator is first extended to simulate multiple UAVs at the same time. Then the coordina-
tion control architecture shown in Figure 11(b) is implemented in it. The mission scenario for coordination
control is pre-defined in the program, and transitions between the phases listed in Section IV.A are managed
by a coordination phase management function. Figure 12 is a screen shot of the interface of this simulator,
on which three fixed-wing UAVs are flying in formation. The interface accepts user’s input for flight mode
changes, and a transition from Phase 1 to 2 is triggered by a user in the simulation.

Figure 13 is a cutoff animation of the 6 DoF flight simulation for the entire mission scenario with three
UAVs. It shows the transitions of the coordination phases until the mission of waypoint tracking in formation
(Phase 4) is achieved. In this simulation, a phase constraint of θj = 0 is imposed on one of the UAVs, who
locates the closest to the zero-phase position relative to the VL. Figure 14 presents the resulting altitude,
speed, and control inputs (throttle, aileron, elevator and rudder) of each UAV. The speed plot shows that
each UAV regulates a speed within its limit to coordinate with the other UAVs during Phase 1 and Phase
2. Figure 15 is a profile of the potential functions for each coordination phase. At each phase, the (M,N)-
pattern potential function UM,N (θ) (in red) tends to converge to its global minimum (in yellow), which
means that the desired phase distribution is attained. In the formation flight (Phase 3 and 4), the formation
tracking error (in green) and the reference phase tracking error (in magenta) are also converging to zero.
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Figure 12: 6 DoF Flight Simulator for Coordination Control

Phase 1 Phase 1 → Phase 2 Phase 2

Phase 2 → Phase 3 Phase 3 → Phase 4 Phase 4

Figure 13: 6DoF Simulation Results - Trajectories of the UAVs and the VL
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Figure 14: 6 DoF Simulation Results - Altitude, Speed and Control inputs
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D. UAV Platform and Onboard System

After the validation through 6 DoF flight simulation, the proposed coordination controller has been imple-
mented and tested onboard the ONERA ReSSAC MOUSSE fixed-wing UAV platforms (Figure 4). This
platform is developed based on the R/C airplane Multiplex Twinstar II. Its specifications are summarized
in Table 2.

Table 2: Specifications

Empty weight 0.8 (kg)
Take-off weight 2 (kg)
Fuselage length 1 (m)
Wingspan 1.4 (m)
Motor electric×2
Payload 0.5 (kg)
Payload power supply 10 (W)
Flight duration 40 (min)

Figure 16: Onboard Hardware

Figure 16 shows the onboard hardware system of the UAV. It is equipped with Xsens MTi inertial
measurement units and µblox LEA-6H GPS. Two ARM7 micro processors (AT91SAM7) are embedded on the
UAV; i) Processor CS (Switch Computer) takes charge of the radio command from a security pilot of the UAV,
and ii) Processor CC (Control Computer) is dedicated to automatic flight navigation, guidance and control.
The two processors are communicating each other via CAN bus datalink. The onboard hardware system
includes a XBee wireless module which is used for communications with ground control station to downlink
the flight state for data recording, and also with other UAVs to exchange the state data for coordination
control. Figure 17 illustrates the onboard system architecture of the ReSSAC MOUSSE UAV. The software
implementation on the processors CS and CC is done in C++ program. The flight avionics system (on
the processor CC) consists of functions of flight management, mission management, communication, flight
navigation, guidance and control. All of these functions run in sequence with a periodic cycle of 50 (Hz). In
this work, functions of the coordination phase management and of the coordination control are added in this
sequence. They are programmed to perform only at 10 (Hz), once in every 5 iterations of the main-loop.
The wireless communication function is also added in the sequence so that data exchange with other UAVs
performs at 8.5 (Hz), once in every 6 iterations.

The ground control station (GCS) for multi UAVs has been also developed for this work. The developed
GCS program is executed in Linux system on a laptop computer, and it communicates with all the UAVs
in operation via wireless connection at 8.5 (Hz). On its interface, trajectories of every UAVs are displayed
in a main 3D scene window, and several important states (position, velocity, attitude, flight mode, battery
level etc.) of each UAV are shown separately in other windows. All the state data received from UAVs are
recorded on the GCS. Although we are not currently using the uplink connection from the GCS to UAVs,
there is a possibility to add it to send some commands and requests directly from the GCS without passing
through radio command of the safety pilot.

E. Flight Experiment

Several flight experiments have been successfully conducted to perform the entire mission scenario defined
in Section IV.A by three of our UAVs. Here presented the results obtained from the flight test on 22nd
July, 2013. In this flight, three UAVs achieved a completely automatic flight in coordination from Phase
0 (automatic take-off) to Phase 4 (waypoint tracking in formation) except the transition from Phase 1 to
Phase 2 triggered by an operator on ground via radio command. The flight plan is given by four waypoint
positions; WP0 defines the waiting zone (Phase 1-3), and WP1, WP2 and WP3 define the formation flight
circuit (Phase 4). During the waiting and transition phases (Phase 1-2), the UAVs are controlled to make
a circling motion with a radius r0 = 60 (m) and a constant speed V0 = 55 (km/h), which gives an angular
velocity ω0 = 0.25 (rad/sec). For the formation flight phases (Phase 2-4), the formation distance between the
two UAVs is set at 30 (m), and a phase constraint θj = 0 is imposed so that the UAVs aligns in North-South
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Figure 17: Onboard System Architecture

directions. In the flight, three UAVs flew at three different altitudes, 50, 70 and 90 (m) for security reason.
The coordination between the three is made only for their horizontal 2D positions.

Figure 18 is a cut-off animation of the flight, which illustrates the transitions of the coordination phases.
In each figure, positions of the UAVs, the VL, and the waypoints are shown. First, two UAVs made a
coordinated circling, then the third one joined them on the circle (Phase 1). Triggered by an operator, the
three UAVs got close each other on the circle (Phase 2) before making a formation (Phase 3). Finally, they
left for the mission of waypoint tracking while maintaining a formation (Phase 4). Figure 19(a) is a time
profile of the distance of each UAV to the VL shown with its desired value r0. Figure 19(b) compares the
real and minimum value of the (M, N)-potential function UM,N (θ). For each phase of the coordination, the
potential function goes to its minimum. It means that the UAVs attains a desired phase distribution (splay
or synchronized states). The commanded formation distance of 30 (m) is maintained with a precision of ±10
(m). This precision can be still improved by synchronizing GPS measurements on every UAVs, by taking
into account a time delay of communication, by better regulating the control gains etc.

V. Conclusion

This paper proposed the decentralized coordination controller for multiple UAVs based on the virtual
leader approach. The controller design uses a potential function on phase distribution, which attains its
global minimum at the desired splay/synchronized state. The first part of this paper provided a stability
analysis of the proposed coordination controller and its validation through numerical simulations. Then, the
second half described the application of the controller to a fully autonomous formation flight of multiple
UAVs. As a highlight of this paper, the flight experiment results of three UAVs formation were presented.
In some flight tests, incoherent decisions between the UAVs were observed due to communication failure. In
order to overcome this consensus issue of the decentralized system, a supervision function which monitors a
coordination phase management state of every UAV should be added to the system.
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