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Abstract—In this paper we propose a new method for solving (BP-NN), and Dempster-Shafer Theory (DST) of evidence
the Automatic Aircraft Recognition (AAR) problem from a  [23] has been proposed by Yang et al. in [11] which has been
sequence of images of an unknown observed aircraft. Ourmeti 51y the source of inspiration to develop our new improved

exploits the knowledge extracted from a training image dataset . .
(a set of binary images of different aircrafts observed undethree sequential MF-ATR method presented here and introduced

different poses) with the fusion of information of multiple features  Priefly in [12] (in chinese). In this paper we will explain in
drawn from the image sequence using Dezert-Smarandache details how our new SMF-ATR method works and we evaluate

Theory (DSmT) coupled with Hidden Markov Models (HMM).  jts performances on a typical real image sequence.
The first step of the method consists for each image of the Although MF-ATR approach reduces the deficiency of SF-

observed aircraft to compute both Hu’s moment invariants (he ATR hi L th i It
first features vector) and the partial singular values of theoutline approach in general, the recognition results can some-

of the aircraft (the second features vector). In the secondtep, times still be indeterminate form a single image explodtati
we use a probabilistic neural network (PNN) based on the because the pose and appearance of different kinds of air-

training image dataset to construct the conditional basic blief crafts can be very similar for some instantaneous poses and
assignments (BBA's) of the unknown aircraft type within the set appearances. To eliminate (or reduce) uncertainty andovepr

of a predefined possible target types given the features vexrs h lassificati L loi f
and pose condition. The BBA's are then combined altogethery € classification, it Is necessary to exploit a sequence o

the Proportional Conflict Redistribution rule #5 (PCR5) of DSmT ~ images of the observed aircraft during its flight and develop
to get a global BBA about the target type under a given pose efficient techniques of sequential information fusion fakF a

hypothesis. These sequential BBA's give initial recognivin results  yanced (sequential) MF-ATR systems. Two pioneer works on
that feed a HMM-based classifier for automatically recogniing sequential ATR algorithms using belief functions (BF) have

the aircraft in a multiple poses context. The last part of this . .
paper shows the effectiveness of this new Sequential Mulfr €N Proposed in last years. In 2006, Huang et al. in [13]

Features Automatic Target Recognition (SMF-ATR) method wih ~have developed a sequential ATR based on BF, Hu’'s moment
realistic simulation results. This method is compliant wit real- invariants (for image features vector), a BP-NN for pattern
time processing requirement for advanced AAR systems. classification, and a modified Dempster-Shafer (DS) fusion
Keywords: Information fusion; DSmT; ATR; HMM. rulel. A SF-ATR approach using BF, Hu's moment invariants,
BP-NN and DSmT rule has also been proposed in [14] the
same year. In these papers, the authors did clearly show
ATR (Automatic Target Recognition) systems play a mahe benefit of the integration of temporal SF measures for
jor role in modern battlefield for automatic monitoring andhe target recognition, but the performances obtained were
detection, identification and for precision guided weapen atill limited because of large possible changes in poses and
well. The Automatic Aircraft Recognition (AAR) problem isappearances of observed aircrafts (specially in high maareu
a subclass of the ATR problem. Many scholars have madwdes as far as military aircrafts are under concern). The
extensive explorations for solving ATR and AAR problemsurpose of this paper is to develop a new (sequential) MF-ATR
The ATR method is usually based on target recognition usimgethod able to provide a high recognition rate with a good
template matching [1], [2] and single feature (SF) exttti robustness when face to large changes of poses and ppearance
[3]-[7] algorithms. Unfortunately, erroneous recognitioften of observed aircraft during its flight.
occurs when utilizing target recognition algorithms based  The general principle of our SMF-ATR method is shown on
single feature only, specially if there exist importantehes in  Fig.1. The upper part of Fig. 1 consists in Steps 1 & 2, whereas
pose and appearance of aircrafts during flight path in thgénahe lower part of Fig. 1 consists in Steps 3 & 4 respectively
sequence. In such condition, the informational contenivdra described as follows:
from single feature measures cannot help enough to make @ giep 1 (Features extraction) : We consider and extract
reliable clqssmcatlon. To overco_meth|s serious drawbaelv _ only two features vectors in this wérkHu's moment
ATR algorithms based on multiple features (MF) and fusion
techniques have been proposed [8]-{12]. An interesting MF-icajied the abortion method by the authors.
ATR algorithm based on Back-Propagation Neural Network2The introduction of extra features is possible and undeestigations.

|. INTRODUCTION
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Fig. 1: General principle of our sequential MF-ATR approach

invariants vector, and Singular Values Decompositioh. Step 1: Features extraction from binary image

(SVD) features vector) from the binary images Because Aircraft poses in a flight can vary greatly, we need
» Step 2 (BBA's constructid) : For every image in the se- jnage features that are stable and remain unchanged under
quence and from their two features vectors, two Bayesiginsjation, rotation and scaling. In terms of aircraftttees,
BBAS on possible (target type,target pose) are computgfly categories are widely used: 1) moment features and 2)
from the results of two PNN's trained on the imageqniour features. Image moments have been widely used since
dataset. The method of BBA construction is different |54 time specially for pattern-recognition applicaidas].
from the one propos_ed in [12]. , Moment features which are the descriptions of image regiona
- Step 3 (BBA's combination) : For every image, say theparacteristics are mainly obtained from the intensity adhe
k-th image, in the sequence, the two BBAS of Step giyq| of target image. Contour features are extracted pifyna
are combined with the PCRS fusion rule, from which @, giscretizing the outline contour and they describe the
decisionOy, on the most likely target type and pose igharacteristic of the outline of the object in the image elnts
drawn. of moment features, Hu's moment invariants [6] are used.here

« Step 4 (HMM-based classifier) : From the sequencgs contour features, we use the SVD [15] of outlines extrcte
OK ={0,...,0%...,0K} of K local decisions com- from the binary images.

puted at Step 3, we feed several HMM-based classifiers

in parallel (each HMM characterizes each target typ&)Hu's moments

and we find finally the most likely target observed in the Two-dimensional(p + ¢)-th order moments fop,q =
image sequence which gives the Output of our SMF-ATQ, 1,2, ... of an image of sizeMl x N are defined as follows:
approach.

M N
The next section presents each step of this new SMF-ATR Mpg 2> Y mPnif(m,n) (1)
approach. Section 3 evaluates the performances of this new m=1n=1

method on real image_datase_ts. Conclusions and perspectiviere f(m, n) is the value of the pixe{m,n) of the binary
of this work are given in Section 4. image. Note thatn,,, may not be invariant wheri(m, n) by
translation, rotating or scaling. The invariant featuras be

Il. THE SEQUENTIAL MF-ATR APPROACH obtained using thép + ¢)-th order central moments,,, for
p,q=0,1,2,... defined by

In this section we present the aforementioned steps neces- M N
sary for the implementation of our new SMF-ATR method. fipg 2 Z Z(m —Z)P(n — )1 f(m,n) 2)

m=1n=1

In this work, we use only with binary images because our intagjaing where?z, andg are the barycentrlc coordinates of image (|.e.

dataset contains only binary images with clean backgrquadd working p p
with binary images is easier to do and requires less compuogtburden the centroid of the |ma]ge). These values are CompUted by

] ; . : ; - M _
:han Worklng_ WltrmTrg]]ret)){-lev_ezl (t)_r coI?:hlm_ages. Hefnt(;e it helps;aatlsfy relzalj T = 1% :Né Zm:l n=1m X f(m, n) and Yy = z—z(l) =
ime processing. The binarization of the images of the secpiender analysis 1 / ; At
is done with the the Flood Fill Method explained in detailsi2a] using the © 2—m=12-n=1" X [f(m,n), where C' is a normalization

point of the background as a seed for the method. constant given byC' = mgy = ZM 25:1 flm,n). The

“4The mathematical definition of a BBA is given in Section II-C. centroid momentg,, is equivalent to t]henpq moment whose



center has been shifted to the centroid of the image. Therefdrom the eigenvalues of the circulant matrix built from the

Ipq @re invariant to image translations. Scale invariance is offiscretized shape of the outline characterized by the vecto
tained by normalization [6]. The normalized central morsenf; _ [y, do d,] whered; is the distance of the centroid

. _ A o . - ) 90 n T
lpq are defined fop + ¢ = 2,3, ... DY npg = f1pq/ g, With of the outline to the discrete poinis, i = 1,2,...,n of the
~v = (p+q+2)/2. Based on these normalized central moments i
Hu in [16] derived seven moment invariants that are unchang@utne-

under image scaling, translation and rotation as follows In our analysis, it has been verified from our image
o dataset that only the first components of SVD features vector
D1 = n20 + Mo2 — . ;
R ) , o = [01,09,...,0,] take important values with respect to
P2 = (m20 — M02)” + 4111 the other ones. The other components coftend quickly
@3 2 (n30 — 3m12)° + (3121 — 103)° towards zero. Therefore only few first componentssoplay
Dy 2 (30 +m2)® + (921 + n03)° an important role to characterize the main features of targe
®5 £ (1130 — 3m2) (30 + m2)[(M30 + Mm2)” = 3(n21 + 03)”] outline. However, if one considers only these few main first

components ofo, one fails to characterize efficiently some

_ 2 _ 2
+ (3121 = 103) (21 + 1703) [0 +m2)” = (1ax + 103} specific features (details) of the target profile. By doing so

Po £ (120 = 102)[(m30 + mi2)” = (1 + 1709)°] one would limit the performances of ATR. That is why we
+ 4 (ns0 + m2) (721 + 10s) propose to use the partial SVDs of outline as explained in the
®7 2 (321 — no3) (N30 + m2) (N30 + m2)? — 3(n21 + 103)°] next paragraph.
— (130 — 3m2)(N21 + 103)[3(M30 + M=) — (103 + 121)°] To capture more details of aircraft outline with SVD, one

has to taken into account also additional small singulaniesl

8f SVD. This is done with the following procedure issued from

the face recognition research community [24]. The norredliz

distance vectord = [di,ds,....d,] is built from d by

e SVD features of the target outline takingd = [1,d2/dy,...,d,/d1], whered; is the distance
The SVD is widely applied signal and image processingetween the centroid of outline and the first chosen points

because it is an efficient tool to solve problems with leasf the contour of the outline obtained by a classicatige

squares method [21]. The SVD theorem states that,jf.,, detector algorithm. To capture the details of target oathnd

with m > n (representing in our context the original binaryo reduce the computational burden, one works with partial

data) is a real matrf then it can be written using a so-calledSVDs of the original outline by considering onlysliding

In this work, we use only the four simplest Hu's moments t
compute, that isb = [®; ®, P53 Py, to feed the first PNN
of our sequential MF-ATR methd&d

singular value decomposition of the form sub-vectorsd,, of d, wherew is the number of components
T of d,,. For example if one takes) = 3 points only in the
Amxn = UmxmSmxnVpxn sub-vectors and il = [di,da,...,ds], then one will take
where U,,.,, and V,, are orthogondl matrices. The the sub-vectorsd), = [di,d2,ds], di, = [d4,d5,ds] and
columns ofU are the left singular vector&/” has rows that d3, = [d7,ds,ds] if we don’t use overlapping components
are the right singular vectors. The real mat$has the same between sub-vectors. From the sub-vectors, one constructs
dimensions asA and has the forfh their corresponding circulant matrix and apply their SVD to

get partial SVD features vectoes, !, o!>2, etc. The number

Smxn = | Srocr 0 Orx(n—r) | of partial SVD of the original outline of the target is given
rx(m=r)  Slmor)x(n=r) by I = (n —w)/(w — m) + 1, wherem is the number of
whereS,., = Diag{o1,02,...,0.} With o1 > 02,> ... > components overlapped by each two adjacent sub-vectats, an
o >0andl < r < min(m,n). n is the total number of discrete contour points of the outline

Calculating the SVD consists of finding the eigenvalues agglien by the edge detector.
eigenvectors ofAA”T and AT A. The eigenvectors oA” A
make up the columns oV, the eigenvectors oAA” make B. Step 2: BBA's construction with PNN's
up the columns olU. The singular valuess,..., o, are the

: . . . In order to exploit efficiently fusion rules dealing with
diagonal entries 0B, arranged in descending order, an%onﬂicting information modeled by belief mass assignments
they are square roots of eigenvalues franA” or AT A. Y

: : gBBA’s) [18], [23], we need to build BBAs from all features
A method to calculate the set of discrete point . .
{a1,as,....a,} of a target outline from a binary imagecomputed from images of the sequence under analysis. The

is proposed in [17]. The SVD features are then computc‘e:(?nStrU(:tIon of the B.BAS ne_eds expert knowledge or know!-
edge drawn from training using image dataset. In this paper,

It is theoretically possible to work with all seven Hu's mantein our W€ Propose to Utillize. prqbabiliStiC neural networks (PNN)
MIE-ATR method, but we did not test this yet in our simulations initially developed in nineties by Specht [19] to constrthat
For a complex matrixA, the singular value decompositon & = BBA’s because it is a common technique used in the target

USVH  whereVH is the conjugate transpose ®f. o e .
TThey verify UT Uy J_gI 5 andeT Vysn = Ly, where '€COQNItion and pattern classification community that ig &b
mxm — Im nxn ¥YnXn — dInXn,

X
Lxm andl, x Z\lrerpespectively the identity matrices of dimensians m
andn x n. 9In this work, we use thevcontour function of opencv software [22] to
80,4 is ap x g matrix whose all its elements are zero. extract the target outline from a binary image.



achieve with large training dataset performances closedset and ) .,e m(X) = 1, where®© is the so-called frame of

obtained by a human expert in the field. The details of PNNd&iscernment of the problem under concern which consists of

settings for BBA's construction are given in [12]. Howevera finite discrete set of exhaustive and exclusive hypothgéses

because the neural network after training to some extenaha®, i = 1, ..., n, and wher@® is the power-set o (the set of

good discriminant ability (close to an expert in the fieldie t all subsets 0B). This definition of BBA has been introduced

BBA is constructed by the neural network directly based dn Dempster-Shafer Theory (DST) [23]. The focal elements

the PNN's output, which is different from the constructidn oof a BBA are all elementsX of 2€ such thatm(X) > 0.

the BBA based on the confusion matrix described in [12]. Bayesian BBA's are special BBA's having only singletons.(i.
Here we present how the two PNN's (shown in Figure Xhe elements 0®) as focal elements.

work. In our application, we havé/, = 7 types of aircrafts

in our training image dataset. For each type, the aircraft Ijal

observed with\,, = 3 poses. Therefore we hawg, = N, x conjunctive consensus operator. Because this fusion aule i

Ny = 21 types of distinct cases in our dataset. For each CaRfiown to be not so efficient (both in highly and also in low

one hasN; = 30 images available for the training. Thereforeconflicting) in some practical situations [25], many aleti

the whole training dataset contaifg.,; = N.N,N; = 7 x les h b d during |
. . ' t decades [18], Vol. 2.
3 x 30 = 630 binary images. For the first PNN (fed by Hu’sru es have been proposed during last decades [18], Vo

features vector), the number of input layer neurons is 4umca To overcome the practical limitations of Shafers’ model
we use only® = [®;, &,, &3, &,] Hu’'s moment invariants in and in order to deal with fuzzy hypotheses of the frame,
this work. For the second PNN (fed by partial SVD featurdgezert and Smarandache have proposed the possibility to
vector), the number of input layer neurons is constant at@rk with BBAs defined on Dedekind's lattiég D® [18]
equal tol x w because we také windows with the width (Vol.1) so that intersections (conjunctions) of elemerftshe
w (so one hasw singular values of partial SVD for everyframe can be allowed in the fusion process, with eventually
window). The number of hidden layer neurons of each PNN $9me given restrictions (integrity constraints). Dezentd a
the number of the training sample¥,,; = 630. The number Smarandache have also proposed several rules of comisinatio
of output layer neurons is equal ., = 21 (the number of based on different Proportional Conflict RedistributiolC B
different possible cases). principles. Among these new rules, the PCR5 and PCR6 rules
Our PNN'’s fed by features input vectors (Hu's momentglay @ major role because they do not degrade the specificity o
and SVD outline) do not provide a hard decision on the typBe fusion result (contrariwise to most other alternatiiey,
and pose of the observed target under analysis because inai they preserve the neutrality of the vacuous BBRCR5
belief-based approach we need to build BBAs. Therefore tid@d PCR6 provide same combined BBA when combining
competition function of the output layer for decision-magi only two BBAS mi(.) and ma(.), but they differ when
implemented classically in the PNN scheme is not used @@mbining three (or more) BBAs altogether. It has been
the exploitatiof® phase of our approach. Instead, the PNKecently proved in [26] that PCRE is consistent with empiric
computes theN,, x N; (Euclidean) distances between théfrequentist) estimation of probability measure, unlikibey
features vectors of the image under test and¥g = 630 fusion rule$®.These two major differences with DST, make
features vectors of the training dataset. A Gaussian radii¢ basis of Dezert-Smarandache Theory (DSmT) [18].
basis function (G-RBF) is used in the hidden layer of the | the context of this work, we propose to use PCR5 to
PNN’s [19] to transform its input (Euclidean) distance w&ct ¢ompine the two (Bayesian) BBAi; (.) andms(.) built from
of size 1 x Nep; into anotherl x N.,; distance (similarity) the two PNN's fed by Hu's features vector and SVD outline
that feeds the output layer through a weighting matrix o€ Sizeatyres vector. Because for each image of the observeet targ
Nepi x Nep = 630 <21 estimated from the training samples. Ay the sequence, one has only two BBA's to combine, the PCR5
afinal output of each PNN, we get an unnormalized similarifysion result is same as the PCR6 fusion result. Of course,
vectorm of size (1 x Nepi) X (Nepi X Nep) = 1X Nep = 121 it one wants to include other kinds of features vectors with
which is then normalized to get a Bayesian BBA on the framgjgitional PNN's, the PCR® fusion rule is recommended. The
of discemment® = {(target;, pose;).i = 1,....c,j = PCR principle consists in redistributing the partial canitig
L,...,p}. Because we use only tWoPNN's in this approach, masse¥only to the sets involved in the conflict and propor-

we are able to build two Bayesian BBA®(.) andma(.)  tionally to their mass. The PCR5 (or PCR6) combination of
defined on the same frant® for every image of the sequence

to analyze.

In DST, the combination of BBAs is done by Dempster’s
e of combination [23] which corresponds to the normalize

C. Sep 3: Fusion of BBA's and local decision
. . . . 12This is what is called Shafers model of the frame in the éitere.
A basic belief assignment (BBA)' also called a (be“ef) MasS13pegeking’s lattice is the set of all composite subsets liglin elements
function, is a mappingn(.) : 2° + [0;1] such thatn()) =0 of © with U andN operators.
14A vacuous BBA is the BBA such thak(©) = 1.
10yhen analyzing a new sequence of an unknown observed aircraf 15except the averaging rule.

11 first PPN fed by Hu's features, and a second PNN fed by SVOrautl ~ 1For two BBA's, a partial conflicting mass is a produst; (X )mz (Y) >
features — see Fig. 1. 0 of the elementX N'Y which is conflicting, that is such that N Y = 0.



two BBAs is done according to the following formuia[18] 1) The numberN of possible state$ = {s1,s2,...,sn}
of the Markov chain.

mpcnrs/e(X) = Z ma (X1)ma(Xa)+ 2) The state transition probability mattkA = [a;;] of
X1,Xq€29 size N x N, Whereaij 4 P(S(tk) = Sils(tk—l) = Sj).
e ) 3) The prior mass function (pmf)l of the initial state of
Z mi(X)*mo(Y) - ma(X)*mi(Y) 1 @ the chain, that idl = {m, ..., 7y} with SN =1,
yeroix) mi(X) +ma(Y)  ma(X)+ma(Y) wherer; = P(s(t;) = s;).
XNY=0 4) The numberM of possible valued” = {v1,...,vp}

taken by the observation of the system.

5) The conditional pmfs of observed values given the states
of the system characterized by the maBx= [b,,,;] of
size M x N, with b,,; & P(Op = vp|s(ty) = s4),
whereQy, is the observation of the system (i.e. the local

where all denominators in (3) are different from zero, and
mpcrs/6(0) = 0. If a denominator is zero, that fraction
is discarded. All propositions/sets are in a canonical form
Because we work here only with Bayesian BBA's, the previous
fusion formula is in fact rather easy to implement, see [18] - o .
(Vol. 2, Chap. 4). d(.ECISIOI’l on target .type with its pose) at t.|m@
In summary, the target features extraction in a sequence of this work we consider a set aV. HMMs in parallel,

K images allows us to generate, after Step 3, a set of BpAd1€re each HMM is associated with a given type of target
{mImaser() | = 1,2,...,K}. Every BBA m!masex () is to recognize. We consider the following state and obseymati

obtained by the PCR5/6 fusion of BBA®: ™9 (.) and MOUels in our.HMMs: _ _ _
mgmagek(.) built from the outputs of two PNN’s. From this " State model: For a given type of aircraft, we consider a

combined BBA, a locaf decisionO,, can be drawn about finite set of distinct aircraft postures available in ourirtiag

the target type and target poselimage;, by taking the focal image dataset. In our application, we consider only thraest
element ofm!™29¢x (.) having the maximum mass of belie

f corresponding tos; = top view, s = side view and s3 =
" front view as shown (for a particular aircraft) in Figure 2.
D. Sep 4: Hidden Markov Model (HMM) for recognition

Usually (and specially in military context), the posture of
an aircraft can continuously change a lot during its fligtiipa
making target recognition based only on single observation
(image) very difficult, because some ambiguities can occur
between extracted features with those stored in the tminin

image data set. To improve the target recognition perfom@an opservation model: In our HMMs, we assume that each
and robustness, one proposes to use the sequence of tajggé (posture) of aircraft is observable. Since we have
recognition decisior®;, drawn from BBAs {m'"*°(.),k = only N, = 3 statesS = {s1,s2,53} for each aircraft,
1,2,...,K} to feed HMM classifiers in parallel. We suggesgnd we haveN, = 7 types of aircrafts in the training
this approach because the use of HMM has already begftaset, we have to deal With,, = 3 x 7 = 21 possibl&°
proved to be very efficient in speech recognition, naturghservations (local decisions) at each time As explained
language and face recognition. We briefly present HMM, arﬁﬁeviously, at the end of Step 3 we have a set of BBAs
then we will explain how HMMs are used for automatiqmlmagek(.),k =1,2,..., K} that helps to draw the sequence
aircraft recognition. of local decisionsOX £ {0,...,04,...,0x}. This

Let us consider a dynamical system with a finite set of posequence of decisions (called alsaognition observations)
sible statesS = {s1, s2,...,sn}. The state transitions of thejs ysed to evaluate the likelihoaBl(O*|);) of the different
system is modeled by a first order Markov chain governed pyvMs described by the parameter, = (A;,B;,IL,),
the transition probabilities given b (s(tx) = s;[s(tx—1) = 4 = 1,2,..., N,. The computation of these likelihoods will
8y S(th—2) = Sk,...) = P(s(tk) = sj[s(tk—1) = si) = a;5, be detailed at the end of this section. The final decision
wheres(ty) is the random state of the system at time A for ATR consists to infer the true target type based on

HMM is a doubly stochastic processes including an undeglyithe maximum likelihood criterion. More precisely, one will
stochastic process (i.e. a Markov chain for modeling theestajecide that the target type i$ if i* = argmax; P(OX|);).

transitions of the system), and a second stochastic process

for modeling the observation of the system (which is @ Estimation of HMM parameters

function of the random states of the system). A HMM, denoted To make recognition with HMMs, we need at first to define
A = (A,B,1I), is fully characterized by the knowledge of thes HMM for each type of target one wants to recognize.

Fig. 2: Example of HMM states.

following parameters More precisely, we need to estimate the paramefers=
1"Here we assume that Shafers’ model holds. The notatioRc s /6 19wWe assume that the transition matrix is known and time-ievay i.e. all
means PCR5 and PCR6 are equivalent when combining two BBA'. elementsa;; do not depend omy,_; andty.

18pecause it is based only on a single image of the unknown aéxéarget 20We assume that the unknown observed target type belong® tsethof
in the sequence under analysis. types of the dataset, as well as its pose.



(A;,B;,II;), wherei = 1,..., N, is the target type in the e Exploitation of HMM for ATR
training dataset. The estimation of HMM parameters is doneGiven a sequenc@” of K local decisions drawn from the
from observation sequences drawn from the training datasefjuence of{ images, and giveitN. HMMs characterized by

with Baum-Welch algorithm [20] that must be initialized it their parametei; (: = 1, ..., N.), one has to compute all the
a chosen valua? = (A9, BY?, I19). This initial value is chosen likelihoodsP(O*|);), and then infer from them the true target
as follows: type based on the maximum likelihood criterion which is done

1) — State prior probabilitieH? for a target of type: For each by deciding the target typé if i* = arg max; P(O%|)\;). The
HMM, we consider only three distinct postures (states)s. computation ofP(O*|);) is done as follows [20]:

and S3 for the aircraft. We use a uniform prior prObablllty ° generation of all possib'e state sequences of |ength
mass distribution for all types of targets. Therefore, weeta K, SE = [si(t1)si(t2)...s1(tk)], wheres;(ty) € S

9 = [1/3,1/3,1/3] for any target typei = 1,..., N, to (k=1,...,K) andl = 1,2,...,|S¥
recognize. - _ « computation of P(O¥|);) by applying the total proba-
2) — State transition matrbA{ of a target of typei: The bility theorem as follows3
components,,, of the state transition matriA? are estimated
from the analysis of many sequentesf targeti as follows P(SEIN) = Ty (1) Qsi(tr)s1(2) - - Osy(txe1)s(txe) (B
— kK:_ll 6(S(tk)’ Sp) X §(S(tk+1)’ Sq) 4 P(OKP\M SlK) = bsz(t1)O1 'bsz(tz)oz e "bsz(tK)OK (6)
pg = K1 4)
it 0(s(tx). ) "
where N,, is the number of states of the Markov chain, P(OK|\) = ZP(OKMi SEYP(SE(N)  (7)

d(z,y) is the Kronecker delta function defined b, y) = 1
if y = x, and §(z,y) = 0 otherwise, and wherd is
the number of images in the sequence of targetvail-
able in the training phase. For example, if in the train- For the simulations of SMF-ATR method, we have used
ing phase and for a target of type = 1, we have the N. = 7 types of aircrafts in the training image dataset. Each
following sequence of (target type, pose) cases given byage of the sequence ha200 x 702 pixels. The sequences
[(1,1),(1,1),(1,2),(1,1),(1,3),(1,1),(1,1)], then from Eq. of aircraft observations in the training dataset take 1ats.

(4) with K = 7, we get? The N, = 3 poses of every aircraft is shown in Fig. 3.
For evaluating our approach, we have used sequences (test

=1
IIl. SIMULATIONS RESULTS

A0 — 2{4 1(/)4 1(/)4 samples) of images of 7 different aircraft, more precisely
=1 1 0 0 the Lockheed-F22, Junkers-G.38ce, Tupolev ANT 20 Maxime

Gorky, Caspian Sea Monster (Kaspian Monster), Mirage-F1,
3) — Observation matrixBY for a target of typei: The Piaggio P180, and Lockheed-Vega, flying under conditioas th
initial observation matri>B? is given by the confusion matrix generate a lot of state (posture) changes in the images. The
learnt from all images of the training dataset. More prégjse number of the images in each sequence to test varies from
from every image of the training dataset, we extract Hu%00 to 500. The shaping parameter of the G-RBF of PNN'’s
features and partial SVD outline features and we feed edghs been set to 0.1. The simulation is done in two phases: 1)
PNN to get two BBAs according to Steps 1-3. From thene training phase (for training PNN’s and estimating HMM’s
combined BBA, we make the local decisi@arget;, pose;) if  parameters), and 2) the exploitation phase for testingehg r
m((target;, pose;)) is bigger than all other masses of belieperformances of the SMF-ATR with test sequences.
of the BBA. This procedure is applied to all images in tha - pPerformances evaluation

training dataset. By doing so, we can estimate empirically i ) )
In our simulations, we have tested SMF-ATR with two

the probabilities to decidétarget;, pose;) when real case . : 3
(target;, pose;) occurs. So we have an estimation of all condifferent fusion rules: 1) the PCRS rule (see Section II-C),

ponents of the global confusion matiX’ = [P(decision — and 2) Dempster-Shafer (DS) réftef23]. The percentages of
(target;, pose;) | reality = (targety,pose;))]. From BO successful recognition (i.e. the recognition rdtg obtained

we extract the: sub-matrices (conditional confusion matricesj/ith these two SMF-ATR methods are shown in Table I for
BY,i=1,...,N. by taking all the rows oB° corresponding each typei = 1,2,..., N, of aircraft. The performances of

to the target of type. In our application, one had/, — 7 these SMF-ATR versions are globally very good since one

types andV, = 3 postures (states) for each target type, henis able to recognize with a minimum of 85.2% of success

one hasN,, = 7 x 3 = 21 possibles observations. Thereforéhe types of_aircraft included in the image sequences under
the global confusion matriB® has size21 x 21 is the stack €St when using DS-based SMF-ATR, and with a minimum of

— H 0o . _ .
of No =7 SUb'matrlceSBi’ i= 1., N, each of size 23The index: of components ofA; and B; matrices has been omitted for
Np X Ncp =3 x21. notation convenience in the last two formulas.

24Because Dempster’s rule is one of the basis of DempstereSiaiory,

2!The video stream of different (known) aircraft flights geater the we call prefer to call it Dempster-Shafer rule, or just DSeruThis rule

sequences of images to estimate approximadgly coincides here with Bayesian fusion rule because we comtbineBayesian
220ne verifies that the probabilities of each raw of this masiix to 1. BBA's and we don’t use informative priors.



Target type 1 2 3 4 5 6 7

R; (no ZO) 95.7 | 935 | 96.3 | 98.2 | 96.3 | 98.5| 97.3
R; (ZO=1/2) | 95.0 | 92.0 | 95.2 | 94.7 | 96.1 | 96.6 | 954
R; (ZO=1/4) | 95.0 | 92.0 | 94.7 | 91.7 | 93.6 | 91.6 | 95.7
R; (ZO=1/8) | 95.0 | 92.2 | 93.1 | 89.3 | 93.6 | 945 | 90.7

TABLE II: Aircraft recognition ratesk; (in %) of (PCR5/6-
based) SMF-ATR with different zoom out values.

Aircraft Single | Single | Compound
Type 1 | Type 2 Type
R; (SMF-ATR) | 96.3 % | 98.5% 97.3%

TABLE lll: Robustness to target compound.

obtained when recognizing each type separately in each sub-
sequence. The last column shows the performance when
recognizing the compound type Type A1Type 2. One sees
that the performance obtained with compound type (97.3%) is
close to the weighted aver&§ed7.5% recognition rate. This
indicates that no wide range of recognition errors occursiwh
the targets type change during the recognition processingak
SMF-ATR robust to target type switch.

D - Performances with and without HMMs

Fig. 3: Poses of different types of aircrafts. We have also compared the performances of SMF-ATR,
with two methods using more features but which do not exploit

. . sequences of images with HMM. More precisely, the recogni-
93.5% of success with the PCRS-based SMF-ATR. In term g, is done locally from the combined BBA for every image

computational time, it takes between 5Sms and 6ms to Procg§igout temporal integration processing based on HMM. We
each image in the sequence with no particular optimizatien|| these two Multiple Features Fusion methods MFF1 and
of our simulation code, which indicates that this SMF-ATR rE) respectively. In MMFL, one uses Hu's moments, NMI
approach is close to meet the requirement for reaI—timeaitrc%Normanzed Moment of Inertia), affine invariant momentsda
recognition. It can be observed that PCR5-based SMF-AIR/p of outline, PNN and PCRS5 fusion, whereas MMF2 uses
outperforms DS-based SMF-ATR for 3 types of aircraft anghme features as MMF1 but with BP network as classifier
gives similar recogpnition rate as with DS-based SMF-ATR 04,4 ps rule of combination. The recognition performances ar
other types. So PCRS-based SMF-ATR is globally better thalown in Table IV. One sees clearly the advantage to use the
DS-based SMF-ATR for our application. image sequence processing with HMMs because of significant
Target iype 1 5 3 yi 5 5 = improveme.nt of ATR performances. The recognition rate of
R; (PCR5rule) | 95.7 | 935 | 96.3 | 98.2 | 96.3 | 985 | 97.3 MFF2 declines seriously because the convergence of the BP
R; (DS rule) 95.7 | 935 | 852 | 97.8 | 96.3 | 98,5 | 97.2 network is not good enough_

TABLE I: Aircraft recognition ratesR; (in %).

Target type 1 2 3 4 5 6 7
. . R; (SMF-ATR) | 95.7 | 935 | 96.3 | 982 | 96.3 | 985 | 97.3
B - Robustness of SMF-ATR to image scaling Ri EMFFl) ) 89.2 | 92.0| 91.2 | 86.9 | 92.2 | 935 | 95.0
R; (MFF2 64.9 | 51.6 | 82.8 | 82.2 | 70.8 | 48.3 | 58.9
To evaluate the robustness of (PCR5-based) SMF-ATR ap ( )

proach to image scaling effects, we did apply scaling changdABLE IV: Performances (in %) with and without HMMs.
(zoom out) of ZO = 1/2, ZO = 1/4 and ZO = 1/8 in the

images of the sequences under test. The performances of e SMF-ATR versus SSF-ATR

SMF-ATR are shown in Table Il. One sees that the degradatiorwe have also Compared in Table V the performances
of recognition performance of SMF-ATR due to scaling effectspMF-ATR with those of two simple SSF-APR methods,

is very limited since even with a 1/8 zoom out one gets 90%lled SSF1-ATR and SSE2-ATR. The SSF1-ATR uses only
of successful target recognition. The performance willidec Hy's moments features whereas SSF2-ATR uses only SVD
sharply if the targets zoom out goes beyond 1/16. of outline as features. SSF1-ATR exploits image sequence
C - Robustness to compound type information using BP networks as classifier and DS rule for

Table Il gives the performances of SMF-ATR on sequenc§§mbination, while SSF2-ATR uses PNN and PCR5/6 rule.

with two types of targets (475 images with type 1, and 38225According to the proportion of the two types in the whole samqe.

images with type 2)' 26SSF-ATR stands for Single-feature Sequence AutomaticeTargcogni-
The two left columns of Table 1ll show the performanceson.



Target type 1 2 3 4 5 6 7

R; (SMF-ATR) | 95.7 | 935 | 96.3 | 98.2 | 96.3 | 98,5 | 97.3 (7]
R; (SFF1-ATR) | 39.3 | 42.3 | 743 | 56.7 | 60.1 | 33.9 | 44.3

R; (SFF2-ATR) | 88.8 | 66.4 | 86.7 | 66.9 | 73.6 | 52.9 | 63.8

(8]
TABLE V: Performances (in %) of SMF-ATR and SFF-ATR.

[9]
One clearly sees the serious advantage of SMF-ATR witty)
respect to SFF-ATR due to the combination of information
drawn from both kinds of features (Hu's and SVD of outline}ll]
extracted from the images.

IV. CONCLUSIONS AND PERSPECTIVES [12]

A new SMF-ATR approach based on features extraction has
been proposed. The extracted features from binary images f
PNNs for building basic belief assignments that are contbine
with DSMT PCR rule to make a local (based on one imad
only) decision on target type. The set of local decisions ac-
quired over time for the image sequence feeds HMMs to make]
the final recognition of the target. The evaluation of thisvne
SMF-ATR approach has been done with realistic sequen
of aircraft observations. SMF-ATR is able to achieve higher
recognition rates than classical approaches that do ndoiexpl17]
HMMs, or SSF-ATR. Another complementary analysis of thﬁs]
robustness of SMF-ATR to target occultation is currentlgem
progress and will be published in a forthcoming paper. Our
very preliminary results based only on few sequences indt?!
cate that SMF-ATR seems very robust to target occultatiops)
occurring randomly in single (non consecutive) images,aut
finer analysis based on Monte-Carlo simulation will be do 81
to evaluate quantitatively its robustness in differentditans
(number of consecutive occultations in the sequencesetiet |
of occultation, etc). As interesting perspectives, we want (22
extend SMF-ATR approach for detecting new target types that
are not included in image data set. Also, we would want {83l
deal with the recognition of multiple crossing targets olssd [24]
in a same image sequence.
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