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Abstract—In this paper, we provide a deep examination of the
main bases of Subjective Logic (SL) and reveal serious problems
with them. A new interesting alternative way for building a
normal coarsened basic belief assignment from a refined one is
also proposed. The defects in the SL fusion rule and the problems
in the link between opinion and Beta probability density functions
are also analyzed. Some numerical examples and related analyses
are provided to justify our viewpoints.
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I. INTRODUCTION

Subjective Logic (SL) was introduced by Jøsang in 1997
[1] as a logic which operates on subjective beliefs about
the world. SL is essentially based on the belief functions
(BF) introduced in 1976 by Shafer in the development of his
Mathematical Theory of Evidence, known as Dempster-Shafer
Theory (DST) [2]. According to [3], SL can be seen as an
extension of standard (binary) logic and probability calculus.
SL introduces new terminologies (like opinions, disbelief, etc)
of well-known concepts drawn from DST. Our examination of
SL literature reveals that definitions and even notations used
in SL have slightly changed over the years that make SL a bit
difficult to follow for readers unfamiliar with belief functions
basis. The main goal of this paper is to clarify and discuss some
bases of SL that appear to us questionable in order to identify
the real benefit and innovation of SL with respect to what has
been already proposed elsewhere using different notation and
terminologies. This paper is organized as follows. Because SL
is based on BF, we first recall the basics of BF in Section II.
Section III recalls the two main opinion models (simple and
“normal”) proposed in [1], [4]. We present also in the section
III a new alternative “normal” model for building a coarsened
basic belief assignment (BBA) based on a strong justification.
In Section IV, we discuss the opinion SL fusion rule and in
Section V we examine the link between opinion and Beta
probability density functions (pdf’s). Section VI concludes this
paper with general remarks and suggestions.

II. BASICS OF BELIEF FUNCTIONS

The Belief Functions were introduced in DST [2] to model
epistemic uncertainty. We briefly recall in this section the
basic definitions of belief functions to make the presentation
of Subjective Logic easier to follow. Let Θ be a frame of
discernment of a problem under consideration. More precisely,

the set Θ = {�1, �2, . . . , �N} consists of a list of N exhaustive
and mutually exclusive elements �i, i = 1, 2, . . . , N . Each �i
represents a possible state related to the problem we want to
solve. The assumption of exhaustivity and mutual exclusivity
of elements of Θ is classically referred as Shafer’s model of
the frame Θ. A classical1 basic belief assignment (BBA), also
called a belief mass function (or just a mass for short), is
a mapping2 mΘ(.) : 2Θ → [0, 1] from the power set3 of Θ
denoted 2Θ to [0, 1], that verifies [2]:

mΘ(∅) = 0 and
∑

X∈2Θ

mΘ(X) = 1 (1)

The quantity mΘ(X) represents the mass of belief exactly
committed to X . An element X ∈ 2Θ is called a focal
element if and only if mΘ(X) > 0. The set ℱ(mΘ) ≜

{X ∈ 2Θ∣mΘ(X) > 0} of all focal elements of a BBA
mΘ(.) is called the core of the BBA. A BBA mΘ(.) is
said Bayesian if its focal elements are singletons of 2Θ. The
vacuous BBA characterizing the total ignorance denoted4 by
It = �1 ∪ �2 ∪ . . . ∪ �N is defined by mv

Θ(.) : 2Θ → [0; 1]
such that mv

Θ(X) = 0 if X ∕= Θ, and mv
Θ(It) = 1. From any

BBA mΘ(.), the belief function BelΘ(.) and the plausibility
function PlΘ(.) are defined for ∀X ∈ 2Θ as:

BelΘ(X) =
∑

Y ∈2Θ∣Y⊆X

mΘ(Y ) (2)

PlΘ(X) =
∑

Y ∈2Θ∣X∩Y ∕=∅

mΘ(Y ) (3)

BelΘ(X) represents the whole mass of belief that comes
from all subsets of Θ included in X . It is usually interpreted
as the lower bound of the probability of X , i.e. Pmin

Θ (X).
PlΘ(X) represents the whole mass of belief that comes from
all subsets of Θ compatible with X (i.e., those intersecting
X). PlΘ(X) is usually interpreted as the upper bound of the
probability of X , i.e. Pmax

Θ (X). BelΘ(.) is a sub-additive
measure since

∑

�i∈Θ BelΘ(�i) ≤ 1, whereas PlΘ(.) is super-

additive because
∑

�i∈Θ PlΘ(�i) ≥ 1. BelΘ(X) and PlΘ(X)

1Some authors prefer to work with unconventional BBAs allowing
mΘ(∅) > 0. We don’t use them in this work.

2Here we put Θ as subscript to explicitly shows the frame of discernment
on which the BBA is referring.

3The power set is the set of all subsets of Θ, empty set included.
4The set {�1, �2, . . . , �N} and the complete ignorance �1 ∪ �2 ∪ . . .∪ �N

are both denoted Θ in DST.



defined previously are classically seen [2] as lower and upper
bounds of an unknown probability PΘ(.), and one has the fol-
lowing inequality satisfied: ∀X ∈ 2Θ, BelΘ(X) ≤ PΘ(X) ≤
PlΘ(X). The belief function BelΘ(.) (and the plausibility
function PlΘ(.)) built from any Bayesian BBA mΘ(.) can be
interpreted as a (subjective) conditional probability measure
provided by a given source of evidence, because if the BBA
mΘ(.) is Bayesian one has [2]: BelΘ(X) = PlΘ(X) =
PΘ(X).

In DST, the combination (fusion) of several independent
sources of evidences is done with Dempster-Shafer5 (DS) rule
of combination, assuming that the sources are not in total
conflict6. DS combination of two independent BBAs m1

Θ(.)
and m2

Θ(.) is defined by mDS
Θ (∅) = 0, and for all X ∈ 2Θ∖{∅}

by:

mDS
Θ (X) =

1

KDS

∑

X1,X2∈2Θ

X1∩X2=X

m1
Θ(X1)m

2
Θ(X2) (4)

with
KDS = 1−

∑

X1,X2∈2Θ

X1∩X2=∅

m1
Θ(X1)m

2
Θ(X2) (5)

A discussion on the validity of DS rule and its incompatibility
with Bayes fusion rule for combining Bayesian BBAs can be
found in [5], [6], [7].

In the next sections, we present and discuss the main con-
cepts and definitions introduced by Jøsang in the development
of SL. Our goal is to show that some aspects of SL appear
in our standpoint ill-justified and questionable. The three main
bases of SL are: 1) the construction of a model for so-called
“opinions” from BF, 2) the link made between opinions and
Beta probability density functions (pdfs) and 3) a fusion rule to
combine opinions provided by different sources. SL proposes
also additional propositional operators [4] (simple or normal
multiplications, comultiplications,etc) that will not be analyzed
nor discussed in the sequel because our main goal here is only
to examine the interest of SL for fusion applications.

III. OPINION MODELS IN SUBJECTIVE LOGIC

SL logic starts with the definitions of two opinion models
(the simple and normal models) based on Shafer’s belief func-
tions introduced in the previous section, and the coarsening
of a frame of discernment. Before presenting these models,
one must recall three basic notions involved in the definition
of opinions: the belief function b(X), the disbelief function
d(X) and the uncertainty function u(X).

5Although the rule has been proposed originally by Dempster, we call it
Dempster-Shafer rule because it has been widely promoted by Shafer in DST.

6otherwise DS rule is mathematically not defined because of 0/0 indeter-
minacy.

A. Belief, disbelief and uncertainty

These functions are mathematically defined as follows [1],
[3], [4], [8], [9]: ∀X ∈ 2Θ

b(X) ≜
∑

Y ∈2Θ∣Y⊆X

mΘ(Y ) (6)

d(X) ≜
∑

Y ∈2Θ∣Y ∩X=∅

mΘ(Y ) (7)

u(X) ≜
∑

Y ∈2Θ∣Y ∩X ∕=∅ and Y ∕⊆X

mΘ(Y ) (8)

These notions appeal few comments7.

1) In the sequel, we prefer to denote them bΘ(X),
dΘ(X) and uΘ(X) to show explicitly the underlying
frame we are referring to when manipulating these
functions.

2) bΘ(X) = BelΘ(X) since they have same definitions.
3) dΘ(X) = BelΘ(X̄), where X̄ denotes the comple-

ment of the set X in Θ. The disbelief function dΘ(.)
corresponds to the doubt function DouΘ(.) already
introduced by Shafer in [2], p. 43. More precisely,
for all X ∈ 2Θ one has

dΘ(X) = DouΘ(X) ≜ BelΘ(X̄) = 1− PlΘ(X)
(9)

4) uΘ(X) can just be defined more simply by uΘ(X) ≜
PlΘ(X)−BelΘ(X) which is a standard definition to
characterize the uncertainty on X in the framework
of BF. Because PlΘ(X) = 1 − BelΘ(X̄) (see [2]
Chap. 2 for proof), one always has uΘ(X) = 1 −
BelΘ(X̄)−BelΘ(X) as well.

5) For all X ∈ 2Θ, bΘ(X) + dΘ(X) + uΘ(X) = 1
because bΘ(x) = BelΘ(X), dΘ(X) = BelΘ(X̄) and
uΘ(X) = 1−BelΘ(X)−BelΘ(X̄).

6) Because b(X) + d(X) + u(X) = 1, the char-
acterization of belief of X requires theoreti-
cally the knowledge of two values only, typi-
cally the belief interval [BelΘ(X), P lΘ(X)], from
which other couples of values can be easily
drawn, i.e (BelΘ(X), BelΘ(X̄)), (BelΘ(X), u(X)),
(BelΘ(X̄), u(X)), etc. In SL, the author works ex-
plicitly also with the third redundant component.

B. Atomicity of elements of the frame

The relative atomicity of a set X with respect to another set
Y (assuming Y ∕= ∅) plays an important role in SL because it is
involved in the definition of the pignistic probability (which is
also used in SL) as shown in the next subsection. The relative
atomicity is defined by [1]

a(X ∣Y ) ≜
∣X ∩ Y ∣

∣Y ∣
(10)

where ∣X∩Y ∣ and ∣Y ∣ are the cardinalities of sets X∩Y and Y ,
respectively. Obviously a(X ∣Y ) ∈ [0, 1] because (X∩Y ) ⊆ Y ,
so that ∣X ∩ Y ∣ ≤ ∣Y ∣ always holds. If Y corresponds to
the whole frame Θ = {�1, . . . , �N} with N > 1 mutually

7some of them have been given already by Jøsang himself but are worth to
be recalled here.



exclusive atomic elements �i, then for any set X ∈ 2Θ, one
has always

a(X ∣Θ) ≜
∣X ∩Θ∣

∣Θ∣
=

∣X ∣

∣Θ∣
=

∣X ∣

N
(11)

because ∣X ∩ Θ∣ = ∣X ∣ since X ⊆ Θ. The relative atomicity
a(X ∣Θ) of X w.r.t8 Θ is just called atomicity of X in SL and it
is usually denoted a(X), see [4] for details. We prefer to keep
the rigorous notation a(X ∣Θ) in the sequel to explicitly denote
the underlying frame on which the atomicity is computed. It
is worth noting that the knowledge of the numerical value
a(X ∣Θ) alone does not bring a very useful information on X
if we don’t know jointly the cardinality of Θ. For example,
from the given numerical value a(X ∣Θ) = 0.5, we can only
infer that the size (cardinality) of X is only half of the size
of the frame Θ. Without knowing the cardinality of Θ itself,
the cardinality of X cannot be known from the given value of
a(X ∣Θ).

C. Pignistic probability

The pignistic9 probability measure, denoted by BetPΘ(.),
is a particular subjective probability measure consistent with
belief intervals computed from any BBA mΘ(.) defined on
2Θ, i.e. such that BelΘ(X) ≤ BetPΘ(X) ≤ PlΘ(X) for all
X ⊆ Θ. BetPΘ(.) was proposed and coined by Smets and
Kennes in [10] and its justification is based on the principle
of insufficient reason defended by the authors. It has been
renamed probability expectation, and denoted by E[.] in SL
[1], [8]. In fact, there exists many other ways to construct
(subjective) probability measures PΘ(.) that are also consistent
with belief intervals for approximating any BBA mΘ(.) as
already reported in [11], Chap. 3. All methods of construction
of PΘ(.) are based on different justifications and there is
no consensus on which one is the most efficient and useful
one, even if the pignistic probability is very often adopted
in practice. In our opinion, there is no unique “expected
probability”, and that is why it seems more judicious to keep
the original name (pignistic probability) in the sequel in order
to refer precisely to the probability transformation used. The
pignistic probability BetPΘ(.) is defined10 by:

BetPΘ(X) =
∑

Y ∈2Θ∖{∅}

a(X/Y )mΘ(Y ) (12)

BetPΘ(.) satisfies all three Kolmogorov probabilities
axioms and its consequences; in particular one always has
BetPΘ(X ∪ Y ) = BetPΘ(X) + BetPΘ(Y ) if X ∩ Y = ∅,
X,Y ⊆ Θ.

Remark 1: According to [3], p. 5, the “belief functions can
only be used to estimate probability values and not to set
bounds, because the probability of a real event can never
be determined with certainty, and neither can upper and
lower bounds to it.” This interpretation is unconventional
and disputable because the definitions of BelΘ(.) and
PlΘ(.) functions from a BBA mΘ(.) allow to compute

8with respect to;
9pignistic epithet comes from pignus in Latin which means bet. That is why

BetP notation is used to refer to this betting commitment probability.
10when working with normal BBA, i.e. when mΘ(∅) = 0.

Focal Elem. A B C A ∪ B A ∪ C B ∪ C Θ
mΘ(.) 0.10 0.15 0.05 0.10 0.10 0.20 0.30

b(.) 0.10 0.15 0.05 0.35 0.25 0.40 1
d(.) 0.40 0.25 0.35 0.05 0.15 0.10 0
u(.) 0.50 0.60 0.60 0.60 0.60 0.50 0

a(.∣Θ) 1/3 1/3 1/3 2/3 2/3 2/3 1

BetPΘ(.) 0.30 0.40 0.30 0.70 0.60 0.70 1

TABLE I. COMPUTATIONS OF b(X), d(X), u(X), a(X∣Θ) AND

BetPΘ(X).

mathematically the lower and upper bounds of a consistent
subjective probability measure PΘ(X) for all X ∈ 2Θ as
explained by Shafer in [2] as soon as a BBA mΘ(.) is
precisely known or given.

Example 1: Let us consider the frame Θ = {A,B,C} with
Shafer’s model. Table I gives the values of b(x) = BelΘ(X),
d(X) = BelΘ(X̄), u(X) = 1−BelΘ(X)−BelΘ(X̄), a(X ∣Θ)
and BetPΘ(X) for all elements X ∈ 2Θ ∖ {∅} for the BBA
mΘ(.) given in the second row of the Table.

D. Subjective Opinion

Originally in [1], an opinion about X , denoted !X is an
ordered triple of real values (b(X), d(X), u(X)) in [0, 1]3

!X ≜ (b(X), d(X), u(X)) (13)

with the constraint b(X) + d(X) + u(X) = 1 where b(X)
is the belief component of the opinion !X , d(X) is its
disbelief, and u(X) is its uncertainty. It is clear that !X

as given by Eq. (13) corresponds exactly to a simple BBA
mΘX

(.) = (mΘX
(X),mΘX

(X̄),mΘX
(X ∪ X̄)) defined on

the power-set of the 2D frame ΘX ≜ {X, X̄}, and it is a
trivial instance of DST, see [1], p. 3. Actually for technical
reasons that will appear clear in the sequel, we prefer to adopt
a more rigorous notation and introduce explicitly the frame
ΘX in the notation. Hence, we denote an opinion as:

!ΘX
(X) ≜ (bΘX

(X), dΘX
(X), uΘX

(X)) (14)

Because mΘX
(X) + mΘX

(X̄) + mΘX
(X ∪ X̄) = 1,

one component is redundant, and in fact an opinion !ΘX
(X)

is mathematically equivalent to the knowledge of only two
components expressed as a belief interval, i.e. !ΘX

(X) ≡
[BelΘX

(X), P lΘX
(X)] with:

bΘX
(X) ≜ BelΘX

(X) = mΘX
(X) (15)

dΘX
(X) ≜ BelΘX

(X̄) = 1− PlΘX
(X) = mΘX

(X̄) (16)

uΘX
(X) ≜ PlΘX

(X)−BelΘX
(X) = mΘX

(X ∪ X̄) (17)

mΘX
(X) can be interpreted as the percentage of truth of

the proposition X = “The solution is in the set X”, mΘX
(X̄)

as the percentage of falsehood of the proposition X , and
mΘX

(X∪X̄) as the percentage of subjective uncertainty about
the proposition X . By construction of belief functions, one
always has:

uΘX
(X) = PlΘX

(X)−BelΘX
(X)

= (1− BelΘX
(X̄))− (1 − PlΘX

(X̄))

= PlΘX
(X̄)−BelΘX

(X̄) = uΘX
(X̄) (18)

It is worth noting that the knowledge of the belief interval
[BelΘX

(X), P lΘX
(X)], or equivalently the knowledge of



mΘX
(.), doesn’t require the knowledge of cardinalities of

X , X̄ , nor ΘX . The knowledge of these cardinalities is
necessary only to estimate a compatible pignistic probability
measure BetPΘX

(X) ∈ [BelΘX
(X), P lΘX

(X)] because it
needs the relative atomicities for its derivation. Moreover,
any ordered triple (b(X), d(X), u(X)) in [0, 1]3 with
b(X) + d(X) + u(X) = 1 can always be identified directly
as a simple BBA mΘX

(.) according to (15)–(17), without
the necessity of referring to a refined11 BBA mΘ(.) through
(6)–(8). In practice, the belief assessments are preferentially
expressed by human experts directly with simple (coarsened)
BBAs rather than with refined BBA because the latter are
much more difficult to establish. Therefore the definition
of an opinion model based on a refined BBA according to
(6)–(8), although receivable, is not fundamental in the strict
definition of an opinion since it should be directly given by
(15)–(17).

Example 2: let us consider the 2D-frame ΘX ≜ {X, X̄} with
the BBA mΘX

(.) given by:

⎧

⎨

⎩

mΘX
(X) = 0.10

mΘX
(X̄) = 0.40

mΘX
(X ∪ X̄) = 0.50

which corresponds to the belief intervals (opinions)
!ΘX

(X) ≡ [BelΘX
(X), P lΘX

(X)] = [0.10, 0.60] and
!ΘX

(X̄) ≡ [BelΘX
(X̄), P lΘX

(X̄)] = [0.40, 0.90]. Without
extra assumptions on ∣X ∣ and ∣X̄ ∣ there is no way to compute
BetPΘX

(X). One can nevertheless apply the pignistic
transformation of mΘX

(.) with different assumptions to get a
compatible probability measure with the belief intervals. For
example,

∙ By taking the pignistic transformation and making the naive
assumption (by default) ∣X ∣ = ∣X̄ ∣, so that a(X ∣ΘX) =
∣X∣
∣ΘX ∣ =

∣X∣
∣X∣+∣X̄∣

= 1/2 = a(X̄ ∣ΘX), one will get:

{

BetPΘX
(X) = mΘX

(X) + 1
2mΘX

(X ∪ X̄) = 0.35

BetPΘX
(X̄) = mΘX

(X̄) + 1
2mΘX

(X ∪ X̄) = 0.65

Note that this probability measure doesn’t require the full
knowledge of the values of ∣X ∣ and ∣X̄ ∣, but only that the
equality ∣X ∣ = ∣X̄∣ holds.

∙ By taking the pignistic transformation and assuming some
extra knowledge of cardinalities ∣X ∣ and ∣X̄ ∣, say for example

let assume ∣X ∣ = 1 and ∣X̄ ∣ = 2 so that a(X ∣ΘX) = ∣X∣
∣ΘX ∣ =

∣X∣
∣X∣+∣X̄∣

= 1/3 and a(X̄∣ΘX) = 2/3, one will get:

{

BetPΘX
(X) = mΘX

(X) + 1
3mΘX

(X ∪ X̄) ≈ 0.267

BetPΘX
(X̄) = mΘX

(X̄) + 2
3mΘX

(X ∪ X̄) ≈ 0.733

E. Building opinions from a refined BBA

If one has a refined BBA mΘ(.) defined on the power-set
of a frame Θ, it is always possible to compute the belief
interval [BelΘ(X), P lΘ(X)] for all X ∈ 2Θ according to
(2)-(3). Reciprocally, from all belief BelΘ(X) values (or
plausibility values PlΘ(X)), one can always compute the

11We call the BBA mΘ(.) refined because ∣Θ∣ > ∣ΘX ∣.

BBA mΘ(.) thanks to Möbius transform [2]. Moreover, if one
has mΘ(.) and if one knows the cardinality of the element
X for all X ∈ 2Θ, one can easily compute the pignistic
probability BetPΘ(X) thanks to (12).

From the knowledge of a given BBA mΘ(.), how to build
a simpler (coarsened) BBA mΘX

(.) (called “opinion” in SL)
for any chosen X ∈ 2Θ? Several methods are possible for
doing this. We briefly present them, and propose a new one
based on a strong mathematical justification.

∙ Simple model [12]: the knowledge of the belief interval
[BelΘ(X), P lΘ(X)] allows to define very simply mΘX

(.) on

the coarsened 2D-frame12 ΘX ≜ {X, X̄} by taking trivially:

⎧





⎨





⎩

mΘX
(X) = BelΘ(X)

mΘX
(X̄) = 1− PlΘ(X) = BelΘ(X̄)

mΘX
(X ∪ X̄) = PlΘ(X)−BelΘ(X)

= 1− BelΘ(X)−BelΘ(X̄)

(19)

In 2001, Jøsang did reconsider this simple model by taking
also into account the atomicity of element X in the extended
definition of an opinion. Such extension was probably motived
by the main role taken by the atomicities in the computation
of the pignistic probabilities. The (extended) opinion definition
used in SL from 2001 is as follows [3]

!X ≜ (b(X), d(X), u(X), a(x)) (20)

In our point of view, even if atomicity is an important infor-
mation about the structure of the frame, an opinion including
such information should be expressed more rigorously by one
of the two formulae depending on which underlying frame the
BBA we are directly referring

!Θ(X) ≜ ([BelΘ(X), P lΘ(X)], a(X ∣Θ)) (21)

!ΘX
(X) ≜ ([BelΘX

(X), P lΘX
(X)], a(X ∣ΘX)) (22)

It is worth noting that imposing [BelΘX
(X), P lΘX

(X)] =
[BelΘ(X), P lΘ(X)] and a(X ∣ΘX) = a(X ∣Θ) does not help
to get BetPΘX

(X) = BetPΘ(X) when working with mΘ(.)
or when working with the coarsened BBA mΘX

(.) built with
(19). This is not surprising at all because on the one hand
of the distinct granularities of the frames Θ and ΘX and on
the other hand of the probabilistic formula (12) itself. This
remark is perfectly illustrated in the following example.

Example 3: Let us consider Θ = {A,B,C} with Shafer’s
model and the BBA mΘ(.) as given in Table I, and let’s
take X = A so that mΘX

(.) corresponds exactly to the BBA
given in example 2 according to (19). As already shown in
example 1, one has with mΘ(.), BetPΘ(X = A) = 0.30 and
BetPΘ(X̄ = B ∪ C) = BetPΘ(B) + BetPΘ(C) = 0.70.
If we assume same exact atomicity values a(X ∣ΘX) =
a(X ∣Θ) = 1/3 and a(X̄∣ΘX) = a(X̄∣Θ) = 2/3, we obtain
with mΘX

(.) given in example 2 BetPΘX
(X = A) = 0.267

and BetPΘX
(X̄) = 0.733. We clearly get different pignistic

probability values with mΘ(.) and with mΘX
(.), even if

12also called the focused frame in [8].



we use the same exact atomicities in BetP formulae and if
we impose [BelΘX

(X), P lΘX
(X)] = [BelΘ(X), P lΘ(X)],

which is perfectly normal.

In order to circumvent this inherent incompatibility prob-
lem, Jøsang proposed to redefine the “atomicity” of X with
respect to ΘX from the knowledge of the pignistic probability
BetPΘ(.) computed from the BBA mΘ(.). More precisely,
to get BetPΘX

(X) = mΘX
(X) + ã(X ∣ΘX)mΘX

(X ∪
X̄) = BetPΘ(X) when imposing [BelΘX

(X), P lΘX
(X)] =

[BelΘ(X), P lΘ(X)], one must trivially take

ã(X ∣ΘX) ≜ (BetPΘ(X)−mΘX
(X))/mΘX

(X ∪ X̄) (23)

with assuming13 mΘX
(X ∪ X̄) > 0.

Remark 2: This redefinition of the relative atomicity of the
element X of the coarsened frame ΘX doesn’t of course reflect
the true relative atomicity of X , but it defines a (a posteriori14)
redistribution factor of the mass of uncertainty mΘX

(X ∪ X̄)
to mΘX

(X) for calculating a subjective probability measure
PΘX

(X). In fact, the knowledge of PΘX
(X) or ã(X ∣ΘX)

are strictly equivalent as soon as the BBA mΘX
(.) is given.

Therefore, the (extended) opinion defined by (20) could be
also replaced more judiciously by:

!ΘX
(X) ≜ (mΘX

(X),mΘX
(X̄),mΘX

(X ∪ X̄), PΘX
(X))

≡ ([BelΘX
(X), P lΘX

(X)], PΘX
(X))

where PΘX
(X) could be any subjective probability measure

compatible with the belief interval [BelΘX
(X), P lΘX

(X)],
or eventually computed from mΘ(.), if known.

∙ Jøsang’s “normal” model: Later in 2003, Jøsang did
propose in [4], [14], [15] another model to build mΘX

(.)
from the belief interval [BelΘ(X), P lΘ(X)], the atomicity
a(X ∣Θ) and from BetPΘ(X). The motivation was to pre-
serve the same atomicities values, i.e. a(X ∣ΘX) = a(X ∣Θ)
in the model and to get same pignistic probabilities value
BetPΘX

(X) = BetPΘ(X), and that is why it has been called
the “normal” model. This model is given by the following
formulae – For BetPΘ(X) ≥ BelΘ(X) + a(X ∣Θ)uΘ(X)
⎧







⎨







⎩

mΘX
(X) ≜ BelΘ(X) + BetPΘ(X)−BelΘ(X)−a(X∣Θ)uΘ(X)

1−a(X∣Θ)

mΘX
(X̄) ≜ dΘ(X) = BelΘ(X̄)

mΘX
(X ∪ X̄) ≜ uΘ(X)− BetPΘ(X)−BelΘ(X)−a(X∣Θ)uΘ(X)

1−a(X∣Θ)

a(X ∣ΘX) ≜ a(X ∣Θ)
(24)

– For BetPΘ(X) < BelΘ(X) + a(X ∣Θ)uΘ(X)
⎧







⎨







⎩

mΘX
(X) ≜ BelΘ(X)

mΘX
(X̄) ≜ BelΘ(X̄) + BelΘ(X)+a(X∣Θ)uΘ(X)−BetPΘ(X)

a(X∣Θ)

mΘX
(X ∪ X̄) ≜ uΘ(X)− BelΘ(X)+a(X∣Θ)uΘ(X)−BetPΘ(X)

a(X∣Θ)

a(X ∣ΘX) ≜ a(X ∣Θ)
(25)

Remark 3: This mathematical “normal model” has never
been seriously justified in SL literature, and in fact we don’t

13if mΘX
(X ∪ X̄) = 0, then it means from (19) that BelΘ(X) =

P lΘ(X) = BetPΘ(X) = BetPΘX
(X).

14assuming the given knowledge of BetPΘ(X).

see solid arguments for supporting it, mainly because a better
(simpler) and more strongly justified model can be easily
established as it will be shown in the next paragraph.

∙ A new and better “normal” model: this new model
derives from one of Shannon’s entropy properties which states
that entropy decreases when the size of the probability space
decreases because the number of possible states taken by
the random variable (governed by the underlying probability
measure) diminishes. The basic idea to build a better new
“normal” model is to use this property to quantify precisely
the gain in the reduction of uncertainty that one has to consider
when working in the coarsened frame ΘX . Before going
further in the formulation of our new “normal” model, one
needs to first recall few bases about Shannon entropy.

Shannon entropy [16], usually expressed in bits (binary
digits), of a probability measure PN (X) ≜ [p1, p2, . . . , pN ]
of a random variable X over a discrete finite set ΘN =
{�1, . . . , �N} is defined by15

H(PN ) = HN (p1, p2, . . . , pN) ≜ −
N
∑

i=1

pi log2 pi (26)

where pi ≜ P (X = �i). The entropy H(PN ) measures
the degree of randomness carried by a given distribution
of probabilities of X over the set ΘN of cardinality N .
The entropy is minimal if there exists a �i ∈ Θ such that
P (X = �i) = 1 so that Hmin

N = 0. It is maximal when the
distribution of probabilities of X is uniform on ΘN , that is
when P (X = �i) = 1/N , i = 1, 2, . . . , N . In that case,
Hmax

N = log2(N). Therefore, H(PN ) ∈ [0, log2(N)] when
expressed in bits. An interesting recursive property of Shannon
entropy is that [16], [17] if p1 + p2 > 0

HN (p1, p2, . . . , pN ) = HN−1(p1 + p2, p3 . . . , pN )

+ (p1 + p2)H2(
p1

p1 + p2
,

p2
p1 + p2

) (27)

The quantity HN−1(p1+p2, p3 . . . , pN) represents the entropy

of the probability measure PN−1(X) ≜ [p1 + p2, p3 . . . , pN ]
of the random variable X over the discrete coarsened finite set
ΘN−1 ≜ {�1 ∪ �2, �3, . . . , �N} having now N − 1 elements.
The term (p1+p2)H2(

p1

p1+p2
, p2

p1+p2
) ≥ 0 reflects the increase

of entropy due to the refinement process when splitting �1∪�2
into two separate states �1 and �2. The increase of entropy
is normal because the refinement process generates more
uncertainty on the choice to make due to the increase of
granularity of the frame. We define the entropy reduction factor
�N (N,N − 1) ∈ [0, 1] by:

� ≜
HN−1

HN
(28)

So let’s now consider a BBA mΘ(.) defined on 2Θ and a
subjective probability measure, say BetPΘ(.) with the pignis-
tic transformation, over the frame Θ of cardinality N . Based on
BetPΘ(.), we are able to compute its corresponding Shannon
entropy HN (BetPΘ), that we just denote as Hfine to specify

15with convention 0 log2 0 = 0.



that it has been computed from the probability defined over
a refined frame. Let’s consider an element X ∈ 2Θ and
its corresponding coarsened frame ΘX = {X, X̄}. We are
able from the set of values BetPΘ(�i), i = 1, 2, . . . , N to
compute also the coarsened probability measure by taking
BetPΘ(X) =

∑

�i∈X BetPΘ(�i) and BetPΘ(X̄) = 1 −
BetPΘ(X). This subjective (coarsened) probability measure
yields a new (smaller) Shannon entropy value denoted Hcoarse

because of the coarsening effect as shown through (27). Hence
the entropy reduction factor � = Hcoarse/Hfine is easily
obtained. This reduction factor will be used to reduce the
uncertainty degree in our new normal model by trivially taking:

uΘX
(X) ≜ � ⋅ uΘ(X) =

Hcoarse

Hfine

⋅ (P lΘ(X)−BelΘ(X)) (29)

uΘX
(X) ∈ [0, 1], because � ∈ [0, 1] and uΘ(X) ∈ [0, 1].

From any BBA mΘX
(.) defined in ΘX = {X, X̄},

it is always possible to compute the pignistic probabilities
BetPΘX

(X) and BetPΘX
(X̄) = 1 − BetPΘX

(X) by the
probability transformation given in (12). More precisely, by
{

BetPΘX
(X) = mΘX

(X) + a(X ∣ΘX)mΘX
(X ∪ X̄)

BetPΘX
(X̄) = mΘX

(X̄) + a(X̄∣ΘX)mΘX
(X ∪ X̄)

(30)

Conversely, from any given set of consistent16 probabilities
(BetPΘX

(X), BetPΘX
(X̄)) and any chosen value mΘX

(X ∪
X̄) in [0, 1], we can always establish a well-defined BBA by
computing mΘX

(X) and mΘX
(X̄) from (30) by taking

{

mΘX
(X) = BetPΘX

(X)− a(X ∣ΘX)mΘX
(X ∪ X̄)

mΘX
(X̄) = BetPΘX

(X̄)− a(X̄∣ΘX)mΘX
(X ∪ X̄)

(31)

In particular, in choosing (BetPΘX
(X), BetPΘX

(X̄)) =
(BetPΘ(X), BetPΘ(X̄)) and mΘX

(X ∪ X̄) = uΘX
(X) =

� ⋅ uΘ(X), because (BetPΘ(X), BetPΘ(X̄)) is a consis-
tent couple of probabilities and � ⋅ uΘ(X) ∈ [0, 1]. Since
BetPΘ(X̄) = 1 − BetPΘ(X) and a(X ∣ΘX) = a(X ∣Θ) and
a(X̄∣ΘX) = a(X̄ ∣Θ) = 1− a(X ∣Θ), we finally obtain thanks
to (31) the explicit formulae of our new “normal” model for
the well-defined coarsened BBA mΘX

(.) as follows:
⎧











⎨











⎩

mΘX
(X) ≜ BetPΘ(X)− a(X∣ΘX) ⋅ � ⋅ (P lΘ(X)−BelΘ(X))

mΘX
(X̄) ≜ (1−BetPΘ(X))

−(1− a(X∣ΘX)) ⋅ � ⋅ (P lΘ(X)−BelΘ(X))

mΘX
(X ∪ X̄) ≜ � ⋅ (P lΘ(X)−BelΘ(X))

a(X∣ΘX) = a(X∣Θ)
(32)

where the entropy reduction factor � is given by � =
H(BetPΘX

)/H(BetPΘ) with

BetPΘX
= [

∑

�i∈X

BetPΘ(�i), 1−
∑

�i∈X

BetPΘ(�i)] (33)

BetPΘ = [BetPΘ(�1), . . . , BetPΘ(�N )] (34)

Remark 4: it is worth noting that the factor � ∈ [0, 1]
is independent of the logarithm base used to define and

16such that (BetPΘX
(X), BetPΘX

(X̄)) ∈ [0, 1]2, with BetPΘX
(X)+

BetPΘX
(X̄) = 1.

compute the entropies involved in (28) (instead of log2,
it could be log10, ln, logb with b > 0 different of 1),
because for any real positive numbers a and b different of
1 there always exists a constant k such that logb = k loga
which is given by k = 1/ loga(b). Therefore, our model
doesn’t depend on the choice of the logarithm base involved
in the entropy definition. It is also easy to verify that
BetPΘX

(X) = mΘX
(X) + a(X ∣ΘX)mΘX

(X ∪ X̄) is equal
to BetPΘ(X) by using formula (32). In summary, this new
“normal” model has in our point of view a better construction
and strongly justification than Jøsang’s “normal” model given
in (24)–(25), even if its practical interest remains to be shown
for real applications.

Example 4: let us consider Θ = {A,B,C} with Shafer’s
model and the BBA mΘ(.), atomicities and BetP values as
given in Table I, and let’s take X = A so that ΘX = {X =
A, X̄ = B ∪ C}. Because BetPΘ(X = A) = 0.30 is greater
than BelΘ(X)+a(X ∣Θ)uΘ(X) = 0.10+(1/3)0.50 ≈ 0.266,
we use the formulae in (24) to find the normal Jøsang’s model.
Based on (24), one will get:

⎧







⎨







⎩

mΘX
(X) = 0.10 + 0.30−0.1−(1/3)⋅0.5

1−(1/3) = 0.15

mΘX
(X̄) = BelΘ(B ∪ C) = 0.40

mΘX
(X ∪ X̄) = 0.50− 0.30−0.1−(1/3)⋅0.5

1−(1/3) = 0.45

a(X ∣ΘX) = a(X ∣Θ) = 1/3

(35)

Based on BetPΘ(.), one has Hfine ≈ 1.57095 and
Hcoarse ≈ 0.88129 so that � ≈ 0.56099. Applying the new
normal model formulae given in (32) we obtain now:

⎧





⎨





⎩

mΘX
(X) = 0.30− (1/3) ⋅ � ⋅ (0.60− 0.10) ≈ 0.20650

mΘX
(X̄) = 0.70− (2/3) ⋅ � ⋅ (0.60− 0.10) ≈ 0.51300

mΘX
(X ∪ X̄) = 0.56099 ⋅ (0.60− 0.10) ≈ 0.28050

a(X ∣ΘX) = a(X ∣Θ) = 1/3
(36)

With our new model, we get a reduction of uncertainty
that directly reflects the decrease of Shannon entropy of the
pignistic probability measure when working on a coarsened
frame. Such reduction level of uncertainty is better justified
than the reduction proposed in Jøsang’s “ad-hoc normal”
model.

IV. FUSION OF OPINIONS IN SUBJECTIVE LOGIC

In this section, we examine the fusion rules proposed in SL
to combine two opinions given by two distinct sources of evi-
dence related to the same frame ΘX . For notation convenience,
in the sequel we denote SL opinions !1

X = (b1X , d1X , u1
X)

and !2
X = (b2X , d2X , u2

X) using the conventional notation,
that is !1

X ≡ m1(.) = (m1(X),m1(X̄),m1(X ∪ X̄)) and
!2
X ≡ m2(.) = (m2(X),m2(X̄),m2(X ∪ X̄)).

A. SL Consensus rule

In 1997, Jøsang did propose in [1] the following associative
consensus rule to combine two independent BBAs m1(.) and



m2(.) defined over the same frame ΘX = {X, X̄}
⎧

⎨

⎩

m1,2(X) = 1
K ⋅ (m1(X)m2(X ∪ X̄) +m2(X)m1(X ∪ X̄))

m1,2(X̄) = 1
K ⋅ (m1(X̄)m2(X ∪ X̄) +m2(X̄)m1(X ∪ X̄))

m1,2(X ∪ X̄) = 1
K ⋅m1(X ∪ X̄)m2(X ∪ X̄)

(37)

where the normalization constant K is given by:

K = m1(X∪X̄)+m2(X∪X̄)−m1(X∪X̄)m2(X∪X̄) (38)

The combined basic belief assignment m1,2(.) ≜

(m1,2(X),m1,2(X̄),m1,2(X ∪ X̄)) is called the consensus
opinion according to Jøsang’s definition.

Contrariwise to most rules developed so far in the BF
community, the rule defined by (37) is not able to combine
mathematically Bayesian BBAs because the formula (37)
doesn’t work when m1(X ∪ X̄) = m2(X ∪ X̄) = 0.
Later in 2002, the author proposed an adaptation in [13] to
handle the Bayesian BBAs case separately when K = 0
which was mathematically erroneous17. In fact, the Bayesian
case which cannot be directly managed by this rule is not a
very serious problem because it is easy to prove by taking
m1(X ∪ X̄) = m2(X ∪ X̄) = � with � > 0 close to zero
that the consensus rule reduces to the simple (non associative)
averaging rule when taking � = 0. The proof is left to the
reader.

A much more serious problem with this SL consensus
rule is its illogical construction because it doesn’t manage
correctly the pure conjunctive consensus expressed by the
products m1(X)m2(X) and m1(X̄)m2(X̄). Indeed, in this
rule m1(X)m2(X) is not directly committed to m1,2(X), and
m2(X̄)m2(X̄) is not directly committed to m1,2(X̄) either,
which seems a very unreasonable way to process the infor-
mation given by the sources. Why? because in one hand the
products m1(X)m2(X ∪ X̄) (as well as m2(X)m1(X ∪ X̄))
directly contribute in the combined mass of X because X ∩
(X ∪ X̄) = X which makes sense from the conjunctive stand-
point, whereas m1(X)m2(X) does not contribute although one
has the conjunction X ∩ X = X . We don’t see any serious
and logical reason for making a difference in the redistribution
of these products because they refer to the same element X
by conjunctive operation. This appears totally illogical and
so we have very serious doubts on the validity and on the
interest of such rule for combing simple BBAs as proposed
in SL. In fact in this rule, the products m1(X)m2(X) and
m2(X̄)m2(X̄) are managed in the same manner as if they were
true conflicting terms like m1(X̄)m2(X) and m1(X)m2(X̄)
through the normalization constant K , whereas they clearly
correspond to pure conjunctive consensus. Our previous claim
is directly supported by the fact that one can easily prove

K = KDS −m1(X)m2(X)−m1(X̄)m2(X̄) (39)

In 2001, Jøsang proposed also in [3] the same consensus
rule with an extension by adding a separate term to compute
the relative combined atomicity of X for reflecting the fact that

17because it is based on a “relative dogmatism” factor  ≜ m1(X ∪
X̄)/m2(X ∪ X̄) which is also mathematically indeterminate if K = 0
because if m1(X ∪ X̄) = m1(X ∪ X̄) = 0 then  = 0/0 (indeterminacy),
see [13] for details.

sources may have different estimates of relative atomicities of
X in ΘX . The need for the computation of this relative com-
bined atomicity of X is however disputable. Why? Because if
sources have different interpretations (estimations) of relative
atomicities of X , it means that the structure of ΘX is different
for each source. In this case, the direct fusion of the BBAs
doesn’t make sense, because the fusion must apply only in a
same common frame. The relative atomicity depends only of
the structure of the frame as shown in (10), and not of the
sources providing the BBAs.

In [3], the author justifies the SL consensus rule from an-
other consensus operator defined from two Beta pdf’s mapped
with BBAs m1(.) and m2(.). Because this SL consensus rule
is very disputable as we have explained previously, it is very
probable that the consensus operator defined for the two Beta
pdf’s is flawed, or the mapping between Beta pdf and BBA,
or both. This point is discussed in the next section.

V. LINK BETWEEN OPINION AND BETA PDF

Let us consider a BBA defined on the power set of
the 2D frame ΘX = {X, X̄} and given by mΘX

(.) =
[mΘX

(X),mΘX
(X̄),mΘX

(X ∪ X̄)]. This BBA can be inter-
preted as an imprecise subjective probability measure PΘX

(.)
verifying PΘX

(X) +PΘX
(X̄) = 1 and bounded by the belief

intervals PΘX
(X) ∈ [BelΘX

(X), P lΘX
(X)] and PΘX

(X̄) ∈
[BelΘX

(X̄), P lΘX
(X̄)] with BelΘX

(X̄) = 1−PlΘX
(X) and

PlΘX
(X̄) = 1 − BelΘX

(X). So, the unknown probability
PΘX

(X) can be seen as a random variable x that can take
its values in the belief interval with some unknown density
function (pdf) p(x).

Although it is obvious that the knowledge of bounds of
the belief interval doesn’t suffice to identify the whole shape
of the unknown pdf of the random variable x ≡ PΘX

(X),
Jøsang in 1997 did propose in [1] to make an equivalence (a
bijective mapping) between the BBA mΘX

(.) and the Beta18

pdf p(x;�, �) defined for real parameters � > 0 and � > 0
by [18]:

p(x;�, �) =

{

1
B(�,�)x

�−1(1− x)�−1 for x ∈ [0, 1]

0 for x ∕∈ [0, 1]
(40)

where B(�, �) =
∫ 1

0
x�−1(1 − x)�−1dx = Γ(�+�)

Γ(�)Γ(�) is the

Beta function that allows to normalize the pdf to one, i.e
∫ 1

0 p(x;�, �)dx = 1. The Beta pdf p(x;�, �) is well-known
and attractive in statistics because it can model different shapes
of distributions of x on the support19 [0, 1]. The Beta pdf family
is a flexible way to model random variables on the interval
[0,1]. It is often used to model pdf’s for proportions. The

expected value of x is E[x] =
∫ 1

0 xp(x;�, �)dx = �
�+� . When

� = � = 1, the pdf p(x;�, �) corresponds to the uniform pdf
of x on [0, 1].

The link between mΘX
(.) and parameters � and � of

the Beta pdf has been proposed in 1997 in a first parameter
mapping (�1, �1). In [1], the author considers only20 Beta

18Beta pdf is a special case of the multinomial Dirichlet pdf.
19and on any interval in fact by some transformation of the random variable.
20in order to exclude U-shaped Beta pdf’s for obscure reasons.



pdf’s with �1 ≥ 1 and �1 ≥ 1 chosen as follows21:
⎧

⎨

⎩

�1 = 1 +
bΘX

(X)

uΘX
(X) =

PlΘX
(X)

PlΘX
(X)−BelΘX

(X)

�1 = 1 +
dΘX

(X)

uΘX
(X) =

PlΘX
(X̄)

PlΘX
(X)−BelΘX

(X)

(41)

Later in 2003 and in 2004, the authors did adopt a second
parameter mapping (�2, �2) in [14], [15], [19] to include
the prior information (base-rate) one has (if any) on the
cardinalities of X and X̄ . This second mapping is given by:

⎧

⎨

⎩

�2 = 2 ⋅ a(X ∣ΘX) +
2bΘX

(X)

uΘX
(X)

�2 = 2 ⋅ (1− a(X ∣ΘX)) +
2dΘX

(X)

uΘX
(X)

(42)

where a(X ∣ΘX) and 1 − a(X ∣ΘX) = a(X̄ ∣ΘX) are the
relative atomicities of X and X̄ w.r.t the frame ΘX .

Clearly these two mappings are inconsistent so that at least
one of them is wrong, because even if we consider same
cardinalities for X and X̄ so that a(X ∣ΘX) = a(X̄ ∣ΘX) =

1/2 then (42) gives us �2 = 1 +
2bΘX

(X)

uΘX
(X) ∕= �1 and

�2 = 1 +
2dΘX

(X)

uΘX
(X) ∕= �1. Note that this second mapping

is not bijective22 so that no strict equivalence between the
BBA and Beta pdf can be made. More recently, in a book
in preparation [20], p. 16, the author uses another mapping

(�3, �3) by choosing �3 = 1 + r = 1 +
W ⋅bΘX

(X)

uΘX
(X) and

�3 = 1 + s = 1 +
W ⋅dΘX

(X)

uΘX
(X) , where the weight W is a

parameter characterizing the a priori one has on X . Clearly this
new third mapping is not consistent with the second mapping,
and it is consistent with the first mapping only if W = 1. So,
in SL what is the correct mapping (if any)?

VI. CONCLUSIONS

In this paper, we have examined with attention some bases
of SL from the fusion standpoint. SL deals with so-called
opinions that are basically just simple basic belief assignments
defined over the power set of a 2D frame of discernment
obtained from the coarsening of a refined frame. Our analysis
justifies the doubts on the validity and the interest of SL
for combining opinions about propositions expressed in a
common 2D frame because at least two of its main bases (its
normal model for building opinions, as well as its consensus
fusion rule) appear clearly very perfectible. Therefore, we
cannot reasonably recommend the Subjective Logic for fusion
applications.
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21assuming uΘX
(X) = mΘX

(X ∪ X̄) > 0.
22because we cannot compute the three free parameters, say

(bΘX
(X), dΘX

(X), a(X∣ΘX )), from the knowledge of the two parameters
(�2, �2) only.
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