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Abstract—In this paper we propose a new method for solving
the Automatic Aircraft Recognition (AAR) problem from a
sequence of images of an unknown observed aircraft. Our method
exploits the knowledge extracted from a training image dataset
(a set of binary images of different aircrafts observed under three
different poses) with the fusion of information of multiple features
drawn from the image sequence using Dezert-Smarandache
Theory (DSmT) coupled with Hidden Markov Models (HMM).
The first step of the method consists for each image of the
observed aircraft to compute both Hu’s moment invariants (the
first features vector) and the partial singular values of theoutline
of the aircraft (the second features vector). In the second step,
we use a probabilistic neural network (PNN) based on the
training image dataset to construct the conditional basic belief
assignments (BBA’s) of the unknown aircraft type within the set
of a predefined possible target types given the features vectors
and pose condition. The BBA’s are then combined altogether by
the Proportional Conflict Redistribution rule #5 (PCR5) of DSmT
to get a global BBA about the target type under a given pose
hypothesis. These sequential BBA’s give initial recognition results
that feed a HMM-based classifier for automatically recognizing
the aircraft in a multiple poses context. The last part of this
paper shows the effectiveness of this new Sequential Multiple-
Features Automatic Target Recognition (SMF-ATR) method with
realistic simulation results. This method is compliant with real-
time processing requirement for advanced AAR systems.
Keywords: Information fusion; DSmT; ATR; HMM.

I. I NTRODUCTION

ATR (Automatic Target Recognition) systems play a ma-
jor role in modern battlefield for automatic monitoring and
detection, identification and for precision guided weapon as
well. The Automatic Aircraft Recognition (AAR) problem is
a subclass of the ATR problem. Many scholars have made
extensive explorations for solving ATR and AAR problems.
The ATR method is usually based on target recognition using
template matching [1], [2] and single feature (SF) extraction
[3]–[7] algorithms. Unfortunately, erroneous recognition often
occurs when utilizing target recognition algorithms basedon
single feature only, specially if there exist important changes in
pose and appearance of aircrafts during flight path in the image
sequence. In such condition, the informational content drawn
from single feature measures cannot help enough to make a
reliable classification. To overcome this serious drawback, new
ATR algorithms based on multiple features (MF) and fusion
techniques have been proposed [8]–[12]. An interesting MF-
ATR algorithm based on Back-Propagation Neural Network

(BP-NN), and Dempster-Shafer Theory (DST) of evidence
[23] has been proposed by Yang et al. in [11] which has been
partly the source of inspiration to develop our new improved
sequential MF-ATR method presented here and introduced
briefly in [12] (in chinese). In this paper we will explain in
details how our new SMF-ATR method works and we evaluate
its performances on a typical real image sequence.

Although MF-ATR approach reduces the deficiency of SF-
ATR approach in general, the recognition results can some-
times still be indeterminate form a single image exploitation
because the pose and appearance of different kinds of air-
crafts can be very similar for some instantaneous poses and
appearances. To eliminate (or reduce) uncertainty and improve
the classification, it is necessary to exploit a sequence of
images of the observed aircraft during its flight and develop
efficient techniques of sequential information fusion for ad-
vanced (sequential) MF-ATR systems. Two pioneer works on
sequential ATR algorithms using belief functions (BF) have
been proposed in last years. In 2006, Huang et al. in [13]
have developed a sequential ATR based on BF, Hu’s moment
invariants (for image features vector), a BP-NN for pattern
classification, and a modified Dempster-Shafer (DS) fusion
rule1. A SF-ATR approach using BF, Hu’s moment invariants,
BP-NN and DSmT rule has also been proposed in [14] the
same year. In these papers, the authors did clearly show
the benefit of the integration of temporal SF measures for
the target recognition, but the performances obtained were
still limited because of large possible changes in poses and
appearances of observed aircrafts (specially in high maneuver
modes as far as military aircrafts are under concern). The
purpose of this paper is to develop a new (sequential) MF-ATR
method able to provide a high recognition rate with a good
robustness when face to large changes of poses and ppearances
of observed aircraft during its flight.

The general principle of our SMF-ATR method is shown on
Fig.1. The upper part of Fig. 1 consists in Steps 1 & 2, whereas
the lower part of Fig. 1 consists in Steps 3 & 4 respectively
described as follows:

• Step 1 (Features extraction) : We consider and extract
only two features vectors in this work2 (Hu’s moment

1called the abortion method by the authors.
2The introduction of extra features is possible and under investigations.
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Fig. 1: General principle of our sequential MF-ATR approach.

invariants vector, and Singular Values Decomposition
(SVD) features vector) from the binary images3

• Step 2 (BBA’s construction4) : For every image in the se-
quence and from their two features vectors, two Bayesian
BBA’s on possible (target type,target pose) are computed
from the results of two PNN’s trained on the image
dataset. The method of BBA construction is different
from the one proposed in [12].

• Step 3 (BBA’s combination) : For every image, say the
k-th image, in the sequence, the two BBA’s of Step 2
are combined with the PCR5 fusion rule, from which a
decisionOk on the most likely target type and pose is
drawn.

• Step 4 (HMM-based classifier) : From the sequence
OK = {O1, . . . , Ok . . . , OK} of K local decisions com-
puted at Step 3, we feed several HMM-based classifiers
in parallel (each HMM characterizes each target type)
and we find finally the most likely target observed in the
image sequence which gives the output of our SMF-ATR
approach.

The next section presents each step of this new SMF-ATR
approach. Section 3 evaluates the performances of this new
method on real image datasets. Conclusions and perspectives
of this work are given in Section 4.

II. T HE SEQUENTIAL MF-ATR APPROACH

In this section we present the aforementioned steps neces-
sary for the implementation of our new SMF-ATR method.

3In this work, we use only with binary images because our imagetraining
dataset contains only binary images with clean backgrounds, and working
with binary images is easier to do and requires less computational burden
than working with grey-level or color images. Hence it helpsto satisfy real-
time processing. The binarization of the images of the sequence under analysis
is done with the the Flood Fill Method explained in details in[22] using the
point of the background as a seed for the method.

4The mathematical definition of a BBA is given in Section II-C.

A. Step 1: Features extraction from binary image

Because Aircraft poses in a flight can vary greatly, we need
image features that are stable and remain unchanged under
translation, rotation and scaling. In terms of aircraft features,
two categories are widely used: 1) moment features and 2)
contour features. Image moments have been widely used since
a long time specially for pattern-recognition applications [16].
Moment features which are the descriptions of image regional
characteristics are mainly obtained from the intensity of each
pixel of target image. Contour features are extracted primarily
by discretizing the outline contour and they describe the
characteristic of the outline of the object in the image. In terms
of moment features, Hu’s moment invariants [6] are used here.
As contour features, we use the SVD [15] of outlines extracted
from the binary images.

• Hu’s moments
Two-dimensional(p + q)-th order moments forp, q =

0, 1, 2, ... of an image of sizeM ×N are defined as follows:

mpq ,

M
∑

m=1

N
∑

n=1

mpnqf(m,n) (1)

wheref(m,n) is the value of the pixel(m,n) of the binary
image. Note thatmpq may not be invariant whenf(m,n) by
translation, rotating or scaling. The invariant features can be
obtained using the(p + q)-th order central momentsµpq for
p, q = 0, 1, 2, ... defined by

µpq ,

M
∑

m=1

N
∑

n=1

(m− x̄)p(n− ȳ)qf(m,n) (2)

wherex̄, and ȳ are the barycentric coordinates of image (i.e.
the centroid of the image). These values are computed by
x̄ = m10

m00
= 1

C

∑M
m=1

∑N
n=1 m × f(m,n) and ȳ = m01

m00
=

1
C

∑M
m=1

∑N
n=1 n × f(m,n), where C is a normalization

constant given byC = m00 =
∑M

m=1

∑N
n=1 f(m,n). The

centroid momentsµpq is equivalent to thempq moment whose



center has been shifted to the centroid of the image. Therefore,
µpq are invariant to image translations. Scale invariance is ob-
tained by normalization [6]. The normalized central moments
ηpq are defined forp + q = 2, 3, . . . by ηpq , µpq/µ

γ
00, with

γ = (p+q+2)/2. Based on these normalized central moments
Hu in [16] derived seven moment invariants that are unchanged
under image scaling, translation and rotation as follows

Φ1 , η20 + η02

Φ2 , (η20 − η02)
2 + 4η2

11

Φ3 , (η30 − 3η12)
2 + (3η21 − η03)

2

Φ4 , (η30 + η12)
2 + (η21 + η03)

2

Φ5 , (η30 − 3η12)(η30 + η12)[(η30 + η12)
2
− 3(η21 + η03)

2]

+ (3η21 − η03)(η21 + η03)[3(η30 + η12)
2
− (η21 + η03)

2]

Φ6 , (η20 − η02)[(η30 + η12)
2
− (η21 + η03)

2]

+ 4η11(η30 + η12)(η21 + η03)

Φ7 , (3η21 − η03)(η30 + η12)[(η30 + η12)
2
− 3(η21 + η03)

2]

− (η30 − 3η12)(η21 + η03)[3(η30 + η12)
2
− (η03 + η21)

2]

In this work, we use only the four simplest Hu’s moments to
compute, that isΦ = [Φ1 Φ2 Φ3 Φ4], to feed the first PNN
of our sequential MF-ATR method5.

• SVD features of the target outline
The SVD is widely applied signal and image processing

because it is an efficient tool to solve problems with least
squares method [21]. The SVD theorem states that ifAm×n

with m > n (representing in our context the original binary
data) is a real matrix6, then it can be written using a so-called
singular value decomposition of the form

Am×n = Um×mSm×nV
T
n×n

where Um×m and Vn×n are orthogonal7 matrices. The
columns ofU are the left singular vectors.VT has rows that
are the right singular vectors. The real matrixS has the same
dimensions asA and has the form8

Sm×n =

[

Sr×r 0r×(n−r)

0r×(m−r) 0(m−r)×(n−r)

]

whereSr×r = Diag{σ1, σ2, . . . , σr} with σ1 ≥ σ2,≥ . . . ≥
σr > 0 and1 ≤ r ≤ min(m,n).

Calculating the SVD consists of finding the eigenvalues and
eigenvectors ofAA

T andA
T
A. The eigenvectors ofAT

A

make up the columns ofV, the eigenvectors ofAA
T make

up the columns ofU. The singular valuesσ1,. . . , σr are the
diagonal entries ofSr×r arranged in descending order, and
they are square roots of eigenvalues fromAA

T or AT
A.

A method to calculate the set of discrete points
{a1, a2, . . . , an} of a target outline from a binary image
is proposed in [17]. The SVD features are then computed

5It is theoretically possible to work with all seven Hu’s moments in our
MF-ATR method, but we did not test this yet in our simulations.

6For a complex matrixA, the singular value decomposition isA =
USVH , whereVH is the conjugate transpose ofV.

7They verify UT
m×mUm×m = Im× andVT

n×nVn×n = In×n, where
Im×m andIn×n are respectively the identity matrices of dimensionsm×m

andn× n.
80p×q is a p× q matrix whose all its elements are zero.

from the eigenvalues of the circulant matrix built from the
discretized shape of the outline characterized by the vector
d = [d1, d2, . . . , dn] wheredi is the distance of the centroid
of the outline to the discrete pointsai, i = 1, 2, . . . , n of the
outline.

In our analysis, it has been verified from our image
dataset that only the first components of SVD features vector
σ = [σ1, σ2, . . . , σr] take important values with respect to
the other ones. The other components ofσ tend quickly
towards zero. Therefore only few first components ofσ play
an important role to characterize the main features of target
outline. However, if one considers only these few main first
components ofσ, one fails to characterize efficiently some
specific features (details) of the target profile. By doing so,
one would limit the performances of ATR. That is why we
propose to use the partial SVDs of outline as explained in the
next paragraph.

To capture more details of aircraft outline with SVD, one
has to taken into account also additional small singular values
of SVD. This is done with the following procedure issued from
the face recognition research community [24]. The normalized
distance vectord̃ = [d̃1, d̃2, . . . , d̃n] is built from d by
taking d̃ = [1, d2/d1, . . . , dn/d1], whered1 is the distance
between the centroid of outline and the first chosen points
of the contour of the outline obtained by a classical9 edge
detector algorithm. To capture the details of target outline and
to reduce the computational burden, one works with partial
SVDs of the original outline by considering onlyl sliding
sub-vectors̃dw of d̃, wherew is the number of components
of d̃w. For example if one takesw = 3 points only in the
sub-vectors and if̃d = [d̃1, d̃2, . . . , d̃9], then one will take
the sub-vectors̃d1

w = [d̃1, d̃2, d̃3], d̃
2
w = [d̃4, d̃5, d̃6] and

d̃
3
w = [d̃7, d̃8, d̃9] if we don’t use overlapping components

between sub-vectors. From the sub-vectors, one constructs
their corresponding circulant matrix and apply their SVD to
get partial SVD features vectorsσl=1

w , σl=2
w , etc. The number

l of partial SVD of the original outline of the target is given
by l = (n − w)/(w − m) + 1, wherem is the number of
components overlapped by each two adjacent sub-vectors, and
n is the total number of discrete contour points of the outline
given by the edge detector.

B. Step 2: BBA’s construction with PNN’s

In order to exploit efficiently fusion rules dealing with
conflicting information modeled by belief mass assignments
(BBA’s) [18], [23], we need to build BBA’s from all features
computed from images of the sequence under analysis. The
construction of the BBA’s needs expert knowledge or knowl-
edge drawn from training using image dataset. In this paper,
we propose to utilize probabilistic neural networks (PNN)
initially developed in nineties by Specht [19] to constructthe
BBA’s because it is a common technique used in the target
recognition and pattern classification community that is able to

9In this work, we use thecvcontour function of opencv software [22] to
extract the target outline from a binary image.



achieve with large training dataset performances close to those
obtained by a human expert in the field. The details of PNN’s
settings for BBA’s construction are given in [12]. However,
because the neural network after training to some extent hasa
good discriminant ability (close to an expert in the field), the
BBA is constructed by the neural network directly based on
the PNN’s output, which is different from the construction of
the BBA based on the confusion matrix described in [12].

Here we present how the two PNN’s (shown in Figure 1)
work. In our application, we haveNc = 7 types of aircrafts
in our training image dataset. For each type, the aircraft is
observed withNp = 3 poses. Therefore we haveNcp = Nc×
Np = 21 types of distinct cases in our dataset. For each case,
one hasNi = 30 images available for the training. Therefore
the whole training dataset containsNcpi = NcNpNi = 7 ×
3 × 30 = 630 binary images. For the first PNN (fed by Hu’s
features vector), the number of input layer neurons is 4 because
we use onlyΦ = [Φ1,Φ2,Φ3,Φ4] Hu’s moment invariants in
this work. For the second PNN (fed by partial SVD features
vector), the number of input layer neurons is constant and
equal to l × w because we takel windows with the width
w (so one hasw singular values of partial SVD for every
window). The number of hidden layer neurons of each PNN is
the number of the training samples,Ncpi = 630. The number
of output layer neurons is equal toNcp = 21 (the number of
different possible cases).

Our PNN’s fed by features input vectors (Hu’s moments
and SVD outline) do not provide a hard decision on the type
and pose of the observed target under analysis because in our
belief-based approach we need to build BBA’s. Therefore the
competition function of the output layer for decision-making
implemented classically in the PNN scheme is not used in
the exploitation10 phase of our approach. Instead, the PNN
computes theNcp × Ni (Euclidean) distances between the
features vectors of the image under test and theNcpi = 630
features vectors of the training dataset. A Gaussian radial
basis function (G-RBF) is used in the hidden layer of the
PNN’s [19] to transform its input (Euclidean) distance vector
of size 1 × Ncpi into another1 × Ncpi distance (similarity)
that feeds the output layer through a weighting matrix of size
Ncpi×Ncp = 630×21 estimated from the training samples. As
a final output of each PNN, we get an unnormalized similarity
vectorm of size(1×Ncpi)×(Ncpi×Ncp) = 1×Ncp = 1×21
which is then normalized to get a Bayesian BBA on the frame
of discernmentΘ = {(targeti, posej), i = 1, . . . , c, j =
1, . . . , p}. Because we use only two11 PNN’s in this approach,
we are able to build two Bayesian BBA’sm1(.) and m2(.)
defined on the same frameΘ for every image of the sequence
to analyze.

C. Step 3: Fusion of BBA’s and local decision

A basic belief assignment (BBA), also called a (belief) mass
function, is a mappingm(.) : 2Θ 7→ [0; 1] such thatm(∅) = 0

10when analyzing a new sequence of an unknown observed aircraft.
11A first PPN fed by Hu’s features, and a second PNN fed by SVD outline

features – see Fig. 1.

and
∑

X∈2Θ m(X) = 1, whereΘ is the so-called frame of
discernment of the problem under concern which consists of
a finite discrete set of exhaustive and exclusive hypotheses12

θi, i = 1, . . . , n, and where2Θ is the power-set ofΘ (the set of
all subsets ofΘ). This definition of BBA has been introduced
in Dempster-Shafer Theory (DST) [23]. The focal elements
of a BBA are all elementsX of 2Θ such thatm(X) > 0.
Bayesian BBA’s are special BBA’s having only singletons (i.e.
the elements ofΘ) as focal elements.

In DST, the combination of BBA’s is done by Dempster’s
rule of combination [23] which corresponds to the normalized
conjunctive consensus operator. Because this fusion rule is
known to be not so efficient (both in highly and also in low
conflicting) in some practical situations [25], many alternative
rules have been proposed during last decades [18], Vol. 2.

To overcome the practical limitations of Shafers’ model
and in order to deal with fuzzy hypotheses of the frame,
Dezert and Smarandache have proposed the possibility to
work with BBA’s defined on Dedekind’s lattice13 DΘ [18]
(Vol.1) so that intersections (conjunctions) of elements of the
frame can be allowed in the fusion process, with eventually
some given restrictions (integrity constraints). Dezert and
Smarandache have also proposed several rules of combination
based on different Proportional Conflict Redistribution (PCR)
principles. Among these new rules, the PCR5 and PCR6 rules
play a major role because they do not degrade the specificity of
the fusion result (contrariwise to most other alternative rule),
and they preserve the neutrality of the vacuous BBA14. PCR5
and PCR6 provide same combined BBA when combining
only two BBA’s m1(.) and m2(.), but they differ when
combining three (or more) BBA’s altogether. It has been
recently proved in [26] that PCR6 is consistent with empirical
(frequentist) estimation of probability measure, unlike other
fusion rules15.These two major differences with DST, make
the basis of Dezert-Smarandache Theory (DSmT) [18].

In the context of this work, we propose to use PCR5 to
combine the two (Bayesian) BBA’sm1(.) andm2(.) built from
the two PNN’s fed by Hu’s features vector and SVD outline
features vector. Because for each image of the observed target
in the sequence, one has only two BBA’s to combine, the PCR5
fusion result is same as the PCR6 fusion result. Of course,
if one wants to include other kinds of features vectors with
additional PNN’s, the PCR6 fusion rule is recommended. The
PCR principle consists in redistributing the partial conflicting
masses16only to the sets involved in the conflict and propor-
tionally to their mass. The PCR5 (or PCR6) combination of

12This is what is called Shafer’s model of the frame in the literature.
13Dedekind’s lattice is the set of all composite subsets builtfrom elements

of Θ with ∪ and∩ operators.
14A vacuous BBA is the BBA such thatm(Θ) = 1.
15except the averaging rule.
16For two BBA’s, a partial conflicting mass is a productm1(X)m2(Y ) >

0 of the elementX ∩ Y which is conflicting, that is such thatX ∩ Y = ∅.



two BBA’s is done according to the following formula17 [18]

mPCR5/6(X) =
∑

X1,X2∈2
Θ

X1∩X2=X

m1(X1)m2(X2)+

∑

Y ∈2Θ\{X}
X∩Y=∅

[
m1(X)2m2(Y )

m1(X) +m2(Y )
+

m2(X)2m1(Y )

m2(X) +m1(Y )
] (3)

where all denominators in (3) are different from zero, and
mPCR5/6(∅) = 0. If a denominator is zero, that fraction
is discarded. All propositions/sets are in a canonical form.
Because we work here only with Bayesian BBA’s, the previous
fusion formula is in fact rather easy to implement, see [18]
(Vol. 2, Chap. 4).

In summary, the target features extraction in a sequence of
K images allows us to generate, after Step 3, a set of BBA’s
{mImagek(.), k = 1, 2, . . . ,K}. Every BBA mImagek(.) is
obtained by the PCR5/6 fusion of BBA’smImagek

1 (.) and
mImagek

2 (.) built from the outputs of two PNN’s. From this
combined BBA, a local18 decisionOk can be drawn about
the target type and target pose inImagek by taking the focal
element ofmImagek(.) having the maximum mass of belief.

D. Step 4: Hidden Markov Model (HMM) for recognition

Usually (and specially in military context), the posture of
an aircraft can continuously change a lot during its flightpath
making target recognition based only on single observation
(image) very difficult, because some ambiguities can occur
between extracted features with those stored in the training
image data set. To improve the target recognition performance
and robustness, one proposes to use the sequence of target
recognition decisionOk drawn from BBA’s{mImagek(.), k =
1, 2, . . . ,K} to feed HMM classifiers in parallel. We suggest
this approach because the use of HMM has already been
proved to be very efficient in speech recognition, natural
language and face recognition. We briefly present HMM, and
then we will explain how HMMs are used for automatic
aircraft recognition.

Let us consider a dynamical system with a finite set of pos-
sible statesS = {s1, s2, . . . , sN}. The state transitions of the
system is modeled by a first order Markov chain governed by
the transition probabilities given byP (s(tk) = sj |s(tk−1) =
si, s(tk−2) = sk, . . .) = P (s(tk) = sj |s(tk−1) = si) = aij ,
wheres(tk) is the random state of the system at timetk. A
HMM is a doubly stochastic processes including an underlying
stochastic process (i.e. a Markov chain for modeling the state
transitions of the system), and a second stochastic process
for modeling the observation of the system (which is a
function of the random states of the system). A HMM, denoted
λ = (A,B,Π), is fully characterized by the knowledge of the
following parameters

17Here we assume that Shafers’ model holds. The notationmPCR5/6
means PCR5 and PCR6 are equivalent when combining two BBA’s.

18because it is based only on a single image of the unknown observed target
in the sequence under analysis.

1) The numberN of possible statesS = {s1, s2, . . . , sN}
of the Markov chain.

2) The state transition probability matrix19
A = [aij ] of

sizeN ×N , whereaij , P (s(tk) = si|s(tk−1) = sj).
3) The prior mass function (pmf)Π of the initial state of

the chain, that isΠ = {π1, . . . , πN} with
∑N

i=1 πi = 1,
whereπi = P (s(t1) = si).

4) The numberM of possible valuesV = {v1, . . . , vM}
taken by the observation of the system.

5) The conditional pmfs of observed values given the states
of the system characterized by the matrixB = [bmi] of
size M × N , with bmi , P (Ok = vm|s(tk) = si),
whereOk is the observation of the system (i.e. the local
decision on target type with its pose) at timetk.

In this work we consider a set ofNc HMMs in parallel,
where each HMM is associated with a given type of target
to recognize. We consider the following state and observation
models in our HMMs:
- State model: For a given type of aircraft, we consider a
finite set of distinct aircraft postures available in our training
image dataset. In our application, we consider only three states
corresponding tos1 = top view, s2 = side view and s3 =
front view as shown (for a particular aircraft) in Figure 2.

Fig. 2: Example of HMM states.

- Observation model: In our HMMs, we assume that each
state (posture) of aircraft is observable. Since we have
only Np = 3 statesS = {s1, s2, s3} for each aircraft,
and we haveNc = 7 types of aircrafts in the training
dataset, we have to deal withNcp = 3 × 7 = 21 possible20

observations (local decisions) at each timetk. As explained
previously, at the end of Step 3 we have a set of BBA’s
{mImagek(.), k = 1, 2, ...,K} that helps to draw the sequence
of local decisionsOK , {O1, . . . , Ok, . . . , OK}. This
sequence of decisions (called alsorecognition observations)
is used to evaluate the likelihoodP (OK |λi) of the different
HMMs described by the parameterλi = (Ai,Bi,Πi),
i = 1, 2, . . . , Nc. The computation of these likelihoods will
be detailed at the end of this section. The final decision
for ATR consists to infer the true target type based on
the maximum likelihood criterion. More precisely, one will
decide that the target type isi⋆ if i⋆ = argmaxi P (OK |λi).

• Estimation of HMM parameters
To make recognition with HMMs, we need at first to define

a HMM for each type of target one wants to recognize.
More precisely, we need to estimate the parametersλi =

19We assume that the transition matrix is known and time-invariant, i.e. all
elementsaij do not depend ontk−1 and tk.

20We assume that the unknown observed target type belongs to the set of
types of the dataset, as well as its pose.



(Ai,Bi,Πi), where i = 1, . . . , Nc is the target type in the
training dataset. The estimation of HMM parameters is done
from observation sequences drawn from the training dataset
with Baum-Welch algorithm [20] that must be initialized with
a chosen valueλ0

i = (A0
i ,B

0
i ,Π

0
i ). This initial value is chosen

as follows:
1) – State prior probabilitiesΠ0

i for a target of typei: For each
HMM, we consider only three distinct postures (states)s1, s2
and s3 for the aircraft. We use a uniform prior probability
mass distribution for all types of targets. Therefore, we take
Π0

i = [1/3, 1/3, 1/3] for any target typei = 1, . . . , Nc to
recognize.
2) – State transition matrixA0

i of a target of typei: The
componentsapq of the state transition matrixA0

i are estimated
from the analysis of many sequences21 of targeti as follows

apq =

∑K−1
k=1 δ(s(tk), sp)× δ(s(tk+1), sq)

∑K−1
k=1 δ(s(tk), sp)

(4)

where Np is the number of states of the Markov chain,
δ(x, y) is the Kronecker delta function defined byδ(x, y) = 1
if y = x, and δ(x, y) = 0 otherwise, and whereK is
the number of images in the sequence of targeti avail-
able in the training phase. For example, if in the train-
ing phase and for a target of typei = 1, we have the
following sequence of (target type, pose) cases given by
[(1, 1), (1, 1), (1, 2), (1, 1), (1, 3), (1, 1), (1, 1)], then from Eq.
(4) with K = 7, we get22

A
0
i=1 =





2/4 1/4 1/4
1 0 0
1 0 0





3) – Observation matrixB0
i for a target of typei: The

initial observation matrixB0
i is given by the confusion matrix

learnt from all images of the training dataset. More precisely,
from every image of the training dataset, we extract Hu’s
features and partial SVD outline features and we feed each
PNN to get two BBA’s according to Steps 1-3. From the
combined BBA, we make the local decision(targeti, posej) if
m((targeti, posej)) is bigger than all other masses of belief
of the BBA. This procedure is applied to all images in the
training dataset. By doing so, we can estimate empirically
the probabilities to decide(targeti, posej) when real case
(targeti′ , posej′) occurs. So we have an estimation of all com-
ponents of the global confusion matrixB0 = [P (decision =
(targeti, posej) | reality = (targeti′ , posej′))]. From B

0

we extract thec sub-matrices (conditional confusion matrices)
B

0
i , i = 1, . . . , Nc by taking all the rows ofB0 corresponding

to the target of typei. In our application, one hasNc = 7
types andNp = 3 postures (states) for each target type, hence
one hasNcp = 7 × 3 = 21 possibles observations. Therefore
the global confusion matrixB0 has size21× 21 is the stack
of Nc = 7 sub-matricesB0

i , i = 1, ..., Nc, each of size
Np ×Ncp = 3× 21.

21The video stream of different (known) aircraft flights generate the
sequences of images to estimate approximatelyapq

22One verifies that the probabilities of each raw of this matrixsum to 1.

• Exploitation of HMM for ATR
Given a sequenceOK of K local decisions drawn from the

sequence ofK images, and givenNc HMMs characterized by
their parameterλi (i = 1, . . . , Nc), one has to compute all the
likelihoodsP (OK |λi), and then infer from them the true target
type based on the maximum likelihood criterion which is done
by deciding the target typei⋆ if i⋆ = argmaxi P (OK |λi). The
computation ofP (OK |λi) is done as follows [20]:

• generation of all possible state sequences of length
K, SK

l = [sl(t1)sl(t2) . . . sl(tK)], where sl(tk) ∈ S

(k=1,. . . , K) andl = 1, 2, . . . , |S|K

• computation ofP (OK |λi) by applying the total proba-
bility theorem as follows23

P (SK
l |λi) = πsl(t1) ·asl(t1)sl(t2) ·. . .·asl(tK−1)sl(tK) (5)

P (OK |λi, S
K
l ) = bsl(t1)O1

·bsl(t2)O2
· . . . ·bsl(tK)OK

(6)

P (OK |λi) =

|S|K
∑

l=1

P (OK |λi, S
K
l )P (SK

l |λi) (7)

III. S IMULATIONS RESULTS

For the simulations of SMF-ATR method, we have used
Nc = 7 types of aircrafts in the training image dataset. Each
image of the sequence has1200× 702 pixels. The sequences
of aircraft observations in the training dataset take 150 frames.
The Np = 3 poses of every aircraft is shown in Fig. 3.
For evaluating our approach, we have used sequences (test
samples) of images of 7 different aircraft, more precisely
the Lockheed-F22, Junkers-G.38ce, Tupolev ANT 20 Maxime
Gorky, Caspian Sea Monster (Kaspian Monster), Mirage-F1,
Piaggio P180, and Lockheed-Vega, flying under conditions that
generate a lot of state (posture) changes in the images. The
number of the images in each sequence to test varies from
400 to 500. The shaping parameter of the G-RBF of PNN’s
has been set to 0.1. The simulation is done in two phases: 1)
the training phase (for training PNN’s and estimating HMM’s
parameters), and 2) the exploitation phase for testing the real
performances of the SMF-ATR with test sequences.
A - Performances evaluation

In our simulations, we have tested SMF-ATR with two
different fusion rules: 1) the PCR5 rule (see Section II-C),
and 2) Dempster-Shafer (DS) rule24 [23]. The percentages of
successful recognition (i.e. the recognition rateRi) obtained
with these two SMF-ATR methods are shown in Table I for
each typei = 1, 2, . . . , Nc of aircraft. The performances of
these SMF-ATR versions are globally very good since one
is able to recognize with a minimum of 85.2% of success
the types of aircraft included in the image sequences under
test when using DS-based SMF-ATR, and with a minimum of

23The indexi of components ofAi andBi matrices has been omitted for
notation convenience in the last two formulas.

24Because Dempster’s rule is one of the basis of Dempster-Shafer Theory,
we call prefer to call it Dempster-Shafer rule, or just DS rule. This rule
coincides here with Bayesian fusion rule because we combinetwo Bayesian
BBA’s and we don’t use informative priors.



Fig. 3: Poses of different types of aircrafts.

93.5% of success with the PCR5-based SMF-ATR. In term of
computational time, it takes between 5ms and 6ms to process
each image in the sequence with no particular optimization
of our simulation code, which indicates that this SMF-ATR
approach is close to meet the requirement for real-time aircraft
recognition. It can be observed that PCR5-based SMF-ATR
outperforms DS-based SMF-ATR for 3 types of aircraft and
gives similar recognition rate as with DS-based SMF-ATR for
other types. So PCR5-based SMF-ATR is globally better than
DS-based SMF-ATR for our application.

Target type 1 2 3 4 5 6 7
Ri (PCR5 rule) 95.7 93.5 96.3 98.2 96.3 98.5 97.3
Ri (DS rule) 95.7 93.5 85.2 97.8 96.3 98.5 97.2

TABLE I: Aircraft recognition ratesRi (in %).

B - Robustness of SMF-ATR to image scaling

To evaluate the robustness of (PCR5-based) SMF-ATR ap-
proach to image scaling effects, we did apply scaling changes
(zoom out) ofZO = 1/2, ZO = 1/4 andZO = 1/8 in the
images of the sequences under test. The performances of the
SMF-ATR are shown in Table II. One sees that the degradation
of recognition performance of SMF-ATR due to scaling effects
is very limited since even with a 1/8 zoom out one gets 90%
of successful target recognition. The performance will decline
sharply if the targets zoom out goes beyond 1/16.
C - Robustness to compound type

Table III gives the performances of SMF-ATR on sequences
with two types of targets (475 images with type 1, and 382
images with type 2).

The two left columns of Table III show the performances

Target type 1 2 3 4 5 6 7
Ri (no ZO) 95.7 93.5 96.3 98.2 96.3 98.5 97.3
Ri (ZO=1/2) 95.0 92.0 95.2 94.7 96.1 96.6 95.4
Ri (ZO=1/4) 95.0 92.0 94.7 91.7 93.6 91.6 95.7
Ri (ZO=1/8) 95.0 92.2 93.1 89.3 93.6 94.5 90.7

TABLE II: Aircraft recognition ratesRi (in %) of (PCR5/6-
based) SMF-ATR with different zoom out values.

Aircraft Single Single Compound
Type 1 Type 2 Type

Ri (SMF-ATR) 96.3 % 98.5% 97.3%

TABLE III: Robustness to target compound.

obtained when recognizing each type separately in each sub-
sequence. The last column shows the performance when
recognizing the compound type Type 1∪ Type 2. One sees
that the performance obtained with compound type (97.3%) is
close to the weighted average25 97.5% recognition rate. This
indicates that no wide range of recognition errors occurs when
the targets type change during the recognition process, making
SMF-ATR robust to target type switch.

D - Performances with and without HMMs

We have also compared the performances of SMF-ATR,
with two methods using more features but which do not exploit
sequences of images with HMM. More precisely, the recogni-
tion is done locally from the combined BBA for every image
without temporal integration processing based on HMM. We
call these two Multiple Features Fusion methods MFF1 and
MFF2 respectively. In MMF1, one uses Hu’s moments, NMI
(Normalized Moment of Inertia), affine invariant moments, and
SVD of outline, PNN and PCR5 fusion, whereas MMF2 uses
same features as MMF1 but with BP network as classifier
and DS rule of combination. The recognition performances are
shown in Table IV. One sees clearly the advantage to use the
image sequence processing with HMMs because of significant
improvement of ATR performances. The recognition rate of
MFF2 declines seriously because the convergence of the BP
network is not good enough.

Target type 1 2 3 4 5 6 7
Ri (SMF-ATR) 95.7 93.5 96.3 98.2 96.3 98.5 97.3
Ri (MFF1) 89.2 92.0 91.2 86.9 92.2 93.5 95.0
Ri (MFF2) 64.9 51.6 82.8 82.2 70.8 48.3 58.9

TABLE IV: Performances (in %) with and without HMMs.

E - SMF-ATR versus SSF-ATR

We have also compared in Table V the performances
SMF-ATR with those of two simple SSF-ATR26 methods,
called SSF1-ATR and SSF2-ATR. The SSF1-ATR uses only
Hu’s moments features whereas SSF2-ATR uses only SVD
of outline as features. SSF1-ATR exploits image sequence
information using BP networks as classifier and DS rule for
combination, while SSF2-ATR uses PNN and PCR5/6 rule.

25According to the proportion of the two types in the whole sequence.
26SSF-ATR stands for Single-feature Sequence Automatic Target Recogni-

tion.



Target type 1 2 3 4 5 6 7
Ri (SMF-ATR) 95.7 93.5 96.3 98.2 96.3 98.5 97.3
Ri (SFF1-ATR) 39.3 42.3 74.3 56.7 60.1 33.9 44.3
Ri (SFF2-ATR) 88.8 66.4 86.7 66.9 73.6 52.9 63.8

TABLE V: Performances (in %) of SMF-ATR and SFF-ATR.

One clearly sees the serious advantage of SMF-ATR with
respect to SFF-ATR due to the combination of information
drawn from both kinds of features (Hu’s and SVD of outline)
extracted from the images.

IV. CONCLUSIONS AND PERSPECTIVES

A new SMF-ATR approach based on features extraction has
been proposed. The extracted features from binary images feed
PNNs for building basic belief assignments that are combined
with DSmT PCR rule to make a local (based on one image
only) decision on target type. The set of local decisions ac-
quired over time for the image sequence feeds HMMs to make
the final recognition of the target. The evaluation of this new
SMF-ATR approach has been done with realistic sequences
of aircraft observations. SMF-ATR is able to achieve higher
recognition rates than classical approaches that do not exploit
HMMs, or SSF-ATR. Another complementary analysis of the
robustness of SMF-ATR to target occultation is currently under
progress and will be published in a forthcoming paper. Our
very preliminary results based only on few sequences indi-
cate that SMF-ATR seems very robust to target occultations
occurring randomly in single (non consecutive) images, buta
finer analysis based on Monte-Carlo simulation will be done
to evaluate quantitatively its robustness in different conditions
(number of consecutive occultations in the sequences, the level
of occultation, etc). As interesting perspectives, we wantto
extend SMF-ATR approach for detecting new target types that
are not included in image data set. Also, we would want to
deal with the recognition of multiple crossing targets observed
in a same image sequence.
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