GEO Spacecraft Worst-Case Charging Estimation by Numerical Simulation

To cite this version:

HAL Id: hal-01070320
https://onera.hal.science/hal-01070320
Submitted on 1 Oct 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
GEO Spacecraft Worst-Case Charging Estimation by Numerical Simulation

J.-C. Matéo-Vélez, C. Pignal, N. Balcon, D. Payan, P. Sarraillh, S. Hess

Abstract— This paper presents a numerical estimation of spacecraft surface charging that combines the effects of both spacecraft material properties and severe environments, often called worst-cases. A series of simulations with the SPIS-GEO tool (Spacecraft Plasma Interaction Software) is analysed in order to determine if a worst-case environment can be extracted from the literature. The simulation especially focuses on the conductivity parameters, especially radiation induced. It is found hardly feasible to define a single and global worst-case, applicable to all situations.

Keywords— spacecraft charging, worst-case environment, radiation induced conductivity

I. INTRODUCTION

Spacecraft charging under geostationary orbit (GEO) can reach thousands of volts negative when submitted to geomagnetic sub-storms. A direct consequence of such events is the generation of large differential potentials on the spacecraft surface, and possibly deteriorations due to electrostatic discharges (ESD). Space industry generally adopts two approaches to assess spacecraft safety. First, ground testing permits to estimate the charging levels leading to ESD on specific and sensitive elements, such as solar cells or cables. This helps avoiding dangerous configurations, such as secondary arcing fed by the spacecraft power itself. This latter mechanism was indeed identified as the most probable cause of ADEOS-II loss in 2002 ([1]-[2]). The second approach consists in estimating charging levels probability by means of numerical simulation ([3]-[7]). This kind of simulation relies on strong assumptions since spacecraft charging is a complex interaction between an ambient radiative environment (electron, proton, photon), the spacecraft geometry and of course materials on its surface. This approach does need measurements of: 1/ ambient environments, especially during strong events, and 2/ material properties. A companion paper provides environments extracted from LANL data and a set of worst-case electron spectra [8]. These environments add to worst-case environments used world-wide and listed in [9]. Material bulk conductivity and radiation induced conductivity are tested in section IV and V respectively. While previous sections concentrate on inverted voltage gradient situation of sunlit dielectrics, Section VI presents results for shaded dielectrics, in the normal gradient situation. Finally, Section VII presents the main outcomes of this study.

II. SIMULATION DESCRIPTION

All simulations are performed with the SPIS tool version 5.1 [4], already used to simulate various GEO spacecraft charging situations ([3], [14]). The spacecraft geometry is described in Fig. 2 and Fig. 3. It is composed of a spacecraft hub of dimensions 1.76*2.64*2.64 m, two circular antennas of diameter 2.00 m and thickness 0.15 m, a cylindrical antenna of diameter 1.00 m and length 0.88 m and finally two solar arrays of dimensions 7.04*4.40*0.15 m. The list of materials properties is given in Fig. 1.

The differential energy distributions of the environments used in this work are given in Fig. 4 and graphically compared in Fig. 5. They were extracted from [9]. In this plot, environments with a single (*) denote single maxwellian environments, while (**) denotes double maxwellian. Note that the ECSS-E-ST-10-04C and SCATHA-Mullen double maxwellian have been used as they are, and also used with a removal of the low energy populations.

J.-C. Matéo-Vélez, C. Pignal, P. Sarraillh and S. Hess are with ONERA - The French Aerospace Lab, Toulouse, France (e-mail: Mateo@onera.fr)
N. Balcon and D. Payan are with CNES (e-mail: Denis.Payan@cnes.fr).
(Abstract No 147)

Details of reference materials properties. The signification of SPIS properties names can be found in the software user manual embedded in the SPIS release [4]. Te2k refers to teflon, Osr2k to optical sun reflector, bk2k to black kapton, Np2k to non conducting paint, Gr2k to graphite, Sc2k to solar cell cover glass, CFRP to carbon fiber and kapton to material measured at ONERA.

Published worst-case environments characteristics. All are maxwellian energy distributions.

Spacecraft charging risks are studied following two criteria: 1/ Time to reach 500 V of inverted voltage gradient between the solar cells and the spacecraft ground, which is known to be a sensitive situation; 2/ Gradient obtained at the same place but at a time close to equilibrium (200s and 1000s pending on the cases).

III. Published Worst-Cases Environments Comparison

This section presents the comparison of results obtained with the reference spacecraft configuration of Part II. We focus first on eclipse condition, and then on a spacecraft at Sun.

A. Eclipse Condition

The results of simulations made in eclipse condition are presented in Fig. 6, which shows the absolute ground spacecraft potential. Charging dynamics varies from an environment to another, pending on their integrated fluxes. Large fluxes lead to a quick charging phase. Some environments (Scatha2*, Nasa* and ATS-6) lead to a slower charging dynamics.

Fig. 1. Details of reference materials properties.

Fig. 2. Spacecraft geometry front side, with covering materials.

Fig. 3. Spacecraft geometry back side. Nodes 2 and 3 are made of Te2k and are the two non-visible surfaces of the satellite body.

Fig. 4. Published worst-case environments characteristics. All are maxwellian energy distributions.

Fig. 5. Differential energy distribution of published worst-cases
initial decrease because electron collection is mitigated by a larger secondary electron emission at energies around 15 keV (instead of 25 keV for other environments), see Fig. 9. The Galaxy-15 environment leads to a slow evolution because the electron density and current density are small, even though the temperature is large. These initial transient phases are followed by a slow decrease of the absolute potential, which is ruled by differential charging. During this phase, the spacecraft structure gets more negative while the solar cell cover glasses gets less negative due to their strong secondary electron emission yield under electron impact (property MSEY), see Fig. 7. The capacitive coupling is ruled by thin dielectric layer, hence with a slow dynamics wrt to initial absolute spacecraft capacitance.

The ECSS* case evolves quickly to a large negative potential (-21 000 V) while the NASA* case leads slightly to a significantly less negative potential (-13 000 V). This is a combination of electron current flux, which tends to make the spacecraft float negative, and secondary electron emission under electron impact (SEEE) and proton impact (SEEP), which tend to mitigate that potential. For SEEE, the more important the integrated surface of the differential energy distribution will be between the two cross-over energies, the less important the absolute potential of the spacecraft will be (absolute value). As a result, different spectra lead to different secondary emission yields. Differential charging is qualitatively the same for all spectra except the Galaxy15 case which does not exhibit any significant charging, see Fig. 7. This is due to the very large electron temperature of more than 50 keV. SEEE yield is small at those energies for all materials, as shown in Fig. 9, and the net currents are thus almost homogeneous over the spacecraft.

The environment classification of Fig. 10 shows that Scatha-Mullen 1 and 2 are the most risky when looking at the first criterion. The second criterion is less evident since environments that are initially less risky tend to get more
dangerous than others after a while. We explain this in Part III-
C.

Fig. 11 and Fig. 12 present the spacecraft surface potential in the Scatha1* environment. Solar cells are in the inverted potential gradient situation, as said earlier, while other dielectrics are generally more negative than the spacecraft potential of -21000 V.

Fig. 11. Surface potentials on the front side of the spacecraft (eclipse condition, Scatha1* case)

Fig. 12. Surface potentials on the back side of the spacecraft (Eclipse condition, Scatha1* case)

B. Sunlight Condition

This part gathers the results for a sunlight illumination perpendicularly to the solar arrays, see Fig. 13 and Fig. 14. Differential potentials of all surfaces are plotted in Fig. 15 and Fig. 16. The sunlit dielectrics are significantly less negative than the spacecraft ground. Shaded faces are much more negative than previously in eclipse. This is due to the fact that photoemission tends to keep the spacecraft ground less negative while the shaded dielectrics still keep getting more and more negative (if we forget conductivity...).
Fig. 16. Surface potentials on SC in sunlight condition (back side)

<table>
<thead>
<tr>
<th>Sun</th>
<th>Criterion 500V</th>
<th>Criterion t=1000s</th>
<th>epd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scatha1*</td>
<td>13s</td>
<td>Scatha1*</td>
<td>10409V</td>
</tr>
<tr>
<td>Scatha2*</td>
<td>13s</td>
<td>ECSS*</td>
<td>9965V</td>
</tr>
<tr>
<td>Scatha1979*</td>
<td>15s</td>
<td>ATS6*</td>
<td>9059V</td>
</tr>
<tr>
<td>Scatha1979**</td>
<td>22s</td>
<td>Scatha1979**</td>
<td>8832V</td>
</tr>
<tr>
<td>ECSS*</td>
<td>23s</td>
<td>Scatha2*</td>
<td>8150V</td>
</tr>
<tr>
<td>ECSS**</td>
<td>24s</td>
<td>NASA*</td>
<td>7205V</td>
</tr>
<tr>
<td>ATS6*</td>
<td>27s</td>
<td>Scatha1**</td>
<td>7139V</td>
</tr>
<tr>
<td>NASA*</td>
<td>35s</td>
<td>ECSS**</td>
<td>6872V</td>
</tr>
<tr>
<td>Galaxy15*</td>
<td>120s</td>
<td>Galaxy15*</td>
<td>3441V</td>
</tr>
</tbody>
</table>

Fig. 17. Environment classifications in sunlight condition

The environment classification of Fig. 17 concludes that Scatha1* case is the worst-case in sunlight for this spacecraft configuration, and following the two criteria. However, the rest of the classification changes when looking the second criterion. This is explained in the next part.

C. Low energy protons effect

As seen in Fig. 13, some curves depart from their initial strong voltage increase after a while, typically 200 s. Theses curves are double maxwellian ECSS and SCATHA1. They can be compared with their respective single maxwellian. Initially, they are ranked at the first positions of the worst-case classification of Fig. 17. After 1000 s, they are the last ones. The effect is almost negligible during the first 100 s, because the high energy electron population contributes equally to spacecraft charging. Low energy electrons have no impact since they are completely repelled by the -1000 V (and more) potentials. After that point, the single Maxwellian departs from the double-Maxwellian results because of low energy protons. Indeed, their flux is greatly enhanced due to focusing and acceleration towards the negative elements of the spacecraft. The Orbit Limited Model (OML) states that the flux is multiplied by a factor $1-q\phi/kT$, where q and kT are the population charge and temperature (in eV) respectively, ϕ the surface potential. For 200 eV protons for instance, the OML factor can reach 100 at $\phi = -20,000$V. In addition, protons are accelerated by the strongly attracting potential. Secondary electron emission under proton impact (SEEP) is close to a factor 2 or 4 for protons of energy 20 000 eV, as seen in Fig. 18.

Fig. 18. SEEP yield versus proton impact energy for different materials, and isotropic proton fluxes

The low and high energy proton fluxes are multiplied by a factor of 200 to 400 and 4 to 8 respectively, which makes both of them comparable to the electron flux. Taking into account low energy populations has a significant effect on long duration and large charging events (thousands of volts, second criterion). The 500 V criterion however does not rely on SEEP, since it appears at smaller voltages (hundreds of volts).

IV. BULK CONDUCTIVITY INFLUENCE

In this section, we simulate the same spacecraft configuration as in Part III, with the SCATHA-1* environment, except that we modify the bulk conductivity of the solar cells cover glasses. It is known that this material property strongly evolves with temperature from very resistive at -150°C to intermediate values at 20°C and almost conductive at large temperatures 100°C. As a consequence, we have performed a parametric study to take account of cold, medium and hot cover glasses, using bulk conductivities of 1e-17, 1e-13 and 1e-10 ohm$^{-1}$m$^{-1}$ respectively. The large conductivity configuration leads to a very small spacecraft absolute charging and cover glass differential charging. The intermediate value divides by a factor two the potentials with respect to cold conditions. This highlights the importance of taking into account temperature effects. This is especially important for eclipse exit in particular, during which cover glasses remain cold during a certain amount of time. At eclipse exit, the spacecraft may be pre-charged.
V. RADIATION INDUCED CONDUCTIVITY (RIC) INFLUENCE

A. Illustration of RIC effect

The radiation induced conductivity also strongly influences differential charging and so on absolute charging. In this section, we present results obtained in the same configuration as in Part III except that the radiation induced conductivity is now simulated (material parameter RCC different from zero). The radiation induced conductivity σ_{RIC} writes:

$$\sigma_{RIC} = RCC \left(\frac{dD}{dt} \right)^{RCP}$$

where D is the dose (dD/dt is the dose rate). In this simulation, we varied RCC from 0 to 1e-10 ohm$^{-1}$.m$^{-1}$ only for cover glass material, while RCP is kept constant to 1. A large RIC induces a small spacecraft potential because it makes cover glasses almost conductive which in turn leads to a significant current leakage from the shaded solar array to the sunlit emitting surfaces. Shaded faces can no longer float very negative and impose a significant negative barrier of potential for photoelectrons emitted by sunlit dielectric. This results in a less negative net current and a less negative spacecraft.

B. Published worst-cases comparison with intermediate RIC

In this paragraph we simulate all environments with a cover glass RCC parameter of 1e-12 ohm$^{-1}$.m$^{-1}$ (instead of 0) and RCD = 1. The effect is very significant for all environments except three of them: NASA*, ATS6* and Scatha2*. These environments still lead to potentials above -5000 V, while others generate less than -1000 V after 200 s. This is clearly linked to the presence or absence of medium energy electrons in the environment. The dashed curves of Fig. 5, representing the environments leading to strong charging, show lower energy distribution functions around 100-500 keV. Thus in these three specific cases, less electrons are concerned with high energies and RIC reduced. In this case, the worst-case environment would rather be Scatha2*, ATS6* and NASA*.
VI. CHARGING OF SHADED DIELECTRICS

In this section, we simulated the same spacecraft configuration as in Part III, except that we modified the back side of solar panels: CFRP was replaced with Kapton® (see material properties in Fig. 1). In order to see the RIC parameter influence, two simulations have been made, the first one with the proper RCC parameter of kapton and the second one with RCC = 0.

Both cases have no influence on the worst-case classification following the two criteria expressed earlier (concerning the differential charging between cover glass and SC). But as seen on Fig. 26 and Fig. 27, the behavior of differential charging between kapton and SC is greatly conditioned by RIC. In the same way as in Part V.B, three cases (Scatha2*, ATS6* and NASA*) are much less affected by RIC because of a smaller flux of high energy electrons. For shaded kapton, NASA* becomes the worst-case environment. The classification is changed because of the narrow link between differential energy distribution and RIC.

Shaded dielectrics may reach large normal potential gradient situations (NPG), i.e. significantly negative wrt the spacecraft ground. Thanks to its good RIC properties, kapton is a good candidate to avoid that risk. Other materials could lead to ESD, and their occurrence close to power supply carriers (solar cells, wires, etc) may produce hazardous secondary arcing. To assess that risk, RIC properties are key parameters.
VII. SUMMARY

In this paper, we have identified different worst-case environments for a single spacecraft configuration pending on the materials used on it, and pending on the criteria used to define them. Bulk and radiation induced conductivities determine the absolute and differential charging situation, as well as secondary electron emission. Cover glasses are known to have negligible radiation induced conductivity. As a consequence, for such materials, the criteria based on the solar cell coverglass differential voltage mainly depend on the integrated electron flux, rather than on their distributions at intermediate energy (producing RIC). More in detail, the worst-case classification changes when looking at either the time to reach a 500 V inverted voltage gradient (about some tens of seconds), or the potentials reached after a large duration (kilovolts after some hundreds of seconds). For this latter case, the presence of a low energy proton flux is of prime importance since it is a good way to limit large negative potentials (above -10 000 V). For both criteria based on solar cell cover glass potential, Scatha1* is the worst-case environment simulated in this paper.

However, the picture is not so clear when considering: 1/ sunlit dielectrics with a significant RIC conductivity; 2/ shaded dielectrics, which may also charge up and trigger hazardous ESDs; 3/ the effect of temperature changes when exiting eclipse for instance. For these important cases, the worst-case environments classification may significantly change from a case to another, pending on the materials used and their localization. In conclusion, it seems hardly feasible to distinguish one worst-case among the others without performing such an analysis, and taking into account conductivity under irradiation.

As a perspective, we plan to perform exhaustive simulations using also the environments taken from [8] that computed LANL spacecrafts data over a period of 15 years. It will deal with electron fluxes with intermediate energy. This activity also highlights the needs to use consolidated conductivity measurements and on-orbit spectra data. Recent data could be used ([10]-[13]).

REFERENCES

GEO Spacecraft Worst-Case Charging Estimation by Numerical Simulation

J.-C. Matéo-Vélez(1), C. Pigna(1), N. Balcon(2), D. Payan(2), P. Sarralh(1), S. Hess(1)

(1) ONERA, The French Aerospace Lab, Toulouse F-31055, France
(2) CNES, The French Space Agency, 31401, Toulouse Cedex 9, France

Abstract

This paper presents a numerical estimation of spacecraft surface charging that combines the effects of both spacecraft material properties and severe environments, often called worst-cases. A series of simulations with the SPIS-GEO tool (Spacecraft Plasma Interaction Software) is analyzed in order to determine if a worst-case environment can be extracted from the literature. The simulation especially focuses on the conductivity parameters, especially radiation induced. It is found hardly feasible to define a single and global worst-case, applicable to all situations.

Reference case

Negative spacecraft charging and inverted voltage gradient situation for cover glasses

Low energy protons

- No effect at start (see ECSS * and **)
- Major effect when spacecraft is very negative
- OML current increase 1-ee/kT
- Large SEE yield at large energy

Bulk conductivity of Cover glasses

Hot/Cold cover glasses will significantly change absolute and differential charging

Radiation Induced Conductivity of Cover glasses

\[\sigma_{IC} = RCC \left(\frac{dD}{dt} \right) \]

\[\text{RCC} = 1 \text{e-12 ohm}^{-1} \text{m}^{-1} \]

\[\text{RCD} = 1 \]

High energy electron flux limits IVG levels

Modifies the worst-case classification

Conclusion

We have identified different worst-case environments for a single spacecraft configuration depending on the materials used on it, and pending on the criteria used to define them. Bulk and radiation induced conductivities determine the absolute and differential charging situation, as well as secondary electron emission. In addition, shaded dielectrics may also charge up. Finally, the effect of the temperature needs to be investigated. As a perspective, we plan to use taken from paper #143 of LANL spacecraft data computed over a period of 15 years. It will deal with electron fluxes with intermediate energy. This activity also highlights the needs to use consolidated conductivity measurements and on-orbit spectra data.

Published worst-cases

SPIS Simulations = Parametric Study

See also paper #143 New data from 15 years of LANL, D. Payan et al. Worst case of Geostationary charging environment spectrum based on LANL flight data

Mono(*) and Bi-Maxwellian(*** environments from flight data

<table>
<thead>
<tr>
<th>SCATHA1979</th>
<th>SCATHA1</th>
<th>SCATHA2</th>
<th>ATS6</th>
<th>NASA</th>
<th>ECSS</th>
<th>ECSS**</th>
</tr>
</thead>
<tbody>
<tr>
<td>200E+05</td>
<td>1,60E+06</td>
<td>2,36E+04</td>
<td>1,93E+04</td>
<td>5,93E-06</td>
<td>1,70E-07</td>
<td></td>
</tr>
<tr>
<td>2,30E+06</td>
<td>1,30E+06</td>
<td>2,48E+04</td>
<td>2,82E+04</td>
<td>9,99E-06</td>
<td>1,41E-07</td>
<td></td>
</tr>
<tr>
<td>2,50E+06</td>
<td>2,80E+06</td>
<td>1,66E+04</td>
<td>1,16E+04</td>
<td>8,89E-06</td>
<td>1,94E-07</td>
<td></td>
</tr>
<tr>
<td>2,50E+06</td>
<td>2,90E+06</td>
<td>2,28E+04</td>
<td>1,28E+04</td>
<td>1,04E-05</td>
<td>2,11E-07</td>
<td></td>
</tr>
</tbody>
</table>

Electrical potential difference (Volt)

0 50 100 150 200 250 300 350 400 450 500

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time (second)

0 50 100 150 200 250 300 350 400 450 500

Electrical potential difference (Volt)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time (second)