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Abstract—For ground surveillance applications, the wireless
sensor networks play a strategic role in military operations. In
this paper, we explore the problem of tracking multiple targets
observed in the sensors fields based on onboard algorithms under
survivability system constraints. The surveillance system consists
of a number of sensor nodes scattered in a region in order to
detect and track targets in a cluttered environment. The targets
can move on and off the road under several possible motion
models. We study a Multiple Target Tracking (MTT) algorithm
that fits with operational needs and offers good track continuity
performance. The performances of this multiple sensors ground
target tracking algorithm are evaluated on a complex and realistic
scenario.

Index Terms—Wireless Ground Sensor Network, Multiple
Ground Target Tracking, IMM algorithm

I. INTRODUCTION

The goal of the work presented in this paper is to study

and develop in the next years an operational wireless sensor

networks (WSN) which consists of large number of smart

heterogeneous sensors with onboard sensing, processing and

wireless communication capabilities for the French Ministry

of Defense (MOD). The future operational WSN must satisfy

severe exigencies in term of survivability (few months), low

communications (to be undetectable by communication inter-

ception system), and real-time tactical situation assessment for

large surveillance areas. The use of WSN network must also

be easy and remotely controllable and have a low cost. The

system must be easy to deploy, implemented by a limited

number of operators with a minimum training through a

simple human machine interface (HMI) for its exploitation

and for decision-making support. Finally, the system must be

modular, flexible and dynamically configurable (depending on

the environment, the threat and mission). The main system

characteristics of such system are:

• efficiency: the system must provide highest performances,

• modularity an operational flexibility,

• reliability: failures must be detected, isolated and substi-

tuted,

• real-time use: information must be received and precessed

in real- time for the operational need,

• survivability: besides camouflage and discretion of the

means deployed, optimizing the energy and the network

resistance to aggression is a problem for the operational

credibility,

• affordability.

Components (both sensors and communications devices)

must have low energy consumptions, to be able to work

in a remote mode, in an outdoor environment and to fulfill

discretion constraints required to work in unattended operating

modes. The system must be easy to deploy and be able to adapt

to various natures of terrain and topographies.

Our demonstrator is intended to allow studies on automatic

data processing with an objective to correlate detection and

generate only one alert on each target, being tracked as times

goes on. It will allow us to evaluate several schemes for

the data collection and fusion process, and to demonstrate

the necessity of taking into account high-level information

(typically geographic information, as traffic lanes, intersec-

tions, areas without terrain obscuration,. . . ) for deployment

and exploitation of the system.

Several processing levels are considered in this work:

• local processing of raw data at the sensor level: it can

provide a detection alert on the presence of a target,

and eventually some attributes about the target (as target

location and type),

• additional processing on raw data (as basic image pro-

cessing on sensor nodes),

• data fusion on a sensor node from a set of informa-

tion collected from other sensors (target kinematics (e.g.

tracks), classifications, their number, etc).

In this paper, we study the problem of tracking multiple

moving objects observed through a WSN with limited sensing

abilities. Our purpose is to track several targets in maintaining

high track continuity performance to provide a reliable situa-

tion assessment. For this goal, we use heterogeneous sensors

to compensate the low amount of data available (due to the

weak sensor area coverage) by a better information quality

on the data (both in precision of location and in classification

information). The proposed data sensor processing presented

in this work allows to meet the operational constraints.

Several papers have been published on operational sensor

processing applied to WSN. For example, Ekman and Pålson
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described in [1] a modified particle filter (PF) [2] to track a sin-

gle vehicle through the WSN. Similar approach can be found

in [3]. Despite of the well known estimation performances

due to the generation of the particles on the road network,

we haven’t selected a PF algorithm because we need to track

several targets in the sensor network with severe processing

constraints due to hardware solution used in our demonstrator

to preserve the power of a fusion node. In fact, because PF

approach uses more CPU than Kalman filter (KF), extended

Kalman filter (EKF) or unscented Kalman filter (UKF), we

cannot use it in our specific context if one wants to make the

surveillance system operational during a long period of time.

Parmar and Zaveri in [4] have done similar studies and achieve

the same conclusions. They focus their study of the data

association for MTT in WSN and the need to limit the power

to maintain the WSN in activity during a long time. However,

in future work, if the hardware performances are improved

in satisfying the power constraint the use of PF will become

feasible. In fact, Oh and al. described in [5] a complete PF

algorithm (called MCMCDA algorithm) applied for tracking

multiple targets in a WSN with communication constraints. To

improve the MTT algorithm performance, we introduce in this

work the geographic informations in the tracking process as

proposed by Ulmke and Koch in [6]. Since we are interested

by tracking both ground vehicles (that can move on and off

the road), aerial vehicles that are not constrained on the road,

and pedestrians as well, we have to consider on-road tracking

as well as an off-road tracking algorithms. For doing this,

we have adapted the MTT ground target tracking algorithm

described in [7] for our WSN tracking demonstrator.

The paper is organized as follows : in section II the WSN

is briefly presented. Section III describes the multiple motion

model algorithm constrained to geographic informations. Sec-

tion IV is the extension of the algorithm to multiple target

tracking with classification fusion. Results from the study are

given in section V. Finally, concluding remarks are presented

in section VI.

II. UNATTENDED GROUND SENSOR NETWORK

A. Network description

The good quality of communication between the sensor

nodes has a strong impact on the ability of WSN to fulfill

its task of surveillance. It is also very important that the

WSN can communicate with the Command and Control (C2)

station. The solution proposed in this paper is based on on-

the-shelf existing components. Its multi-cluster architecture is

represented in figure 1.

This architecture is structured in two levels:

• a set of clusters: sensor and fusion nodes connected

through a low energy, low Rate 802.15.4 wireless net-

work, managed by a gateway;

• a backbone with higher rate gathering data from clusters

which guarantees the expected connectivity and allows

two-ways communications.

The main information transmitted on the network are the

following: data from sensor to sensor-nodes and to C2, state of

Figure 1: Sensor network architecture.

the components to sensor node and to C2, command to sensors

from C2 or sensor node to components, exchange between

sensor nodes to allow horizontal data fusion. Two categories

of sensors: low consumption sensors that can be kept in

operation to provide a continuous surveillance, and sensors

having higher consumption that can be activated in case of

presence of a target to acquire more detailed information on

it.

The sensor node receives data from other sensors, processes

them and transmits the local result to the fusion node. A set

of complementary sensors is selected in order to collect multi-

spectral information from the threats. These information will

be used in order to

• detect the presence of a target, or an event,

• provide a spatial location of the event: sensors provide at

current time tk a measurement zk (bearing θk, elevation

φk, distance ρk and radial velocity ρ̇k) in the sensor

reference frame. Most sensors are able to give only partial

location: bearing and distance only for radars, bearing and

elevation for electro-optical sensors,

• classify the nature of event among the given set of classes

C . The output of the classification process is a vector ck,

where each component is the likelihood of each target

class. Typically, we consider the following set of classes

C = {light-vehicle, heavy-vehicle, tracked-vehicle,

human, people, aerial targets }
(1)

The classification class (project requirement) is not conven-

tional because the class heavy-vehicle and tracked-vehicle are

not exclusives. As well as the class class human is include in

the people (human group) class. The human class is a singleton

of people class. That is why we have proposed at the sensor

level for light-vehicle and heavy-vehicle classes to discrim-

inate with sub-classes tracked-light-vehicle, wheeled-light-

vehicle and tracked-heavy-vehicle, wheeled-heavy-vehicle re-

spectively.

Different video algorithms have been studied at ONERA

and we have integrated one of them in the sensor node to



detect, localize and classify automatically the targets with the

previous considerations. The result of the processing (event,

detection and classification information) is emitted to the

fusion node. The same kind of process applies with acoustic

sensors.

B. Sensor model

The generic sensor j observation model is given by:

z
j
k = hj(xk) + b

j
k (2)

where hj(·) is the observation function, xk is the state of a

target (detailed in the next section), and b
j
k is a zero-mean

white Gaussian noise vector with a known covariance matrix

R
j
k. The observation function and the associated noise depends

on the type of sensor. We distinguish three observations

functions : hradar, hacou, hoptro, hmag associated respectively

to the radar, acoustic, optic and magnetic sensors.

hradar(xk) =
[

ρk θk ρ̇k
]′
hacou(xk) =

[

θk
]

hopt(xk) =
[

θk φk

]

hmag(xk) =
[

xk yk
] (3)

For the magnetic sensor, we use its own location in the TCF

in order to model a measurement because of its short range

detection (see table I).

The different types of sensor that can be connected to a

sensor node are listed in table I below. The Volume indicates

the area coverage where the target can be found. This event

is emitted as well as measurement to the fusion node in

order to correlate this information with another volume, or a

sensor detection to get a localized detection in the topographic

coordinated frame (TCF).

Sensor type number
sensor node detection

output characteristic

acoustic antenna 3
θk spherical
ck < 200 m

acoustic beacon 4
Volume spherical
ck < 200 m

magnetic 10 Volume
spherical

ck < 2 m

radar 1 ρk , θk ,ρ̇k
Sectoral = 90◦

< 1000 m

PIR 8 θk
mono,multi beam

< 200 m

micro-camera
4

θk ,φk Sectoral = 30◦ , 40◦

UIR ck < 100,200 m

FIR short
1

θk ,φk Sectoral = 10◦

UIR+visible ck < 100,200 m

JIM LR
1

θk ,φk Sectoral = 10◦

IR+visible ck < 100,200 m

Cham
4

θk ,φk Sectoral = 5◦, to 50 ◦

visible ck < 100,200 m

Table I: Types of sensors used in the demonstrator.

C. Localization step

The localization module is used to localize all sensors

and data in the TCF. For doing this, we need a calibration

of each sensor. Several calibration techniques will be tested

during the experimental trials, based on specific devices (GPS,

DGPS) allowing measurement of position and orientation of

individual components, on cooperative localization using range

or direction measurements between two sensors nodes, and on

specific methods for calibration of electro-optics sensors.

For the sensors providing only volume information, or

bearing detection, the localization module exploits all available

information on sensors and elementary detection to provide a

composite report zcomp(k) in the TCF that will feed the data

fusion process. The sensors provide detections and information

on location of the target in their own reference frame. To work

in common TCF for situation assessment we always need a

calibration step.

For notation convenience, the measurements sequence at the

fusion node Zk,l = {Zk−1,n, z
j
k} represents a possible set

of measurements generated by the target up to time k. Zk,l

consists in a subsequence Zk−1,n of measurements up to time

k−1 and a validated measurement z
j
k available at time k from

sensor j associated with the track T k,l. At the current time

k, the track T k,l is represented by a sequence of the state

estimates.

III. TARGET TRACKING WITH GEOGRAPHIC

INFORMATIONS

A. Geographic Information System

The geographic information system (GIS) used in this

work contains the following information: the segmented road

network, the hydrographic network, the vegetation area, the

buildings area and DTED (Digital Terrain Elevation Data).

Only the network and elevation information (the DTED +
buildings height) are used in the first part of this study.

The road network is connected, and each road segment is

indexed by the road section it belongs to. A road section is

defined by a finite set of connected road segments delimited

by a road end or a junction. For the topographic information,

we use the database called: BD TOPO1. This GIS has a metric

precision on the road-segments location.

At the beginning of a surveillance battlefield operation, a

TCF and its origin O are chosen in the manner that the axes

X , Y and Z are respectively oriented in the East, North and

Up local direction. The target tracking process is carried out in

the TCF. In addition, starting from the elevation terrain and the

sensor location at the current time, it is possible to compute

the perceivability Pe at any referenced point for a sensor j.

In the sequel, P j
e (x, y, k) will denote the probability for the

sensor j to detect at time k a target at the location (x, y).

B. Context constraint tracking

The target state at the current time tk is defined in the local

horizontal plane of the TCF by the vector:

xk = [xk ẋk yk ẏk]
T

(4)

where (xk, yk) and (ẋk, ẏk) define respectively the target

location and velocity in the local horizontal plane.

1See www.professionnels.ign.fr/bdtopo for a description of this GIS.

www.professionnels.ign.fr/bdtopo


The dynamics of the target evolving on the road are modeled

by a first-order plant equation. The target state on the road

segment s is defined by xs
k where the target position (xs

k, y
s
k)

belongs to the road segment s and the corresponding heading

(ẋs
k, ẏ

s
k) in its direction.

The event that the target is on road segment s is noted

esk = {xk ∈ s}. Given this event esk and according to a motion

model Mi, the estimation of the target state can be improved

by considering the road segment s. For a constant velocity

motion model, it follows:

xs
k = Fs,i(∆k) · x

s
k−1

+ Γ(∆k) · v
s,i
k (5)

where ∆k is the sampling time, Fs,i is the state transition

matrix associated to the road segment s and adapted to a

motion model Mi; v
s,i
k is a white zero-mean Gaussian random

vector with covariance matrix Q
s,i
k chosen in such a way that

the standard deviation σd along the road segment is higher

than the standard deviation σn in the orthogonal direction. It

is defined by:

Q
s,i
k = Rθs ·

(

σ2

d 0
0 σ2

n

)

·RT
θs

(6)

where Rθs is the rotation matrix associated with the direction

θs defined in the plane (O,X, Y ) of the road segment s. The

matrix Γ(∆k) is defined in [8].

To improve the modeling for targets moving on a road

network, we have proposed in [9] to adapt the level of the

dynamic model’s noise based on the length of the road segment

s. The idea is to increase the standard deviation σn defined

in (6) to take into account the error on the road segment

location. After the state estimation obtained by a Kalman filter,

the estimated state is then projected according to the road

constraint esk. This step is detailed in [10].

C. IMM under road segment constraint

Here we recall briefly the principle of the interacting

multiple model (IMM) taking into account the road network

constraints. The IMM is a well-known efficient maneuvering

target tracking algorithm [11] which combines estimated states

based on multiple models to get a better global state estimate.

The IMM is near optimal and has a reasonable complexity

which makes it very appealing in tracking applications. In

section III-B, a constrained motion model i to segment s,

noted Ms,i
k , was defined. There is a distinction between the

definition of a motion model Ms,i
k (i.e. motion model type,

noise,. . . ) and the event M
s,i
k that the target is moving on the

road according the motion model i at time k. Here we extend

the segment constraint to the different dynamic models (among

a set of r + 1 motion models) that a target can follow. The

model indexed by r = 0 is the stop model. The transition

between the models is modelled as a Markovian process.

In general when the target moves from one segment to the

next, the set of dynamic models changes. In a conventional

IMM estimator [11], the likelihood function of a model i is

given, for a track T k,l, associated with the j-th measurement,

j ∈ {0, 1, . . . ,mk} by:

Λi
k = p{zjk|M

s,i
k , Zk−1,n}, i = 0, 1, . . . , r (7)

where Zk−1,n is the subsequence of measurements associated

with the track T k,l.

Using the IMM estimator with a stop-motion model, we get

the likelihood function of the moving target mode for indexes

i ∈ {0, 1, . . . , r} and for j ∈ {0, 1, . . . ,mk} by:

Λi
k =PD · p{zjk|M

s,i
k , Zk−1,n}

· (1− δj,0) + (1− PD) · δj,0
(8)

The likelihood of the stopped target mode (i.e. r = 0) is:

Λ0

k = p{zjk|M
s,0
k , Zk−1,n} = δj,0 (9)

where δj,0 is the Kronecker function defined by δj,0 = 1 if

j = 0 and δj,0 = 0 otherwise.

The combined (global) likelihood function Λk of a track

including a stop-motion model is then given by:

Λk =

r
∑

i=0

Λi
k · µi

k|k−1
(10)

where µi
k|k−1

is the predicted model probabilities. The steps

of the IMM under road segment s constraint are the same as

for the classical IMM and it has been described in [9].

Here, one has used the IMM algorithm constrained to only

one road segment s. However, a road section is composed with

several road segments. When the target is making a transition

from one segment to another, the problem is to choose the

segments with the corresponding motion models that can better

fit the target dynamics. The choice of a segment implies the

construction of the directional process noise. That is why

the IMM motions model set varies with the road network

configuration and a variable-structure IMM (VS IMM) offers

a better solution for ground target tracking on road networks.

Such algorithm has been denoted VS IMMC (C standing for

Constrained) and presented in details in [12].

D. Perceivability probability in the target tracking process

To maintain track continuity for improving the situation

understanding and assessment for intelligence operation, we

propose to study the non-detection causes of the sensors thanks

to the knowledge one has (even partial) of the environment.

The goal is to modify the likelihood of a track if the asso-

ciated target is not detected, avoiding the stop-motion model

activation and the stop of the track. A Bayesian formulation

is proposed to introduce the target perceivability by the sensor

in the likelihood (8). Based on our previous works [13], we

introduce the event that the target associated with a track T k,l

is perceivable, or not, by the sensor j.

At time tk, the target state probability is represented by the

following exhaustive and exclusive events :

O
j
k = {target is perceivable by sensor j} (11)

Ō
j
k = {target is unperceivable by sensor j} (12)



Here, Ok denotes the event that target can be detected by

the sensor. By introducing the events (11) and (12) in the

conventional IMM, we obtain a new formulation of the like-

lihood function. But the perceivability event does not take in

account the non-detection due to the target stop. In the VS

IMMC, we have for each motion model aside r + 1 motions

models (∀i ∈ {0, ..., r}) the likelihoods function defined in

(7) for a track T k,l. We recall that the track T k,l represents

the estimated states of the measurement sequence Zk,l =
{Zk−1,n, z

j
k} with z

j
k the detection of sensor j the current

time tk. Now, according to the total probability theorem, we

introduce the event that the target is detected (i.e. {d = 1} )

or not (i.e. {d = 0} ) and the events O
j
k and Ō

j
k. We obtain

from (7) (∀i ∈ {0, ..., r}):

Λi
k = p{zjk, d = 1, Oj

k|Z
k−1,n,M

i,s
k }

+ p{zjk, d = 1, Ōj
k|Z

k−1,n,M
i,s
k }

+ p{zjk, d = 0, Oj
k|Z

k−1,n,M
i,s
k }

+ p{zjk, d = 0, Ōj
k|Z

k−1,n,M
i,s
k }

(13)

However, an unperceivable target can’t be detected. So the

event
{

d = 1, Ōj
k

}

is equal to the empty set ∅. According to

Kirubarajan’s approach [14], we distinguish the stop-motion

model noted M
0,s
k from the set of motion models. The event

{M0,s
k , d = 1} is equal to ∅, because the stop-motion model

must not be activated if there is at least one detection. By

using Bayes’ rule, we get the new expression of the likelihood

function (∀i ∈ {0, ..., r}) as follows:

Λi
k = (1− δd,0) · PD

· p{zjk|Z
k−1,n,M

i,s
k , Ok} · P{Oj

k|Z
k−1,n,M

i,s
k }

+ (1− PD) · δd,0 · P{Oj
k|Z

k−1,n,M
i,s
k }

+ δd,0 · (1− P{Oj
k|Z

k−1,n,M
i,s
k }

(14)

where δd,0 is the Kronecker function equal to unity if there

is no detection (d = 0). The probability to obtain at least

one measurement is equal to the detection probability (i.e.

P{d = 1|Zk−1,n,M
i,s
k , O

j
k} = (1− δd,0) · PD) in opposition

to obtain no measurement (i.e. P{d = 0|Zk−1,n,M
i,s
k , O

j
k} =

(1− δd,0) · (1− PD)).
The computation of the perception probability

P{Oj
k|Z

k−1,n} depends on each sensor type, and it is

computed at the location module. For instance, we use

the line of site of camera type sensor to compute the non

detection area due to terrain elevation with a ray tracing

method. For the acoustic sensor, we use attenuation signal

towards the ground nature and terrain elevation, etc. The

perception probability is computed using the function P j
e ,

more precisely by

P{Oj
k|Z

k−1,n,M
i,s
k } = P j

e (x
i,s

k|k−1
, y

i,s

k|k−1
) (15)

where (xi,s

k|k−1
, y

i,s

k|k−1
) are the location components in the

TCF of the predicted state x̂
i,s

k|k−1
. In futures works, we will

improve the computation of the perception probability using

also the target velocity estimate.

IV. MULTIPLE TARGET TRACKING

A. Multiple target type tracker

We briefly describe here the main steps of the VS IMMC

SB-MHT (Structured Branching - Multiple Hypotheses Track-

ing). More details can be found in chapter 16 of [8].

Figure 2: SB-MHT logic flowchart in a fusion node.

1) The first functional block of the SB-MHT is shown in

figure 2. It consists of the track confirmation and the

track maintenance. When the new set Zk of measure-

ments is received, a standard gating procedure [8] is

applied in order to determine the valid measurement

reports for track pairings. The existing tracks are updated

with VS IMMC at first, and then extrapolated confirmed

tracks are formed. When the track is not updated with

reports, the stop-motion model is activated.

2) In order to palliate the association problem, we need a

probabilistic expression for the evaluation of the track

formation hypotheses that includes all aspects of the

data association problem. It is convenient to use the log-

likelihood ratio (LLR) as a score of a track T k,l because

it can be expressed at current time k in the following

recursive form [8]:

Lk,l = Lk−1,n +∆Lk,l (16)

with

∆Lk,l = log

(

Λk

λfa

)

(17)

and

L(0) = log

(

λfa

λfa + λnt

)

(18)

where λfa and λnt are respectively the false alarm

rate and the new target rate per unit of surveillance

volume. Λk is the global likelihood function described

in (10). After the track score calculation of the track

T k,l, Wald’s Sequential Probability Ratio Test (SPRT) is

used to set up the track status either as deleted, tentative

or confirmed track. The tracks that fail the SPRT are

deleted, and the surviving tracks are kept for the next

stage.

3) The process of clustering is used to put altogether the

tracks that share common measurements. The clustering



limits the number of hypotheses to generate, and there-

fore it can drastically reduce the complexity of tracking

system. The result of the clustering is a list of tracks

that are interacting. The next step is to form hypotheses

of compatible tracks.

4) For each cluster, multiple compatible hypotheses are

formed to represent the different compatible tracks sce-

narios. Each hypothesis is evaluated according to the

track score function associated to the different tracks.

Then, a technique is required to find the set of hypothe-

ses that represents the most likely tracks collection. The

unlikely hypotheses and associated tracks are deleted by

a pruning method, and only the NHypo best hypotheses

are kept in the system.

5) For each track, the a posteriori probability is computed,

and a classical N-Scan pruning approach [8] is used to

delete the most unlikely tracks. With this approach the

most likely tracks are selected to reduce the number

of tracks. However, the N-Scan technique combined

with the constraint implies that other tracks hypotheses

(i.e. constrained on other road segments) are arbitrary

deleted. To avoid this problem, we modify the N-Scan

pruning approach in order to select the Nk best tracks

on each Nk road sections.

6) The SPRT is used to delete the unlikely hypotheses

among the Nk hypotheses. The tracks are then updated

and projected on the road network. In order to reduce

the number of tracks to keep in the memory of the

computer, a merging technique (selection of the most

probable tracks which have common measurements) is

also implemented.

B. Classification fusion

In a fusion node, the target type tracker presented in [15]

is used to improve the performance of the data association

in the SB-MHT. The principle consists to update the posterior

class probability vector at each scan time tk, with the classifier

output. The classifier gives the probability vector βk,l of a

track T k,l given by :

βk,l =
c
j
k ⊗ βk−1,n

c
j
k

′
βk−1,n

(19)

where c
j
k is the likelihood vector of the jth sensor classifier

output, βk−1,n is the prior probability provided by the previous

updated track T k−1,n and ⊗ is the Schur-Hadamard product.

The initial classification vector is given by :

β0 =
c
j
k

∑n=N

n=1
c
j
k(n)

(20)

In assuming the independence of the kinematic and classifi-

cation observations, the augmented logarithm likelihood ratio

∆La
k,l is the sum of the logarithm kinematic-likelihood ∆Lk,l

ratio given in (17), and the logarithm of classification ratio

∆Lc
k,l. The recursive form of the track score (16) is then given

by

Lk,l = Lk−1,n +∆La
k,l (21)

with

∆La
k,l = ∆Lk,l +∆Lc

k,l (22)

where ∆Lk,l is defined in (17).

The log-likelihood ratio of the classification belonging to

the track T k,l versus belonging to a false or new target is :

∆Lc
k,l = log(

c
j
k

′
βk−1,n

c
j
k

′
βe

) (23)

where e defines an extraneous target. If the track is not

associated to a measurement at the current time tk we have

∆Lc
k,l = 0.

Finally, the updated target type ĉk,l of the track T k,l is

chosen as the maximum probability of updated classification

vector (19).

V. PERFORMANCE EVALUATION

To evaluate the performance of the proposed fusion process

for WSN, we have simulated a realistic complex scenario.

The goal of this evaluation is to prove the capability of our

MTT algorithm to be implemented in a fusion node on-board

prototype, and to provide measures of performance (MOP)

of the tracking. For this, we have compared the proposed

algorithm with and without the road network information

respectively named Algorithm 1 and Algorithm 2.

To compute the performance metrics, an important step is

to decide at each time which track to compare with which

target. In addition, this decision is made in the presence of

closely spaced targets and false measurements.The assignment

is required to be unique, i.e. at most one track can be

associated with one target at any time, and at most one target

can be associated with one track. To solve this assignment,

Munkres algorithm has been used. The tracks not associated

or correlated to a target despite the assignment are considered

as false tracks.

The MOP that have been used in this study are the follow-

ing:

• Root Square Error (RSE). The root square error is the

most well-known MOP. It provides an information on the

track precision in location and velocity.

• Track Length Ratio (TLR). The track length ratio is a

ratio between the track length associated to a target with

the length of the target trajectory. It informs on the track

continuity performances

In our scenario, we have considered 20 targets moving on a

chosen operational area. The targets are maneuvering on and

off the road network. We distinguish several target types (as

tank, jeep, soldiers, civilian pedestrians, etc). Our simulator

constrained the maneuvers by taking into account the target

type. We have had soldiers (targets number 11, 12, 13), and

ground vehicles (targets number 14, 15, 19) that move on the



Figure 3: Ground target trajectories.

Figure 4: Sensor locations and coverages.

battlefield in a close formation. The figure 3 shows the targets

trajectories on the area of interest. In this scenario, we also

consider terrain masks, due to buildings, vegetation and terrain

elevation.

Sensors2 are placed at strategic locations (at some road

intersections, or in order to get a maximum detection area)

to ensure infrastructure protection mission. Radar, video and

acoustic sensors generate false alarms.

To obtain our MOP we use only one simulation because our

software is for operational vocation and is unable to integrated

several simulations. The table II shows the Root Square Error

(RSE) and the Track Length Ratio (TLR) of the algorithm

1 (by tacking into account road network information) and

algorithm 2 (without road network information). Globally, we

observe mitigated results on the track precision. In fact, we

work with in-situ sensors with metric precision, that is why

2We are not allowed to give more details about sensors characteristics in
this paper.

Algorithm 1 Algorithm 2

Target number RSE (in m) TLR RSE (in m) TLR

1 10.48 0.99 19.43 0.8

2 7.43 1 7.7 1

3 5.32 1 12 1

4 6.20 0.88 6.08 0.9

5 6.35 1 11.74 0.59

6 5.66 0.68 5.2 0.68

7 22.45 0.6 16.11 0.85

8 3.43 1 7.42 0.9

9 7.07 0.86 10.28 0.5

10 12.79 0.63 12.52 0.45

11 6.72 0.82 8.42 0.85

12 6.58 0.81 7.71 0.89

13 8.56 0.51 9.87 0.61

14 1.91 1 4.19 1

15 10.39 0.37 9.02 0.51

16 12.77 0.34 12.67 0.31

17 6.44 0.78 9.33 0.51

18 9.30 0.48 8.87 0.46

19 7.06 0.6 7.56 0.44

20 18.55 0.38 13.4 0.88

Table II: Synthetic MOP.

the improvement on the track precision, due to road network

constraint, is week. However, this constraint can provide

better prediction on the track when the target evolves in non-

detection areas (terrain mask or sensor absence) as shown on

figures 5 and 6. The constraint contributes also to improve

track association for the crossing maneuvers (figure 7). The

cases where the algorithm 2 has a better TLR than algorithm

1 are due to the fact that the covariance is not constraint

and less directional. The covariances of each motion model

(necessary to the validation gating procedure) is more bigger

than the covariances of each constrained motion model of the

algorithm 1. The counterpart for algorithm 2 is the cluster

size, in the SB-MHT steps, which is is bigger because more

associations are done causing an increase of the computation

time. But, in a strong target maneuver case out of the sensor

coverage or in terrain mask, the algorithm 1 is more robust to

palliate the maneuver because the validation gate is larger. This

is the case with the target 20 at the middle of the scenario, the

target accelerates between 2 sensors area and the stop motion

model is activated for the algorithm 1 because no detection

is associated at the opposite of the algorithm 2 that succeeds

in track-to-target association. A solution to compensate this

weakness should be to compute a track segment association

algorithm to correlate new tracks with with lost tracks . In

addition, despite of the group class information given by video

and acoustic sensors, algorithms don’t arrive to track soldier’s

group. This is due to the heterogeneous measurement model.

A group is only one detection for the previous sensors brings

about a track initialisation. But with radar sensor a group can

be several detections due to resolution cell. An ambiguity

arises in track association if several heterogeneous sensor

detect a group resulting track lost. The on-boarded constraints

(not communicated in this paper) are satisfied.



Figure 5: Track leaving the video coverage.

Figure 6: Track continuity is maintained.

Figure 7: Track crossing illustration.

VI. CONCLUSION

To conclude, this paper presents well-known algorithms

applied for wireless sensor network with severe on-boarded

constraints and operational requirements. We have described

a multiple target tracking algorithm in a fusion node and

validated the concept on a simulated scenario. The main

weakness of our approach is the lost of tracks when the targets

evolve in close formation. The next steps of our project are :

to test the fusion node in operational context with real sensors

and associated processing, to develop an approach to initialise

and track groups in a heterogeneous sensor network, to com-

pare the performances to use distributed and hierarchical data

fusion architecture in order to limit the bandwidth and to

propose finally an approach to detect abnormal behaviour with

a WSN activated during several weeks on a operational theatre.
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