
HAL Id: hal-01061381
https://onera.hal.science/hal-01061381

Submitted on 5 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Time-dependent Simple Temporal Networks.
C. Pralet, G. Verfaillie

To cite this version:
C. Pralet, G. Verfaillie. Time-dependent Simple Temporal Networks.. 18th International Conference
on Principles and Practice of Constraint Programming (CP-2012), Oct 2012, QUEBEC CITY, Canada.
�hal-01061381�

https://onera.hal.science/hal-01061381
https://hal.archives-ouvertes.fr

Time-dependent Simple Temporal Networks

Cédric Pralet, Gérard Verfaillie

ONERA – The French Aerospace Lab, F-31055, Toulouse, France
{cedric.pralet,gerard.verfaillie}@onera.fr

Abstract. Simple Temporal Networks (STN) allow conjunctions of min-
imum and maximum distance constraints between pairs of temporal po-
sitions to be represented. This paper introduces an extension of STN
called Time-dependent STN (TSTN), which covers temporal constraints
for which the minimum and maximum distances required between two
temporal positions x and y are not necessarily constant but may depend
on the assignments of x and y. Such constraints are useful to model prob-
lems in which the transition time required between two activities may
depend on the time at which the transition is triggered. Properties of the
new framework are analyzed, and standard STN solving techniques are
extended to TSTN. The contributions are applied to the management of
temporal constraints for so-called “agile” satellites.

1 Motivations

Managing temporal aspects is crucial when solving planning and scheduling
problems. Indeed, the latter generally involve constraints on the earliest start
times and latest end times of activities, precedence constraints between activ-
ities, no-overlapping constraints over sets of activities, or constraints over the
minimum and maximum temporal distance between activities. In many cases,
these constraints can be expressed as simple temporal constraints, written as
x−y ∈ [α, β] with x, y two variables corresponding to temporal positions and α,
β two constants. Such simple temporal constraints can be represented using the
STN framework (Simple Temporal Networks [1]). This framework is appealing
in practice due to the polynomial complexity of important operations such as
determining the consistency of an STN or computing the earliest/latest times
associated with each temporal variable of an STN, which is useful to maintain
a schedule offering temporal flexibility. Another feature of STN is that they are
often used as a basic element when solving more complex temporal problems
such as DTN (Disjunctive Temporal Networks [2]).

In this paper, we propose an extension of the STN framework and of STN
algorithms. This extension is illustrated on an application from the space domain.
The latter corresponds to the management of Earth observation satellites such
as those of the Pleiades system. Such satellites are moving around the Earth
on a circular, low-altitude orbit (several hundreds of kilometers). They are said
to be agile, which means that they have the capacity to move around the three
axes (roll, pitch, and yaw). This agility allows them to point to the right, left, in

2 Cédric Pralet, Gérard Verfaillie

front of, or behind of the Earth point at the vertical of the satellite at each time
(Nadir). The mission of these satellites is to perform acquisitions of polygons at
the Earth surface. These polygons are split into strips which must be scanned
using an observation instrument fixed on the satellite. Scanning a given strip
requires at any time a particular configuration of the satellite called an attitude,
defined by a pointing direction and by a speed on each of the three axes.

In the agile satellite context, contrary to the simplified version of the 2003
ROADEF Challenge [3], the minimum transition time taken by a maneuver be-
tween the end of an acquisition i and the start of an acquisition j is not constant
and depends on the precise time at which the first acquisition ends [4]. Transition
times may vary of about ten seconds on the examples provided in Fig. 1, duration
during which the satellite covers between 50 and 100 kilometers on the ground.
Fig. 1 also shows how diverse minimum transition times evolution schemes can
be. They are obtained by solving a continuous command optimization problem
which takes into account the movement of the satellite on its orbit, the movement
of points on the ground due to the rotation of Earth, and kinematic constraints
restricting the possible attitude moves of the satellite.

This context motivates the need for a new modeling framework for problems
in which the minimum transition time between two activities can depend on the
precise time at which the transition is triggered. This aspect is close to work on
time-dependent scheduling [5, 6], where transition times take particular forms,
piecewise constant or piecewise linear (these forms cannot be directly reused
here). It also appears in applications such as congestion-aware logistics, in which
traveling times depend on the hour of the day, due to traffic. The framework
proposed, called Time-dependent STN, is first introduced (Sect. 2). Techniques
are then defined for computing the earliest and latest times associated with
each temporal variable (Sect. 3 and 4). These techniques are used for scheduling
activities of an agile satellite, in the context of a local search algorithm (Sect. 5).

2 Towards Time-dependent STN

2.1 Simple Temporal Networks (STN)

We first recall some definitions associated with STN. In the following, the domain
of values of a variable x is denoted d(x).

Definition 1. An STN is a pair (V,C) with V a finite set of continuous vari-
ables whose domain is a closed interval [l, u] ⊂ R, and C a finite set of binary
constraints of the form x − y ∈ [α, β] with x, y ∈ V , α ∈ R ∪ {−∞}, and
β ∈ R ∪ {+∞}. Such constraints are called simple temporal constraints. A so-
lution to an STN (V,C) is an assignment of all variables in V satisfying all
constraints in C. An STN is consistent iff it has at least one solution.

Unary constraints x ∈ [α, β], including those defining the domains of possible
values of variables, can be formulated as simple temporal constraints x − x0 ∈
[α, β], with x0 a variable of domain [0, 0] playing the role of a temporal reference.

Time-dependent STN 3

 10

 11

 12

 13

 14

 15

 16

 17

 0 50 100 150 200

m
in

 d
u

ra
ti
o

n
 o

f
th

e
 t

ra
n

s
it
io

n

end time of first acq

 70

 72

 74

 76

 78

 80

 82

 0 50 100 150 200

end time of first acq

 7

 8

 9

 10

 11

 12

 0 50 100 150 200

end time of first acq(a) (b) (c)

Fig. 1. Minimum durations, in seconds, for a satellite maneuver from a strip i ending
at point of latitude-longitude 41◦17′48′′N-2◦5′12′′E to a strip j starting at point of
latitude-longitude 42◦31′12′′N-2◦6′15′′E, for different scanning angles with regard to
the trace of the satellite on the ground: (a) scan of i at 40◦ and scan of j at 20◦; (b)
scan of i at 40◦ and scan of j at -80◦; (c) scan of i at 90◦ and scan of j at 82◦

Moreover, as x − y ∈ [α, β] is equivalent to (x − y ≤ β) ∧ (y − x ≤ −α), it is
possible to use only constraints of the form y − x ≤ c with c some constant.

An important element associated with an STN is its distance graph. This
graph contains one node per variable of the STN and, for each constraint y−x ≤ c
of the STN, one arc from x to y weighted by c. Based on this distance graph,
the following results can be established [1] (some of these results are similar to
earlier work on PERT and critical path analysis):

1. an STN is consistent iff its distance graph has no cycle of negative length;
2. if d0i (resp. di0) denotes the length of the shortest path in the distance graph

from the reference node labeled by x0 to a node labeled by temporal variable
xi (resp. from xi to x0), then interval [−di0, d0i] gives the set of consistent
assignments of xi; the shortest paths can be computed for every i using
Bellman-Ford’s algorithm or arc-consistency filtering [7–10];

3. if dij (resp. dji) denotes the length of the shortest path from xi to xj (resp.
xj to xi) in the distance graph, then interval [−dji, dij] corresponds to the set
of all possible temporal distances between xi and xj ; shortest paths can be
computed for every i, j using Floyd-Warshall’s algorithm or path-consistency
filtering [1, 11–13], which produces the minimal network of the STN [14].

Example Let us consider a simplified satellite scheduling problem. This problem
involves 3 acquisitions acq1, acq2, acq3 to be realized in order acq3 → acq1 →
acq2. For every i ∈ [1..3], Tmini and Tmaxi denote the earliest start time and
latest end time of acqi, and Dai denotes the duration of acqi. The minimum
durations of the transitions between the end of acq3 and the start of acq1, and
between the end of acq1 and the start of acq2, are denoted Dt3,1 and Dt1,2 respec-
tively. These durations are considered as constant in this first simplified version.
We also consider two temporal windows w1 = [Ts1, T e1], w2 = [Ts2, T e2] during
which data download to ground stations is possible. The satellite must download
acq2 followed by acq3 in window w1, before downloading acq1 in window w2. The
duration taken by the download of acqi is denoted Ddi.

4 Cédric Pralet, Gérard Verfaillie

This problem can be modeled as an STN containing, for every acquisition
acqi (i ∈ [1..3]), (a) two variables sai and eai denoting respectively the start
time and end time of the acquisition, with domains of values d(sai) = d(eai) =
[Tmini, Tmaxi]; (b) two variables sdi and edi, denoting respectively the start
time and end time of the download of the acquisition, with domains of values
[Ts1, T e1] for i = 2, 3 and [Ts2, T e2] for i = 1.

Simple temporal constraints in Eq. 1 to 4 are imposed over these variables.
Eq. 1 defines the duration of acquisitions and data downloads. Eq. 2 imposes min-
imum transition times between acquisitions. Eq. 3 enforces no-overlap between
downloads. Eq. 4 expresses that an acquisition can start being downloaded only
after its realization. Fig. 2 gives the distance graph of the obtained STN.

∀i ∈ [1..3], (eai − sai = Dai) ∧ (edi − sdi = Ddi) (1)

(sa1 − ea3 ≥ Dt3,1) ∧ (sa2 − ea1 ≥ Dt1,2) (2)

(sd3 − ed2 ≥ 0) ∧ (sd1 − ed3 ≥ 0) (3)

∀i ∈ [1..3], sdi − eai ≥ 0 (4)

−Da3

Da3
sa3 ea3

sd2 ed2

Dd2

−Dd2

sa2 ea2

Da2

−Da2

sd3 ed3

Dd3

−Dd3

sd1 ed1

Dd1

−Dd1

0 0

sa1 ea1

Da1

−Da1

-Dt3,1 -Dt1,2

0 0
0

Fig. 2. Distance graph (reference temporal position x0 is not represented)

2.2 T-Simple Temporal Constraints and TSTN

We now introduce a new class of temporal constraints which can be used to model
transitions whose minimum duration depends on the precise time at which the
transition is triggered. These constraints are called t-simple temporal constraints
for “time-dependent”-simple temporal constraints.

Definition 2. A t-simple temporal constraint is a triple (x, y, dmin) composed
of two temporal variables x and y, and of one function dmin : d(x)× d(y)→ R

called minimum distance function (function not necessarily continuous). A t-
simple temporal constraint (x, y, dmin) is also written as y − x ≥ dmin(x, y).
The constraint is satisfied by (a, b) ∈ d(x)× d(y) iff b− a ≥ dmin(a, b).

Informally, dmin(x, y) specifies a minimum temporal distance between the
events associated with temporal variables x and y respectively.

Time-dependent STN 5

To illustrate why having a minimum distance function dmin depending on
both x and y is useful, consider the example of agile satellites. Let x be a variable
representing the end time of an acquisition acq. Let Att(x) denote the attitude
obtained when finishing acq at time x. Let y be a variable representing the start
time of an acquisition acq′, to be performed just after acq. Let Att ′(y) denote the
attitude required for starting acq′ at time y. Let minAttTransTime be the func-
tion (available in our agile satellite library) such that minAttTransTime(att , att ′)
gives the minimum transition time required by a satellite maneuver to move
from attitude att to attitude att ′. Then, t-simple temporal constraint y − x ≥
dmin(x, y) with dmin(x, y) = minAttTransTime(Att(x),Att ′(y)) expresses that
the duration between the end of acq and the start of acq′ must be greater than
the minimum duration required to move from attitude Att(x) to attitude Att ′(y).

In some cases, function dmin(x, y) does not depend on y. This concerns
time-dependent scheduling [5, 6], for which the processing time of a task only
depends on the start time of this task (t-simple temporal constraint y − x ≥
dmin(x) with dmin(x) the processing time of the task when this task starts at
time x). T-simple temporal constraints also cover simple temporal constraints
y − x ≥ c, by using a constant minimum distance function dmin = c. They also
cover constraints of maximum temporal distance between two temporal variables
y−x ≤ dmax (x, y), since the latter can be rewritten as x− y ≥ dmin(y, x) with
dmin(y, x) = −dmax (x, y).

Note that a t-simple temporal constraint only refers to the minimum duration
of a transition. Such an approach can be used for handling agile satellites under
the (realistic) assumption that any maneuver which can be made in duration
δ is also feasible in duration δ′ ≥ δ. This assumption of feasibility of a “lazy
maneuver” is not necessarily satisfied by every physical system.

On this basis of t-simple temporal constraints, a new framework called TSTN
for Time-dependent STN can be introduced.

Definition 3. A TSTN is a pair (V,C) with V a finite set of continuous vari-
ables of domain [l, u] ⊂ R, and C a finite set of t-simple temporal constraints
(x, y, dmin) with x, y ∈ V . A solution to a TSTN is an assignment of variables
in V that satisfies all constraints in C. A TSTN is said to be consistent iff it
admits at least one solution.

Example Let us reconsider the example involving 3 acquisitions acq1, acq2, acq3
and remove the unrealistic assumption of constant minimum transition durations
between acquisitions. In the TSTN model obtained, the only difference with the
initial STN model is that simple temporal constraints of Eq. 2 are replaced by the
t-simple temporal constraints given in Eq. 5 and 6, in which given an acquisition
acqi, Satt i(t) and Eatt i(t) respectively denote the attitudes required at the start
and at the end of acqi if this start/end occurs at time t. The definition of the
distance graph associated with a TSTN is similar to the definition of the distance
graph associated with an STN (see Fig. 3).

sa1 − ea3 ≥ minAttTransTime(Eatt3(ea3),Satt1(sa1)) (5)

sa2 − ea1 ≥ minAttTransTime(Eatt1(ea1),Satt2(sa2)) (6)

6 Cédric Pralet, Gérard Verfaillie

−Da3

Da3
sa3 ea3

sd2 ed2

Dd2

−Dd2

sa2 ea2

Da2

−Da2

sd3 ed3

Dd3

−Dd3

sd1 ed1

Dd1

−Dd1

0 0

sa1 ea1

Da1

−Da1
0 0

0

-minAttTransTime(Eatt1(ea1), Satt2(sa2))-minAttTransTime(Eatt3(ea3), Satt1(sa1))

Fig. 3. TSTN distance graph (temporal reference x0 is not represented)

3 Arc-Consistency of t-Simple Temporal Constraints

A first important element for establishing arc-consistency is the delay function.

Definition 4. The delay function associated with a t-simple temporal constraint
ct : (x, y, dmin) is function delayct : d(x)× d(y)→ R defined by delayct(a, b) =
a+ dmin(a, b)− b.

Informally, delayct(a, b) is the delay obtained in b if a transition in minimum
time from x to y is triggered at time a. This delay corresponds to the difference
between the minimum arrival time associated with the transition (a+dmin(a, b))
and the required arrival time (b). A strictly negative delay corresponds to a
transition ending before deadline b. A strictly positive delay corresponds to a
violation of constraint ct. A null delay corresponds to an arrival right on time.

Definition 5. A t-simple temporal constraint ct : (x, y, dmin) is said to be
delay-monotonic iff its delay function delayct(., .) satisfies the conditions below:

∀a, a′ ∈ d(x), ∀b ∈ d(y), (a ≤ a′)→ (delayct(a, b) ≤ delayct(a
′, b))

∀a ∈ d(x), ∀b, b′ ∈ d(y), (b ≤ b′)→ (delayct(a, b) ≥ delayct(a, b
′))

Definition 5 means that for being delay-monotonic, a t-simple temporal con-
straint (x, y, dmin) must verify that on one hand, the later the transition is
triggered in x, the greater the delay in y, and on the other hand the earlier the
transition must end in y, the greater the delay. When monotonicities over the
two arguments are strict, we speak of a strictly delay-monotonic t-simple tem-
poral constraint. The notion of delay-monotonicity can be related to the notion
of monotonic constraints, defined for instance in [15]. One difference is that in
TSTN, domains considered are continuous.

We now introduce the functions of earliest arrival time and latest departure
time associated with a t-simple temporal constraint. In the following, given a
function F : R→ R and a closed interval I ⊂ R, we denote by (1) firstNeg(F, I)
the smallest a ∈ I such that F (a) ≤ 0 (value +∞ if such a value does not exist);

Time-dependent STN 7

(2) lastNeg(F, I) the greatest a ∈ I such that F (a) ≤ 0 (value −∞ if such a
value does not exist).1

Definition 6. The functions of earliest arrival time and latest departure time
associated with a t-simple temporal constraint ct : (x, y, dmin) are functions
denoted earr ct and ldepct and defined over d(x) and d(y) respectively, by:

∀a ∈ d(x), earr ct(a) = firstNeg(delayct(a, .),d(y))

∀b ∈ d(y), ldepct(b) = lastNeg(delayct(., b),d(x))

Informally, earr ct(a) gives the smallest arrival time in y without delay if the
transition from x is triggered at time a. ldepct(b) gives the latest triggering time
of the transition in x for an arrival in b without delay.

Prop. 1 shows that these two functions help establishing bound arc-consistency.

Proposition 1. Bound arc-consistency for a t-simple temporal constraint ct :
(x, y, dmin) can be enforced using the following domain modification rules:

d(y)← d(y) ∩ [earr ct(min(d(x))),+∞[(7)

d(x)← d(x)∩]−∞, ldepct(max(d(y)))] (8)

Proof. Assume that earrct(min(d(x))) 6= +∞ and ldep
ct
(max(d(y))) 6= −∞. By defi-

nition of earrct and ldep
ct

, we then have delay(min(d(x)), earrct(min(d(x)))) ≤ 0 and

delay(ldep
ct
(max(d(y))),max(d(y))) ≤ 0. Hence min and max bounds of x and y all

have a support after application of Rules 7-8 if domains obtained are not empty.

Rule 7 updates the earliest time associated with y. Rule 8 updates the latest
time associated with x. These domain modification rules are such that cur-
rent domains d(x) and d(y) remain closed intervals. Prop. 2 below establishes
the equivalence between bound arc-consistency and arc-consistency for delay-
monotonic constraints.

Proposition 2. Let ct : (x, y, dmin) be a t-simple temporal constraint with
monotonic delay. Establishing bound arc-consistency for ct using Rules 7 and 8
is equivalent to establishing arc-consistency over the whole domains of x and y.

Proof. Let x−, x+, y−, y+ denote the min/max bounds of x and y before application

of the rules. Let b ∈ [y−, y+]. If b < earrct(x
−), then b has no support over x for

ct because ∀a ∈ [x−, x+], delay
ct
(a, b) ≥ delay

ct
(x−, b) > 0 (by delay-monotonicity

and by definition of earrct(x
−)). Conversely, if b ≥ earrct(x

−), then delay
ct
(x−, b) ≤

delay
ct
(x−, earrct(x

−)) ≤ 0, hence b is supported by x−. Therefore, y-values pruned by

Rule 7 are those that have no support over x. Similarly, it can be shown that x-values

pruned by Rule 8 are those that have no support over y.

1 Quantities firstNeg(F, I) and lastNeg(F, I) are mathematically not necessarily well-
defined if function F has discontinuities; we implicitly use the fact that all operations
are done on computers with finite precision.

8 Cédric Pralet, Gérard Verfaillie

When delay-monotonicity is violated, Rules 7-8 can be applied but they do
not necessarily establish arc-consistency. Prop. 3 generalizes a STN result to
TSTN and shows why maintaining bound arc-consistency is useful.

Proposition 3. If all constraints of a TSTN are made bound arc-consistent
using Rules 7-8, then the schedule which assigns to each variable its earliest
(resp. latest) possible time is a solution of the TSTN.

Proof. Let ct : (x, y, dmin) be a constraint of the TSTN. As shown in the proof of

Prop. 1, the min bounds of x and y after application of Rules 7-8 form a consistent

pair of values for ct, as well as their max bounds.

Concerning the way earr and ldep can be computed in practice, for simple
temporal constraints y − x ≥ c, an analytic formulation of earr and ldep can
be given. However, in the general case, firstNeg(F, I) and lastNeg(F, I) must be
computed, which corresponds to an optimization problem in itself. An iterative
method for approximating firstNeg(F, I = [a1, a2]) is given in Algorithm 1. This
method generalizes the false position method, used to find a zero of an arbitrary
function. Applied to the case of t-simple temporal constraints, the method works
as follows. If leftmost point P1 = (a1, F (a1)) has a negative delay (F (a1) ≤ 0),
then a1 is directly returned. Otherwise, if rightmost point P2 = (a2, F (a2))
has a strictly positive delay (F (a2) > 0), then +∞ is returned. Otherwise,
points P1 and P2 have opposite delay-signs (F (a1) > 0 and F (a2) ≤ 0), and
the method computes delay F (a3) in a3, the x-value of the intersection between
segment (P1, P2) and the x-axis. If the delay in P3 = (a3, F (a3)) is positive
(resp. negative), then the mechanism is applied again by taking P1 = P3 (resp.
P2 = P3). If the t-simple temporal constraint considered has a strictly monotonic
delay, the convergence to firstNeg(F, I) is ensured; otherwise, the method may
return a value a > firstNeg(F, I), but in this case a still satisfies F (a) ≤ 0 (with
a given precision). It can be observed in practice that the convergence speed is
particularly good for the delay function associated with agile satellites.

Algorithm 1: Possible way of computing firstNeg(F, I), with I=[a1, a2],
maxIter a maximum number of iterations, and prec a desired precision

1 firstNeg(F, [a1, a2],maxIter, prec)
2 begin

3 f1 ← F (a1); if f1 ≤ 0 then return a1

4 f2 ← F (a2); if f2 > 0 then return +∞
5 for i = 1 to maxIter do

6 a3 = (f1 ∗ a2 − f2 ∗ a1)/(f1 − f2)
7 f3 = F (a3)
8 if |f3| < prec then return a3

9 else if f3 > 0 then (a1, f1)← (a3, f3)
10 else (a2, f2)← (a3, f3)

11 return a2

Time-dependent STN 9

4 Solving TSTN

The problem considered hereafter is to determine the consistency of a TSTN
and to compute the earliest and latest possible times associated with each tem-
poral variable. We also consider a context in which temporal constraints can
be successively added and removed from the problem. This dynamic aspect is
useful for instance when using local search for solving scheduling problems. In
this kind of search, local moves are used for modifying a current schedule. They
may correspond to additions and removals of activities, which are translated into
additions and removals of temporal constraints. The different techniques used,
which generalize existing STN resolution techniques, are successively presented.

4.1 Constraint Propagation

We first use constraint propagation for computing min and max bounds of tem-
poral variables. This standard method is inspired by approaches defined in [8–
10]. The latter correspond to maintaining a list of variables for which constraints
holding over these variables must be revised with, for each variable z of the list,
the nature of the revision(s) to be performed: (a) if z had its min bound updated,
then the min bound of every variable t linked to z by a constraint t−z ≥ c must
be revised; (b) if z had its max bound updated, then the max bound of every
variable t linked to z by a constraint z − t ≥ c must be revised.

Compared to standard STN approaches, we choose for TSTN a constraint
propagation scheme in which a list containing constraints to be revised is main-
tained, instead of a list containing variables. This list is partitioned into two
sub-lists, the first one containing constraints to be revised which may modify a
min bound (constraints y − x ≥ dmin(x, y) awoken following a modification of
minx, which may modify min y), and the second one containing constraints to
be revised which may modify a max bound (constraints y−x ≥ dmin(x, y) awo-
ken following a modification of max y, which may modify maxx). Compared to
the version maintaining lists of variables, maintaining lists of constraints allows
some aspects to be more finely handled (more details below).

Last, a t-simple temporal constraint is revised using Rules 7 and 8 of Prop. 1.

4.2 Negative Cycle Detection

With bounded domains of values, the establishment of arc-consistency for STN is
able to detect inconsistency. However, the number of constraint revisions required
for deriving inconsistency may be prohibitive compared to STN approaches de-
fined in [7, 8], which use the fact that STN inconsistency is equivalent to the
existence of a cycle of negative length in the distance graph.

The basic idea of these existing STN approaches consists in detecting such
negative cycles on the fly by maintaining so-called propagation chains. The latter
can be seen as explanations for the current min and max bounds of the different
variables. A constraint y − x ≥ c is said to be active with regard to min bounds
(resp. max bounds) if and only if the last revision of this constraint is responsible

10 Cédric Pralet, Gérard Verfaillie

for the last modification of the min of y (resp. the max of x). It is shown in [7]
that if there exists a cycle in the directed graph where an arc is associated with
each active constraint with regard to min bounds, then the STN is inconsistent.
The intuition is that if a propagation cycle x1 → x2 → . . . → xn → x1 is
detected for min bounds, then this means that the min value of x1 modified the
min value of x2... which modified the min value of xn which modified the min
value of x1. By traversing this propagation cycle a sufficient number of times,
the domain of x1 can be entirely pruned. The same result holds for the directed
graph containing one arc per active constraint with regard to max bounds.

These results cannot however be directly reused for t-simple temporal con-
straints, since for TSTN in general, the existence of a propagation cycle does
not necessarily imply inconsistency, as shown in the example below.

Example Let dmin be the minimum distance function defined by dmin(a, b) =
1 − a/2. Let (V,C) = ({x, y}, {ct1 : x − y ≥ −0.5, ct2 : y − x ≥ dmin(x, y)})
be a TSTN containing two temporal variables of domains d(x) = d(y) = [0.5, 2]
and two constraints. The delay functions associated with ct1 and ct2 are strictly
monotonic (for ct2, it equals delayct2

(a, b) = a+ dmin(a, b)− b = 1 + a/2− b).
Propagating ct2 using Rule 7 updates the min of y and gives d(y) = [1 +

1/4, 2]. Propagating ct1 using the same rule then updates the min of x and
gives d(x) = [1 − 1/4, 2]. The result obtained is a cycle of propagation since
the min value of x modified the min of y which itself modified the min of x. In
the context of STN, the existence of such a cycle means inconsistency. In the
context of TSTN, such a conclusion does not always hold because for instance
assignment x = 1, y = 1.5 is consistent.

The reason is that in TSTN, domain reductions obtained by traversing cycles
again and again may become smaller and smaller. This is what happens here,
where we get d(x) = [1 − 1/2n, 2] after n traversals of the propagation cycle
between x and y. The finite computer precision implies that cycle traversals
stop at some step, but potentially only after many iterations.

The example also shows that the strict monotonicity of the delay function
does not suffice for deriving inconsistency in case of cycle detection. A sufficient
condition satisfied for standard STN is given in Prop. 4. This condition ensures
that a cycle does not become “less negative” when traversed again and again.

Definition 7. A t-simple temporal constraint ct : (x, y, dmin) is said to be shift-
monotonic iff it satisfies:

∀a, a′ ∈ d(x), ∀b ∈ d(y), (a ≤ a′)→ (delayct(a
′, b) ≥ delayct(a, b) + (a′ − a))

∀a ∈ d(x), ∀b, b′ ∈ d(y), (b ≤ b′)→ (delayct(a, b) ≥ delayct(a, b
′) + (b′ − b))

Informally, shift-monotonicity means that on one hand, when the start time
of a transition is shifted forward, the arrival time is shifted forward by at least
the same amount, and on the other hand when the arrival time of the transition
is shifted backward, the delay is increase by at least the same amount.

Proposition 4. If a propagation cycle involving only shift-monotonic constraints
is detected in a TSTN, then the TSTN is inconsistent.

Time-dependent STN 11

Proposition 5. In particular, (1) for TSTN containing only shift-monotonic
constraints, the existence of a propagation cycle implies inconsistency; (2) for
TSTN whose distance graph does not contain cycles involving non shift-monotonic
constraints, the existence of a propagation cycle implies inconsistency.

Proof. For Prop. 4, assume that propagation cycle x1 → x2 → . . . → xn → x1 is

detected for min bounds, following the revision of a constraint linking xn and x1. Let

δ > 0 be the increase in the min bound of x1 following this last constraint revision. It

can be shown that shift-monotonicity implies that (a ≤ a′)→ (earrct(a
′) ≥ earrct(a)+

(a′−a)). Therefore, if the cycle is traversed again, the min bounds of x2, . . . , xn will be

increased again by at least δ. After a sufficient number of cycle traversals, the domain

of one variable of the cycle becomes empty. Prop. 5 is a direct consequence of Prop. 4.

In the agile satellite application which motivates this work, the minimum
distance functions used are not necessarily shift-monotonic, as can be seen in
Fig. 1, but point 2 of Prop. 5 applies for case studies considered. Inferring in-
consistency due to propagation cycle detection is correct in this case. Checking
the satisfaction of the condition given in point 2 of Prop. 5 is easy (linear in the
number of variables and constraints).

If none of the sufficient conditions given in Prop. 5 is satisfied, several options
can be considered. The first one consists in not considering non shift-monotonic
constraints in propagation chains; this approach is correct but may lose time in
propagation cycles. The second option consists in considering a TSTN as incon-
sistent as soon as a propagation cycle is detected, even if it contains non shift-
monotonic constraints; this may be incorrect in the sense that it may wrongly
conclude to inconsistency. A possible trade-off is to keep the first option but to
stop propagating constraints when some time-limit or some precision is reached.

In terms of complexity, Prop. 6 below generalizes polynomial complexity
results available on STN to TSTN, and therefore to time-dependent scheduling.

Proposition 6. Given a TSTN (V,C), if the existence of a propagation cy-
cle implies inconsistency, then the algorithm using Rules 7-8 for propagation
plus a FIFO ordering on the propagation queue plus propagation cycle detec-
tion establishes bound arc-consistency in O(|V ||C|) constraint revisions (bound
independent of the size of the variable domains).

Proof. Similar to the result stating that the number of arc revisions in the Bellman-

Ford’s FIFO label-correcting algorithm is O(|V ||C|).

In terms of implementation, we perform on the fly detection of propagation
cycles based on an efficient data structure introduced in [16]. The latter is used
for maintaining a topological order of nodes in the graphs of propagation of min
and max bounds. When no topological order exists, the graph contains a cycle.

Prop. 8 and 9 show that the two monotonicity properties considered in
this paper (delay- and shift-monotonicity) are satisfied by simple temporal con-
straints and by several constraints used in time-dependent scheduling (see [5]).

Proposition 7. Shift-monotonicity implies strict delay-monotonicity.

12 Cédric Pralet, Gérard Verfaillie

Proposition 8. Simple temporal constraints y−x ≥ c are shift-monotonic (and
therefore also strictly delay-monotonic).

Proposition 9. Let x, y be two temporal variables corresponding to the start
time and end time of a task respectively. Monotonicity results of Table 1 hold.

Proof. Prop. 7 is straightforward. Prop. 8 holds because if dmin is constant, then

delay
ct
(a, b) − delay

ct
(a′, b) = a − a′ and delay

ct
(a, b) − delay

ct
(a, b′) = b′ − b. For

Prop. 9, some intermediate results can be used: (a) if dmin(x, y) = dmin(x), shift-

monotonicity holds iff dmin(x) is a non-decreasing function; (b) if dmin(x) decreases

at some step, then delay-monotonicity holds provided that the decrease slope is ≥ −1.

Distance dmin(x, y) = dmin(x) form shift-monotonic delay-monotonic

A+Bx yes yes (strict)

A−Bx no yes iff B≤1 (strict iff B<1)

max(A,A+B(x−D)) yes yes (strict)

A if x < D,A+B otherwise yes yes (strict)

A−Bmin(x,D) no yes iff B≤1 (strict iff B<1)

Table 1. Monotonicity of some distance functions used in time-dependent scheduling,
with x a variable whose domain is not reduced to a singleton, and A,B,D constants
such that A ≥ 0, B > 0, and D > min(d(x))

4.3 Constraint Depropagation for Dynamic TSTN

Constraint propagation techniques are directly able to handle constraint addi-
tion or constraint strengthening. As for constraint removal or constraint weaken-
ing, constraint depropagation strategies defined in [10] for STN can be directly
reused. These strategies allow min and max bounds of temporal variables to
be recomputed at minimum cost. They avoid reinitializing all variable domains
and repropagating all constraints from scratch when a constraint is removed or
weakened. The basic idea is to use propagation chains in order to determine
which variable domains must be reinitialized and which constraints need to be
revised. More precisely, when a constraint y − x ≥ dmin(x, y) is removed or
weakened, if this constraint is active with regard to the min bound of y (resp.
the max bound of x), then the min bound of y (resp. the max bound of x) is
reinitialized to the value it had before any propagation. This reinitialization may
trigger other reinitializations. TSTN constraints of the form y − z ≥ dmin(z, y)
(resp. z− x ≥ dmin(x, z)) are then added to the list of constraints to be revised
from the point of view of min bounds (resp. max bounds).

The only difference when compared to standard STN techniques is the use of
lists of constraints to be revised instead of lists of variables. This allows constraint

Time-dependent STN 13

depropagation to be slightly less costly: on the example of reinitialization of the
min bound of y, the standard STN version would add to a list of variables to be
propagated every variable z linked to y by some constraint y − z ≥ dmin(z, y),
and doing so would repropagate in the end all constraints of the form u − z ≥
dmin(z, u), even those with u 6= y.

4.4 Constraint Revision Ordering

A last technique is used for minimizing the number of constraint revisions. This
can be particularly useful for TSTN, for which revising one constraint can be
significantly more costly than for STN. The proposed approach extends a tech-
nique developed for STN−[9], a sub-class of STN in which every constraint must
be rewritable as y− x ≥ c with c ≥ 0. The idea consists in building the strongly
connected components of the distance graph, in ordering them in topological
order, and in using this order to determine which constraint to propagate first.
We first recall definitions concerning strongly connected components.

Definition 8. Let G = (V,A) be a directed graph with V the set of nodes and
A the set of arcs. A Strongly Connected Component (SCC) of G is a maximum
sub-graph G′ of G such that there exists in G′ a path from every node to every
other node.

The DAG (Directed Acyclic Graph) of SCCs of G is the directed graph whose
nodes are the SCCs of G and which contains an arc from SCC c1 to SCC c2 iff
there exists in G an arc from one of the nodes of c1 to one of the nodes of c2.

A topological order of SCCs is an order � where each SCC c is put strictly
after each of its parents c′ in the DAG of SCCs (c′ ≺ c). Given a node x in
graph G, scc(x) denotes the unique SCC of G that contains x.

Propagating temporal constraints following a topological order of SCCs of the
distance graph boils down to using the fact that solving shortest path problems
is easier for acyclic graphs than for arbitrary graphs. To apply this result, con-
straints to be propagated are ordered according to a topological order of SCCs.
More precisely, concerning the propagation of min bounds, we propagate first
constraints y−x ≥ dmin(x, y) such that scc(y) is maximum in the order of SCCs
and, in case of equality, we propagate first constraints such that scc(x) 6= scc(y),
to postpone as much as possible the propagation of “internal” constraints in an
SCC. To break remaining ties, a FIFO ordering strategy is used. Concerning the
propagation of max bounds, constraints are ordered by increasing scc(x) and,
in case of equality, we propagate first constraints such that scc(y) 6= scc(x), and
break remaining ties using a FIFO ordering strategy. In the example of Fig. 3,
SCCs are represented as dotted boxes. A bad propagation order for min bounds
would consist in propagating first the constraint between sa2 and ea1, and then
the constraint between sa1 and ea3. A good order, consistent with the order of
SCCs, would consist in using the opposite strategy.

Compared to the way SCCs are used in [9] for STN−, the method we propose
is adapted not only to general STN, but also to TSTN. In terms of implemen-
tation, in order to avoid recomputing the DAG of SCCs from scratch after each

14 Cédric Pralet, Gérard Verfaillie

constraint addition or removal, we use recent algorithms proposed for maintain-
ing SCCs in a dynamic graph [17, 18].

5 Experiments

All techniques presented in Section 4 (constraint propagation, propagation cycle
detection, constraint depropagation, SCC ordering) are integrated and simulta-
neously used in a scheduling tool based on local search. The local search aspect
entails that doing/undoing a local move is fast, similarly to constraint-based
local search tools Comet [19] and LocalSolver [20]. Our STN/TSTN solver is im-
plemented in Java. Results are obtained on an Intel i5-520 1.2GHz, 4GBRAM.

Experiments not detailed here were first performed on STN obtained from
scheduling problems of the SMT-LIB. The objective was to evaluate the prop-
agation heuristics based on a topological ordering of the SCCs. This heuristics
appears to be a robust strategy, which significantly decreases the number of
constraint revisions on some problems. More precisely, for consistent STN, the
SCC heuristics is always at least as good as a pure FIFO heuristics, but for
inconsistent STN, it is not always the fastest strategy for proving inconsistency.

We detail below experiments realized on TSTN in the context of agile satel-
lites. The problem considered here is a simple no overlapping constraint over an
ordered sequence of n acquisitions acq1 → . . . → acqn, with n varying between
5 and 13. These acquisitions correspond to ground strips located between the
north of Spain and the north of France. The no-overlapping constraint between
acquisitions can be written as a set of t-simple temporal constraints of the form
si+1 − ei ≥ minAttTransTime(Eatt i(ei), Satti+1(si+1)) with, for an acquisition
j, sj/ej the start/end time of this acquisition, and Sattj(t)/Eattj(t) the atti-
tudes required to start/end j at time t. In addition, simple temporal constraints
are used to define the constant duration of each acquisition.

Two methods are compared: (1) a TSTN approach in which exact transition
times between acquisitions are used, and (2) an STN approach in which upper
bounds on transition times are pre-computed, by sampling on the different possi-
ble start times of the transitions. The schedule obtained in both cases is flexible in
the sense that the domains of values after propagation over STN/TSTN are gen-
erally not reduced to singletons. The criterion considered for comparing the two
approaches is the mean temporal flexibility mtf = 1

|V |

∑
x∈V (max(x)−min(x)),

measured as the mean, over all temporal variables x ∈ V , of the difference be-
tween the earliest and latest possible times associated with x. Such a flexibility is
important in practice to offer as much freedom as possible concerning the choice
of an angle of acquisition of ground strips, which influences image quality.

Three scenarios are considered. In the first one, acquisitions correspond to
strips of length about 80km, to be observed with a scanning direction of 0 degrees
(angle between the trace of the satellite on the ground and the direction in which
the strip must be scanned). Fig. 4(a) shows that in this case, the temporal flex-
ibility obtained with TSTN only slightly improves the flexibility obtained with
STN. The reason is that if all acquisitions are realized with a scanning direction

Time-dependent STN 15

of 0 degrees, the minimum transition times between acquisitions considered are
almost independent of the precise triggering time of transitions: they are only
time-dependent when the rotation on the pitch axis is the most constraining
from a temporal point of view, compared to the rotation on the roll axis.

In the second scenario, the scanning direction becomes 30 degrees. Fig. 4(b)
shows that the temporal flexibility obtained with TSTN is better than with
STN (improvement of about 20 seconds in flexibility), and that the flexibility
gap between STN and TSTN increases with the number of acquisitions planned.

In the third and last scenario, the length of the strips considered becomes
approximately 40km, and the scanning direction is chosen at random for each
strip. In this case, Fig. 4(c) shows that the STN approach only allows sequences
of length 5 and 6 to be scheduled. It concludes to an inconsistency of the problem
for n ≥ 7. On the other hand, the TSTN approach schedules all 13 acquisitions
considered. One reason explaining these results is that the more distinct the
scanning directions are, the more the minimum transition times between acqui-
sitions depend on the triggering time of the transitions. The possibility to have
distinct scanning directions is important in practice. It indeed allows acquisi-
tions defined as polygons to be split into strips whose orientation can be freely
chosen, which can reduce the number of strips to be scanned.

To give an idea of computation times, for 13 acquisitions added one by one
to the current schedule, a precision of one second on dates, and a maximum
number of iterations equal to 104 for computing firstNeg and lastNeg , the TSTN
approach takes about 2ms per acquisition addition. With STN, the computation
time is less than 0.1ms per addition. For precisions of 10−1, 10−2, and 10−3

second on dates, computation times with TSTN respectively become 3ms, 12ms,
and 66ms per addition. A typical technique can consist in first searching for
schedules with a fast coarse-grained approach, before using a finer precision.

 20

 40

 60

 80

 100

 120

 140

 160

 5 6 7 8 9 10 11 12 13

m
e
a
n
 t
e
m

p
o
ra

l
fl
e
x
ib

ili
ty

nbAcqsPlanned

flexTSTN_cap0
flexSTN_cap0

 0

 20

 40

 60

 80

 100

 120

 5 6 7 8 9 10 11 12 13

nbAcqsPlanned

flexTSTN_cap30
flexSTN_cap30

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 5 6 7 8 9 10 11 12 13

nbAcqsPlanned

flexTSTN_capRandom
flexSTN_capRandom

(a) (b) (c)

Fig. 4. Comparison of temporal flexibilities, in seconds, obtained with precomputed
upper bound on transition times (flexSTN) and with exact transition times (flexTSTN)

As a conclusion, this paper introduced TSTN, their properties, resolution
techniques, and their application to agile satellites. It would be interesting to
extend other features of STN to TSTN, e.g. concerning decomposability issues [1],
and to test TSTN on other applications, e.g. from the logistics domain.

16 Cédric Pralet, Gérard Verfaillie

References

1. Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artificial Intelli-
gence 49 (1991) 61–95

2. Stergiou, K., Koubarakis, M.: Backtracking algorithms for disjunctions of temporal
constraints. Artificial Intelligence 120 (2000) 81–117

3. Challenge ROADEF-03: Handling the mission of Earth observation satellites (2003)
http://challenge.roadef.org/2003/fr/.

4. Lemaître, M., Verfaillie, G., Jouhaud, F., Lachiver, J.M., Bataille, N.: Selecting
and scheduling observations of agile satellites. Aerospace Science and Technology
6 (2002) 367–381

5. Cheng, T., Ding, Q., Lin, B.: A concise survey of scheduling with time-dependent
processing times. European Journal of Operational Research 152 (2004) 1–13

6. Gawiejnowicz, S.: Time-dependent scheduling. Springer (2008)
7. Cervoni, R., Cesta, A., Oddi, A.: Managing dynamic temporal constraint networks.

In: Proc. of AIPS-94. (1994) 13–18
8. Cesta, A., Oddi, A.: Gaining efficiency and flexibility in the simple temporal

problem. In: Proc. of TIME-96. (1996) 45–50
9. Gerevini, A., Perini, A., Ricci, F.: Incremental algorithms for managing temporal

constraints. In: Proc. of ICTAI-96. (1996) 360–365
10. Shu, I., Effinger, R., Williams, B.: Enabling fast flexible planning through incre-

mental temporal reasoning with conflict extraction. In: Proc. of ICAPS-05. (2005)
252–261

11. Xu, L., Choueiry, B.: A new efficient algorithm for solving the simple temporal
problem. In: Proc. of TIME-ICTL-03. (2003) 210–220

12. Planken, L., de Weerdt, M., van der Krogt, R.: P3C: a new algorithm for the
simple temporal problem. In: Proc. of ICAPS-08. (2008) 256–263

13. Planken, L., de Weerdt, M., Yorke-Smith, N.: Incrementally solving STNs by
enforcing partial path consistency. In: Proc. of ICAPS-10. (2010) 129–136

14. Montanari, U.: Networks of constraints: fundamental properties and applications
to picture processing. Information Sciences 7(2) (1974) 95–132

15. Hentenryck, P.V., Deville, Y., Teng, C.: A generic arc-consistency algorithm and
its specializations. Artificial Intelligence 57(2-3) (1992) 291–321

16. Bender, M., Cole, R., Demaine, E., Farach-Colton, M., Zito, J.: Two simplified
algorithms for maintaining order in a list. In: Proc. of ESA-02. (2002) 152–164

17. Haeupler, B., Kavitha, T., Mathew, R., Sen, S., Tarjan, R.: Incremental cycle
detection, topological ordering, and strong component maintenance. ACM Trans-
actions on Algorithms 8(1) (2012)

18. Roditty, L., Zwick, U.: Improved dynamic reachability algorithms for directed
graphs. SIAM Journal on Computing 37(5) (2008) 1455–1471

19. Hentenryck, P.V., Michel, L.: Constraint-based local search. The MIT Press (2005)
20. Benoist, T., Estellon, B., Gardi, F., Megel, R., Nouioua, K.: Localsolver 1.x: a

black-box local-search solver for 0-1 programming. 4OR: A Quarterly Journal of
Operations Research 9(3) (2011) 299–316

