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Abstract
It is widely accepted that turbulent scalar flux can show the countergradient behavior
almost everywhere within a premixed flame brush with the exception of a narrow zone
at the leading edge (LE) of the flame where the flux always shows the gradient behavior.
Moreover, many experts consider the existence of such a zone to be of crucial importance
in order for the flame to be able to propagate into unburned mixture. The goal of the
present work is to dispute this widely-recognized belief by studying an asymptotic case of
density variations localized to infinitely thin, wrinkled flamelets that separate unburned
and burned mixture and self-propagate at a finite speed into the former mixture. First,
simple mathematical and physical examples are discussed in order to argue that a pre-
mixed flame can propagate into unburned mixture even if averaged scalar flux does not
show the gradient behaviour at the LE. This phenomenon is associated with the straight-
forward influence of large-scale velocity oscillations (i.e. turbulent diffusion as far as a
premixed turbulent flame is concerned) on the mean rate of product creation at the LE.
Second, by considering a fully-developed, statistically stationary, planar, one-dimensional
turbulent premixed flame, the following criterion is obtained. Turbulent scalar flux shows
the countergradient behavior at the LE if turbulent burning velocity is less than the lami-
nar flame speed multiplied by the density ratio and by a factor that (i) is equal to unity if
perturbations of the local burning rate in flamelets are disregarded, but (ii) can substan-
tially depend on the Lewis number and preferential diffusion effects if such perturbations
are taken into account. Third, development of a premixed turbulent flame and straining of
the flame brush by non-uniform mean flow are argued to suppress countergradient scalar
flux at the LE.

Introduction
Since the pioneering work by Clavin and Williams [1], Moss [2], Tanaka and Yanagi [3],
and Libby and Bray [4], turbulent transport of a scalar quantity q in a premixed flame is
well known to occur not only in the direction of a decrease in the mean value q̄ of this
quantity, as happens in many non-reacting flows, but also in the opposite direction, i.e.
ρu′′q′′ ·∇q̄ > 0. Here, ρ is the density, u is the flow velocity vector, overlines and overbars
designate the Reynolds average, e.g. q̄ with q′ = q− q̄, and q̃ = ρq/ρ̄ is the Favre-averaged
value of the scalar q with q′′ = q − q̃.

The latter phenomenon, called often countergradient diffusion, is commonly associated
with a higher magnitude |ūb| of velocity conditioned on burned mixture than the magni-
tude |ūu| of velocity conditioned on unburned mixture. Indeed, because the probability
γ of finding intermediate (between unburned and burned) states of a reacting mixture is
much lower than unity in many weakly and moderately turbulent premixed flames [5, 6],
the well-known BML approach [4, 7, 8, 9] is commonly considered to be a reasonable ap-
proximation. Within its framework, (i) the combustion progress variable c is introduced



(0 ≤ c ≤ 1 with c = 0 and 1 in unburned and burned mixture, respectively) so that the
probability of finding the burned mixture is equal to the Reynolds-averaged c̄ and (ii)

ρu′′c′′ = ρ̄c̃(1− c̃)(ūb − ūu) + O(γ) (1)

i.e. the direction of the flux ρu′′c′′ is controlled by the direction of the slip velocity vector
∆u ≡ ūb − ūu. For a statistically planar one-dimensional flame that propagates from
right to left (or from left to right), ∂c̃/∂x > 0 (< 0) and the conditioned velocities ūu

and ūb are positive (negative), i.e. ρu′′c′′ · ∇c̃ > 0 if |ūb| > |ūu|. DNS data [10, 11, 12]
indicate that the scalar flux and the slip velocity vector have the same direction even if
the probability γ is not negligible.

As reviewed elsewhere [6], countergradient scalar flux (or |ūb| > |ūu|) was documented
in many premixed turbulent flames. Nevertheless, it is widely assumed that countergradi-
ent scalar flux cannot occur at the leading edge (LE) of a turbulent flame brush. Moreover,
many experts consider the existence of the region of gradient diffusion, i.e. ρu′′q′′ ·∇q̄ < 0
at c̃ → 0, to be the necessary condition in order for the flame to be able to propagate
into unburned mixture. The goal of the present work is to dispute this widely-recognized
belief.

A Key Simplification
It is worth stressing that, if the opposite is not specified, the following discussion will
address an asymptotic case of an infinitely thin flame front (flamelet) that separates
unburned and burned mixtures in a turbulent flow and self-propagates at a finite speed
SL with respect to the unburned gas. In other words, flamelet thickness δL asymptotically
vanishes. This key assumption has two important consequences.

First, it allows us to skip the molecular diffusion in the c-balance equation [13], i.e.
the contribution of the molecular diffusion to the total flux of c is beyond the scope of
the present work.

Second, if δL → 0, the BML equations are asymptotically exact, i.e. the last term
O(γ) on the Right Hand Side (RHS) of Eq. (1) asymptotically vanishes everywhere and
the direction of the flux ρu′′c′′ is solely controlled by the direction of the slip velocity.
In the case of a finite thickness δL, the term O(γ) could play a role at the leading and
trailing edges of the flame brush, because the first term on the RHS of Eq. (1) vanishes
as c̃ → 0 or c̃ → 1.

The discussed assumption is equivalent neither to an assumption of a high Reynolds
number nor to an assumption of D = 0. If the molecular diffusivity D is equal to
zero, then, a flamelet cannot propagate, as the laminar flame speed SL vanishes. To the
contrary, the considered asymptotic case of δL → 0 and a finite SL can be realized if (i)
a chemical time scale and D that characterize a typical fuel-air mixture are multiplied
with ε and (ii) ε → 0. It is worth stressing that the case of δL → 0 and a finite SL is
widely recognized to be a valuable scientific problem. For instance, the seminal theory
of hydrodynamical instability was developed by Darrieus [14] and Landau [15] (see also
textbooks [16, 17]) by studying the asymptotic case of δL → 0 and a finite SL.

The invoked assumption of δL → 0 will allow us to significantly simplify discussion, but
it seems to be of a minor importance for the main goal of the following dispute, because, to
the best of the present authors’ knowledge, the constraint of gradient turbulent transport
at the LE is commonly associated with neither the contribution of molecular diffusion to
the total flux of c nor with the term O(γ). To the contrary, this constraint and constraint
of ∆u · ∇c̃ > 0 were considered to be equivalent in many papers.



Flame Can Propagate in the Case of Countergradient Scalar Flux at the LE
Two mathematical examples
Let us consider the following continuity

∂ρ̄

∂t
+

∂

∂x
(ρ̄ũ) = 0 (2)

and combustion progress variable balance equations

ρ̄
∂c̃

∂t
+ ρ̄ũ

∂c̃

∂x
= − ∂

∂x
ρu′′c′′ + W, (3)

which model a statistically planar 1D premixed turbulent flame, and (ii) invoke the fol-
lowing widely-used closure relations for the mean mass rate of product creation

W =

(
ρ̄

ρu

)n
ρuc̃(1− c̃)

τf

(4)

and the turbulent scalar flux

ρu′′c′′ = −ρ̄Dt
∂c̃

∂x
+ ρ̄NB

(
Dt

τf

)1/2

c̃(1− c̃). (5)

Here, t is time, x is spatial distance, Dt > 0 is turbulent diffusivity, τf is a flame time
scale, n = 0 or 2, and NB is a non-dimensional input parameter that (i) characterizes the
magnitude of the countergradient contribution to the turbulent scalar flux ρu′′c′′ and (ii)
is associated with the well-known Bray number [9, 10]. The mean density is equal to [7]

ρ̄ =
ρu

1 + (σ − 1)c̃
, (6)

where σ = ρu/ρb is the density ratio.
For a flame that propagates from right to left, the boundary conditions read

c̃(−∞, t) = 0, c̃(∞, t) = 1. (7)

Equation (4) subsumes closure relations invoked in many numerical studies of turbu-
lent combustion, e.g. see Ref. [18] or Table 1 in Ref. [19]. Following Chomiak and Nisbet
[20] and Veynante et al. [10], Eq. (5) divides the flux ρu′′c′′ into turbulent diffusion and
pressure-driven countergradient transport and invokes the gradient closure of the turbu-
lent diffusion, while the last term on the RHS is basically similar to the model of the
countergradient transport, developed by Veynante et al. [10]. Therefore, the problem
given by Eqs. (2)-(7) is highly relevant to modeling of premixed turbulent combustion.

This problem is studied analytically and numerically elsewhere [21]. Here, we restrict
ourselves to a brief summary of results relevant to the subject of the present dispute.

First, if Dt and τf are constant, there is the following explicit traveling wave solution

c̃ =
1

1 + e−4ξ
, ξ =

x + Utt

∆t

(8)

to Eqs. (2)-(7), where the turbulent burning velocity and the mean flame brush thickness
are equal to

Ut√
Dt/τf

=

{
1/NB if n = 0

2(1− α)/(NB +
√

N2
B − 4α) if n = 2 and NB ≥ 2

√
α

(9)



and
∆t√
Dtτf

=

{
4/NB if n = 0

8/(NB +
√

N2
B − 4α) if n = 2 and NB ≥ 2

√
α

, (10)

respectively. Here, 0 ≤ α = (σ − 1)/σ < 1. Note that the profile of c̃(ξ) given by Eq.
(8) is widely accepted in order to parametrize experimental data obtained from various
turbulent flames, as reviewed elsewhere [5].

The use of constant (independent of x and t) time τf , length
√

Dtτf , and velocity√
Dt/τf scales when obtaining the above explicit solution implies that the turbulence

is stationary and homogeneous, i.e. combustion does not affect it. For the goals of
the present study, such a simplification is fully justified, because the hypothesis that
ρu′′c′′ · ∇c̃ < 0 at the LE of a premixed flame brush is not based on an analysis of the
influence of combustion on turbulent time, length, and velocity scales.

Second, if the initial conditions are sufficiently steep (e.g. a step function) and NB is
larger than a certain critical value N cr

B , i.e. N cr
B (n = 0) = 1 and N cr

B (n = 2) = 1+α, then,
a solution to the initial value problem tends to the above explicit solution as t/τf →∞.

Substitution of Eqs. (8)-(10) into Eq. (5) shows that, if NB ≥ N cr
B (n), then,

ρu′′c′′

ρu

√
Dt/τf

=

{
0 if n = 0 and NB ≥ 1

0.5ρ̄c̃(1− c̃)(NB −
√

N2
B − 4α) > 0 if n = 2 and NB ≥ 1 + α

. (11)

The former (n = 0) example proves that a combustion wave modeled by Eqs. (2)-(7)
with NB ≥ 1 can propagate even if the transport term on the RHS of Eq. (24) vanishes
in the entire flame brush. The latter (n = 2) example proves that a combustion wave
modeled by Eqs. (2)-(7) with NB ≥ 1 + α can propagate even if the flux ρu′′c′′ shows the
countergradient behavior everywhere within the flame brush, including its LE. Thus, the
two examples do prove that, from the purely mathematical viewpoint, the constraint of
ρu′′c′′ · ∇c̃ < 0 at 0 < c̃ < ε � 1 is not a necessary condition for a premixed turbulent
flame to propagate into unburned gas. The constraint could be the necessary condition
only for particular models of the mean rate W , e.g. for models that yield W = 0 if c̃ < c0.

In the subsequent subsections, the above analytical results will be supported by simple
physical models and reasoning.

Darrieus-Landau Instability
Although the well-known problem of Darrieus-Landau (DL) instability of a premixed
flame addresses a laminar flow, the classical DL solution offers also an opportunity to
demonstrate that the flux ρu′′c′′ on the RHS of Eq. (24) can show the countergradient
behaviour at any c̃.

Indeed, Darrieus [14] and Landau [15] theoretically investigated the following problem;
A laminar flame is reduced to an infinitely thin surface that separates unburned and
burned mixtures and propagates at a constant speed SL with respect to the unburned
mixture. The flow outside the flame is governed by the non-reacting Euler equations,
with the density being equal to either ρu or ρb, ahead or behind the flame, respectively.
Jump conditions on the flame surface are used to close the model. A stability analysis
of such a planar flame, reproduced in many textbooks [16, 17], shows that the flame
is unconditionally unstable to infinitesimal (kl � 1) harmonic perturbations l sin(ky)
of the x-coordinate of the flame surface, with the growth rate β of the amplitude of
the perturbation being linearly increased by the wavenumber k, i.e. β = SLkf(σ) and



l = l0e
βt, with f(σ > 1) > 0 and f(1) = 0. Here, the x-axis is normal to the position of

the unperturbed flame.
To draw an analogy with turbulent combustion, let us decompose the well-known DL

solution, e.g. see Eq. (40) in [6], into (i) a mean part q̄(x, t) =
∫ y+2π/k
y q(x, η, t)dη by

integrating along the y-axis, which is parallel to the unperturbed flame surface, and (ii)
an oscillating part q′(x, y, t) = q(x, y, t)− q̄(x, t). Then, the evolution of c̃(x, t) is modeled
by Eq. (24). Moreover, the BML equations hold in this case, because the laminar flame
front is assumed to be infinitely thin in the DL analysis. Furthermore, the amplitude u′

of perturbations in the x-component of the flow velocity is much less than SL within the
framework of the DL theory, i.e. u′/SL = O(kl) � 1, see Eq. (40) in [6]. Therefore,
the conditioned velocities ūu and ūb are approximately equal to SL and σSL, respectively,
i.e. ūb > ūu. Accordingly, turbulent scalar flux evaluated using Eq. (1) shows the
countergradient behavior at any c̃.

Thus, the analysis by Darrieus [14] and Landau [15] provides us with an example
of a propagating transient flame that can be modeled by Eq. 24 with the flux ρu′′c′′

being countergradient everywhere within the flame brush including its LE. This flame is
unstable. An example of a stable flame associated with ρu′′c′′ · ∇c̃ > 0 for any c̃ is given
below.

A Planar Oscillating Laminar Flame
Let us consider an infinitely thin planar laminar flame that oscillates in one-dimensional
oncoming flow u = SL + s(t). Here, s(t) is a random function such that (i) s(t) = 0,
(ii)

∫∞
0 s(t)s(t + θ)dθ = u′2T and s(t)s(t) = u′2 do not depend on time, (iii) the length

scale L = u′T of velocity oscillations is much larger than the laminar flame thickness. In
this simple case, (i) the spatial profile of c̃(x) is modeled by Eq. (24) and (ii) ūu = SL

and ūb = σSL. Therefore, the turbulent scalar flux evaluated using Eq. (1) shows the
countergradient behaviour in the entire flame brush.

In the considered case, the flame front retains its planar shape, c̄(x) =
∫ x
−∞ γdζ,

the probability γ of finding flame front is equal to ∆tdc̄/dx, and, therefore, the rate
W = ρuSLdc̄/dx is controlled by the gradient of c̄, rather than by c̄. Such a dependence
of W ∝ |∇c̄| substantially changes the general properties of Eq. (24) as compared with
the same balance equation closed by invoking an algebraic expression W = W (c̄). In
particular, in the former case, the flame speed does not depend on the transport term,
which controls the mean flame thickness and structure.

Discussion
The above mathematical and physical examples show that the sign of ρu′′c′′ · ∇c̃ at low
c̃ is not a criterion of the ability of a premixed turbulent flame to propagate as far as an
arbitrary source term W ≥ 0 on the RHS of Eq. (24) is concerned. To the contrary, in
the theory of a premixed laminar flame of a finite thickness, the gradient behaviour of
scalar flux at the cold boundary is necessary for the flame to propagate. This difference
between laminar and turbulent combustion is associated with the following differences
between the RHS of the c-balance equation

ρ
∂c

∂t
+ ρu

∂c

∂x
=

∂

∂x

(
ρD

∂c

∂x

)
+ W, (12)

which describes a laminar premixed flame of a finite thickness, and the RHS of Eq. (24)
which addresses a turbulent premixed flame.



First, from the mathematical viewpoint, the rate W in Eq. (12) is exponentially small
at c � 1, whereas the mean rate W in Eq. (24) can be finite at c̃ � 1, e.g. Eq. (4) yields
W (c̃ → 0) ∝ c̃.

Second, from the physical viewpoint, the transport and source terms on the RHS of Eq.
(12) model two totally different physical mechanisms, molecular transport and chemical
reactions, respectively. Balance between these two mechanisms controls the c-flux from
a thin reaction zone to a thicker preheat zone associated with vanishing reaction rate
W [17]. The c-flux, in turn, controls both the laminar flame speed SL and thickness
∆L. Therefore, the balance between the molecular transport and chemical reaction terms
controls both SL and ∆L.

To the contrary, the transport and source terms on the RHS of Eq. (24) are associated
with basically the same physical mechanism, i.e. random convection of flamelets by tur-
bulence, even if there are two different manifestations of this mechanism; (i) an increase
in flame brush, controlled by large-scale eddies (turbulent diffusion) and (ii) an increase
in the flamelet surface area due to wrinkling of the surface by turbulence. Accordingly,
at least in the asymptotic case of infinitely thin flamelets, the underlying physics of the
propagation of a premixed turbulent flame can basically differ from the underlying physics
of the propagation of a premixed laminar flame.

To show this basic difference in a clear manner, let us consider a simple case of an
interface that self-propagates at a speed SL in constant-density Kolmogorov turbulence.
The speed St of the leading edge of the “flame brush” formed due to random motion of
the interface is mainly (if u′ � SL) controlled by throwing the interface far into unburned
mixture by large-scale turbulent eddies. Because exactly the same physical mechanism
controls the growth rate of a turbulent mixing layer, this mechanism is associated with
turbulent diffusion.1 As soon as the interface arrives at a point x1 associated with 0 <
c̃(x = x1) � 1, the mean reaction rate W (x = x1) becomes positive, because the local
reaction rate ρuSL|∇c| is infinitely high at the infinitely thin interface. Therefore, in the
considered constant-density case, turbulent diffusion affects not only the propagation of
the LE of the flame brush, but also the mean flame surface density Σ = |∇c| and, hence,
W = ρuSLΣ at the leading edge (in the middle of the flame brush, the surface density is
mainly controlled by the balance between an increase in Σ due to wrinkling of the interface
by small-scale turbulent eddies and a decrease in Σ due to collisions of different segments
of the highly-wrinkled self-propagating interface). Consequently, because, at the LE of a
turbulent flame brush, a correct closure of the mean rate ρuSL|∇c| should allow for the
influence of turbulent diffusion on it, the flame can propagate even if the transport term
on the RHS of Eq. (24) vanishes or shows the countergradient behavior, as proved in the
beginning of this section.

Moreover, if the thickness ∆t of the mean flame brush is constant, the speed St of
its leading edge should be equal to the turbulent burning velocity Ut = ρ−1

u

∫∞
−∞Wdx.

Therefore, if (i) u′ � SL, (ii) effects of turbulence on SL, including local combustion
quenching, are neglected (such a simplification is justified for infinitely thin flamelets,
because response of a laminar flame to a stretch rate ṡ scales as δLṡ/SL [23]), and (iii)
collisions of flamelets are disregarded at c̃ → 0 for geometrical reasoning; then, it is
tempting to assume that solely turbulent diffusion controls burning velocity. Accordingly,
a balance between an increase in the interface surface area by turbulent wrinkling and

1Even if u′ � SL, the large-scale motion of a self-propagating interface differs from the large-scale
motion of a material surface, because, due to merging of the interface elements, its surface area is much
less than the area of the material surface, with all other things being equal [22].



turbulent transport appear to control ∆t, but not Ut, at least in the case of a fully-
developed flame brush formed due to random motion of a self-propagating, infinitely
thin interface in constant-density Kolmogorov turbulence.2 Consequently, the well-known
equality ρuUt =

∫
Wdx ∝ max {W}∆t does not necessitate that the burning velocity is

controlled by the balance between the rate W and turbulent transport that controls the
thickness ∆t. The equality can also mean that both ∆t and, maybe, W adjust themselves
in order for Ut = St in a fully-developed flame.

A randomly oscillating planar laminar flame addressed in the previous subsection gives
a very simple example of an averaged combustion wave that moves at a mean speed SL that
is not affected by the transport term on the RHS of Eq. (24). This example also implies
that even large-scale random motion of a locally planar flamelet can make the spatial
profile of W = ρuSL|∇c| very different from the spatial profile of W in the counterpart
unperturbed laminar flame. Accordingly, in a turbulent flow, the local value W (x, t) of
the mean rate of product creation can be affected not only by SL and by wrinkling of
flamelet surface by small-scale turbulent eddies, but also by large-scale random motion of
flamelets, which is commonly associated with turbulent diffusion.

The above fundamental differences between laminar and turbulent premixed flames
and, in particular, the straightforward dependence of the mean rate W on turbulent
diffusion allow a premixed turbulent flame to propagate even if turbulent scalar flux
shows the countergradient behaviour at the cold boundary.

In the case of a variable-density flame, countergradient scalar flux induced by heat
release can statistically overwhelm turbulent diffusion under certain conditions, but does
not annihilate it locally and does not make W independent of turbulent diffusion at the
leading edge. Turbulent eddies can throw flamelets far into unburned gas even if ρu′′c′′

points to the opposite direction. Indeed, flamelet motion is controlled by the difference
in SL and the velocity of unburned gas before the flamelet, while ρu′′c′′ given by Eq.
(1) is controlled by the difference in the velocities conditioned on burned and unburned
mixture. The two differences can have opposite signs in a general case.

Direction of Turbulent Scalar Flux at the Cold Boundary
Application of Eq. (24) to a fully-developed, statistically stationary, planar and one-
dimensional flame that propagates from right to left yields

d

dx
ρu′′c′′ = W − ρ̄ũ

dc̃

dx
= ρuuc|∇c| − ρuUt

dc̃

dx
= −ρu

[
ūc

n̄x

+
ρuρb

ρ̄2
Ut

]
dc̄

dx
(13)

in the coordinate framework attached to the flame provided that the well-known BML
Eqs. (6) and ρbc̄ = ρ̄c̃ and the standard definition of the mean unit normal vector n [25]

n̄ =
n|∇c|
|∇c|

= − ∇c

|∇c|
= − ∇c̄

|∇c|
(14)

are invoked. Here, nx is the x-component of the unit normal vector n = −∇c/|∇c| and
ūc = uc|∇c|/|∇c| is the surface-averaged consumption velocity uc, which is equal to SL in
the asymptotic case of infinitely thin flamelets.

2Scaling Ut ∝ u′, which results from this claim, does not hold in a typical premixed turbulent flame
[24] due to a number of physical mechanisms disregarded above, e.g. flame development, local flamelet
stretching and quenching, influence of heat release on turbulence, etc. However, the disregarded physical
mechanisms do not make W (c̃ → 0) independent of large-scale velocity fluctuations.



If σ(ūc/|n̄x|)c̄→0 > Ut, then, Eq. (13) results straightforwardly in countergradient
scalar flux at the LE of turbulent flame brush, because n̄x < 0 in a flame that propagates
from right to left. Therefore, Eq. (13) yields the following criterion

NB,LE =
σSL

ΨUt

= 1, (15)

which resembles the well-known Bray number [9, 10] (especially if Ut ∝ u′), but addresses
the LE, rather than the entire flame brush. Turbulent scalar flux shows countergradient
(gradient) behavior at the LE if NB,LE larger (smaller) than unity.

In the considered asymptotic case of infinitely thin flamelets, the function Ψ is simply
equal to |n̄x| ≤ 1. If, based on purely geometrical reasoning and on DNS data reported by
Lee and Huh [26], we assume that |n̄x| → 1 as c̃ → 0, then, Ψ → 1 and turbulent scalar
flux shows the countergradient behaviour at the LE of a fully-developed, statistically
planar and one-dimensional, turbulent flame brush provided that σSL > Ut.

If we consider flamelet of a finite thickness, then, the local flamelet structure and
burning rate can be affected by turbulent stretching [23], with such phenomena being of
substantial importance for highly curved flamelets at the LE of a turbulent flame brush
[27]. In particular, ūc can be larger (lower) than SL for mixtures characterized by the
Lewis number Le lower (larger) than unity, with a ratio of uc/SL can be of the order of
ten in very lean hydrogen-air flames [27]. Therefore, the function Ψ = Ψ(Le, DF /DO)
can depend on the Lewis number and a ratio DF /DO of molecular diffusivities of fuel and
oxygen and can be both larger and smaller than unity. However, it is worth remembering
that, in the case of a finite flamelet thickness, the molecular diffusion flux can play a
role in Eq. (13) if c̃ is very small. Such an eventual effect is beyond the scope of the
present paper. Moreover, contrary to the asymptotic case of γ → 0, the equality of
W = −ρuūcn̄

−1
x (∂c̄/∂x) used in Eq. (13) is not exact if the probability γ is finite.

Contrary to the above criterion obtained within the framework of the BML paradigm,
solely gradient flux was observed at the cold boundary of a fully-developed, statistically
planar, one-dimensional premixed turbulent flame in numerical studies performed within
the framework of the same paradigm, e.g. see the classical paper by Libby and Bray [4],
which is widely cited in order to support the disputed hypothesis of ρu′′c′′ · (∂c̃/∂x) < 0
at c̃ → 0. It is worth remembering, however, that more recent contributions to premixed
turbulent combustion revealed certain limitations of the model developed in the cited
paper, which was pioneering for those days. In particular, in Ref. [4] and in other
early BML papers, term c′′(∂p′/∂x) was neglected in the balance equation for ρu′′c′′ and
computed countergradient scalar flux resulted solely from a stronger acceleration of “high-
temperature, low-density products relative to the cold, high-density reactants” by the
mean pressure gradient. Indeed, if we assume that |ūb| < |ūu| at the cold boundary via
an analogy with non-reacting turbulent flows, then, the different acceleration can result
in |ūb| > |ūu| only at certain distance ∆x downstream the LE [28]. Therefore, if the
correlation c′′(∂p′/∂x) is neglected, then, turbulent scalar flux should show the gradient
behaviour at sufficiently low c̃, in line with the seminal work by Libby and Bray [4].
However, as theoretically argued by Kuznetsov [29, 30] and well-supported by currently
available DNS data reviewed elsewhere [6], the neglected term c′′(∂p′/∂x) can dominate
in the ρu′′c′′-balance equation. This term serves to cause countergradient scalar flux at
the LE of a turbulent flame brush. Indeed, when a flamelet arrive at a point x associated
with c̃ � 1, we have c′′(x, t) > 0 and the local pressure gradient caused by heat release is
negative if ∂c̃/∂x > 0. Therefore, (∂p′/∂x)(x, t) < 0 and, hence, −c′′(∂p′/∂x) > 0 at the
LE, thus, contributing to positive ρu′′c′′ and ρu′′c′′(∂c̃/∂x).



The fact that, contrary to the above criterion, solely ρu′′c′′ · ∇c̃ < 0 was documented
at c̃ → 0 in DNS studies of premixed turbulent flames that were claimed to be fully-
developed, statistically planar and one-dimensional, e.g. see Ref. [12], can be explained
as follows.

First, because those studies addressed flamelets of a finite thickness, Eq. (13) is not
exact in this case, as noted above.

Second, the speed and thickness of a premixed turbulent flame obtained in a DNS
study of combustion in statistically stationary, planar, one-dimensional turbulent flow
can exhibit strong oscillations in time, e.g. see dependencies of Ut(t) shown in Fig. 3.1 in
Ref. [31], or Fig. 3 in Ref. [32], or Fig. 3 Ref. in [33]. Accordingly, such flames can be
subject to transient effects not addressed by Eq. (13).

However, transient effects can promote gradient transport at the LE. For instance,
if the mean flow is statistically stationary and one-dimensional, but the studied flame
develops, i.e. its mean thickness grows, then, the unsteady term in Eq. (24) serves to
impede countergradient scalar flux, but, moreover, ρ̄ũ 6= ρuUt. To allow for and compare
the two effects, let us assume that, in line with numerous experimental data analyzed
elsewhere [24, 34], the mean structure of the flame is self-similar, i.e. c̃(x, t) = c̃(ξ), where
the normalized distance ξ is determined by Eq. (8). Then, substitution of ρ̄ = ρ̄[c̃(ξ)]
into the Favre-averaged continuity equation yields

∂

∂ξ
(ρ̄ũ) =

dρ̄

dξ

(
−Ut + ξ

d∆t

dt

)
. (16)

Integrating this equation from −∞ to ξ, substituting the result and c̃(ξ) into Eq. (24),
and invoking the well-known BML Eqs. (6) and ρbc̄ = ρ̄c̃, we arrive at

∂

∂ξ
ρu′′c′′ = −ρu

(
ūc

n̄x

+
ρuρb

ρ̄2
Ut

)
dc̄

dξ
− ρuρb

ρ̄2

dc̄

dξ

d∆t

dt

(∫ ξ

−∞
ζ
dρ̄

dζ
dζ − ρ̄ξ

)
. (17)

The sole difference between Eqs. (13) and (17) consists of the fact that the latter equation
involves an extra unsteady term (the last term on the RHS), which is negative at the LE
of the flame brush, because both ξ and dρ̄/dξ are negative therein. For instance, invoking
Eq. (8), one can easily show that

−
∫ ξ

−∞
ζ
dρ̄

dζ
dζ − ρ̄ξ → ρuξ < 0 (18)

as ξ → −∞. Therefore, the growth of ∆t impedes countergradient scalar flux at the cold
boundary.

If c̃(ξ) → 0 as ξ → −∞, but c̃(ξ) > 0 for any finite ξ, then, one can always find
such a ε � 1, that the negative unsteady term dominates on the RHS of Eq. (17) for
c̃ < ε, because |ξ| is large. Accordingly, if c̃ < ε, then, ρu′′c′′(dc̃/dξ) < 0 in line with the
hypothesis of gradient diffusion.

Non-uniformities of the oncoming mean flow can also impede countergradient scalar
flux at the cold boundary. For instance, if the mean flame brush is strained by spatially
nonuniform mean flow, as occurs e.g. in a turbulent premixed flame stabilized in an
impinging jet, then, the magnitude of the mean flow velocity increases with decreasing
c̃. Accordingly, at the LE of the flame brush, Eq. (13) should be substituted with the
following equation

∇ · ρu′′c′′ = −ρu

(
ūc

n̄x

+
ũ

σ

)
dc̄

dx
, (19)



where ũ(c̃ � 1) is significantly larger than Ut, as reviewed elsewhere [6]. For instance,
experimental data by Bourguignon et al. [35] indicate that a ratio of ũ(c̃ � 1)/Ut can be
as large as four in a premixed turbulent flame stabilized in an impinging jet. Tangential
derivatives of the transverse components of the vector ρu′′c′′ on the left hand side of Eq.
(19) can also affect the normal flux ρu′′c′′ at c̃ � 1, but the available numerical data
[36, 37] imply that such effects are of minor importance as compared with the difference
in ũ(c̃ � 1) and Ut. Consequently, a ratio of σūc/Ut should be significantly larger than
unity in order for turbulent scalar flux to show the countergradient behaviour at low c̃ in
a flame strained by a mean flow.

Conclusions
Exact analytical results and physical reasoning discussed in the paper prove that a con-
straint of the gradient behaviour of turbulent scalar flux at the leading edge of a premixed
flame brush is not a necessary condition for the flame to propagate into the unburned
gas. A premixed turbulent flame can propagate even if turbulent scalar flux shows the
countergradient behaviour at the cold boundary. This peculiarity of turbulent combustion
is associated with the straightforward influence of turbulent diffusion on the mean rate of
product creation at c̃ � 1.

In the case of a fully-developed, statistically planar, one-dimensional premixed flame,
turbulent scalar flux shows the countergradient behaviour at the cold boundary if a ratio
of σSL to the turbulent flame speed is larger than a number Ψ. In the asymptotic case of
infinitely thin flamelets, Ψ is equal to the limit (c̃ → 0) value of the averaged component
n̄x ≤ 1 of the unit vector locally normal to flamelet, i.e. Ψ appears to be equal to unity.
In the case of a finite flamelet thickness, the number Ψ appears to be increased when
the diffusivity of the deficient reactant is decreased, but investigation of the latter case is
beyond the scope of the present paper.

Both flame development and straining of a premixed turbulent flame by a divergent
mean flow suppress countergradient scalar flux at the leading edge of the flame brush.
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