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Abstract—Information fusion technique like evidence theory
has been widely applied in the data classification to improve the
performance of classifier. A new fuzzy-belief K-nearest neighbor
(FBK-NN) classifier is proposed based on evidential reasoning for
dealing with uncertain data. In FBK-NN, each labeled sample
is assigned with a fuzzy membership to each class according
to its neighborhood. For each input object to classify, K basic
belief assignments (BBA’s) are determined from the distances
between the object and its K nearest neighbors taking into
account the neighbors’ memberships. The K BBA’s are fused
by a new method and the fusion results are used to finally
decide the class of the query object. FBK-NN method works
with credal classification and discriminate specific classes, meta-
classes and ignorant class. Meta-classes are defined by disjunction
of several specific classes and they allow to well model the partial
imprecision of classification of the objects. The introduction of
meta-classes in the classification procedure reduces the misclas-
sification errors. The ignorant class is employed for outliers
detections. The effectiveness of FBK-NN is illustrated through
several experiments with a comparative analysis with respect to
other classical methods.

Index Terms—data classification; evidential reasoning; belief
functions; fuzzy membership; K-NN.

I. INTRODUCTION

In the data classification problem, K-nearest neighbor (K-

NN) classifier [1] is a well known non-parametric classification

method, and it is simple and effective in many applications. In

the original voting K-NN method [1], the test sample (object)

is classified to the majority class according to its K-nearest

neighbors (KNNs)1 in the training data space, and the object is

committed to only one particular class. In the real applications,

one never knows with certainty in fact if an input sample

belongs to a particular class. A weighted version of K-NN

(WK-NN) taking into account the distance between the object

and its KNNs has been proposed in [2] to outperform the

voting K-NN method. A more general fuzzy K-NN method

is given in [3] that assigns fuzzy membership to the labeled

sample, and the class of the test sample is decided based on the

distance to the sample’s KNNs and these KNNs’ memberships.

Then, the object is allowed to belong to different classes with

a fuzzy membership.

In some cases, the given attribute information may be

insufficient for making a specific and correct classification

1In this paper, KNNs denotes the K nearest neighbors of a given object,
whereas K-NN denotes the classical K-Nearest Neighbor classification method.

of some objects, and the attribute data in different classes

can partly overlap. These objects will be very difficult to

classify correctly into a particular class, since several different

classes can be undistinguishable for the objects under the given

attributes. Moreover, the data set to classify may also contain

some noises and outliers in some applications, which makes the

classification problem very hard to solve. A method exploiting

fuzzy membership functions is not sufficient to model such

imprecision of data. Whereas, the evidence theory [4]–[6]

also called Dempster-Shafer theory (DST) can well model

the uncertain and imprecise information thanks to the belief

functions defined on the power-set of the frame of discernment.

The belief functions have been already used in many fields,

such as data classification [7]–[10], data clustering [11]–[15],

and decision-making [16]. An evidential version of K-NN,

denoted by EK-NN [7], [17], have been proposed based on

DST [4], and it introduces the ignorant class to model the

uncertainty. A fuzzy extended version of EK-NN denoted by

FEK-NN has been introduced in [18] to handle the more

general situation in which each training sample is considered

having some degree of membership to each class.

Let us consider the classification of a data set over a class

frame Ω = {w1, · · · , wc}. In the aforementioned evidential

methods, only one extra ignorant class denoted by the whole

frame Ω is included in the classification procedure. Belief

functions work with the power-set of frame denoted by 2Ω,

which contains all the subsets of Ω. However, in 2Ω, these

partial ignorant classes defined by the disjunction of several

classes (e.g. wi ∪ wj or wi ∪ wj ∪ wk, etc), also called meta-

class, are not taken into account in the classical evidential

methods. The meta-class is very useful and important to

explore the imprecision of the classification, and it can also

effectively reduce the misclassifications. In many applications,

specially those related to defense and security (like in target

classification and tracking), it is generally preferable to get

a more robust (and eventually less precise) result that could

be precisiated later with additional techniques, than to obtain

directly with high risk a wrong precise classification from

which an erroneous fatal decision would be drawn. In any

applications, there is always a compromise to find between

the risk of misclassification error and the precision one wants.

In our very recent previous work, a belief K-nearest neighbor

(BK-NN) classifier [9] has been developed to deal with uncer-



tain data using the meta-class. Nevertheless, the computation

complexity of BK-NN is a bit high since many (i.e. three)

tuning parameters are involved, and the classification results

of BK-NN seem sensitive to the selected K number of the

nearest neighbors because the K value is used for the choice

of meta-class. These limitations are not convenient for the real

engineering applications. Moreover, the class of each training

data is considered as specific and certain in BK-NN, and the

potential fuzzy membership of the class of training data is not

taken into account.

A new fuzzy-belief K-nearest neighbor classifier denoted by

FBK-NN is proposed in this work. It considers rigorously all

the possible meta-classes in order to characterize the partial im-

precision of class of the uncertain data that are hard to correctly

classify. In FBK-NN, one assigns a fuzzy membership to each

labeled training sample according to the neighborhood of the

sample. A new input sample called object is classified based on

its KNNs. K basic belief assignments (BBA’s) corresponding

to the KNNs are constructed using the assigned memberships

of the KNNs and the distances between the object and its

KNNs. The K BBA’s will be fused using a new proposed

method. The class of the sample is determined based on the

global fusion results. In FBK-NN, only one tuning parameter

related to the selection of meta-class is included, and it can

be easily optimized using the training data. The meta-class is

selected according to the pignistic probability transformation

BetP (.) [5], and it makes the classification results of FBK-NN

more robust to the K number than BK-NN [9]. So FBK-NN is

more convenient and efficient than BK-NN for the engineering

applications.

FBK-NN allows the objects to belong to not only specific

classes but also meta-classes with different masses of beliefs,

and such type of classification is called a credal classification.

The samples that are simultaneously close to several classes

(e.g. wi and wj) and impossible to correctly classify will

be committed to the meta-class defined by the disjunction

(union) of these several classes (e.g. wi ∪ wj). This indicates

that the given attribute information is not sufficient for the

correct and specific classification of the objects, and some other

additional information sources or techniques are necessary if

a more precise classification is necessary. The samples that

are too far from the others will be naturally considered as

outliers, since we can not get useful information with respect

to their class. The output of FBK-NN is a global basic belief

assignment of the object to the specific classes, the meta-

classes and the outlier class. Such output is an interesting

resulting information source that can be used separately, or

combined with some other complementary information sources

for getting a final precise (specific) decision of the class in

the multi-source information fusion system (e.g. multi-sensor

target identification system).

This paper is organized as follows. After a brief introduction

of the fuzzy classification and credal classification in section II,

we present the new FBK-NN method in details in the section

III. Several experiments are then given in the section IV to

show the performance of FBK-NN with respect to the main

classical methods. This paper is concluded in the last section.

II. BACKGROUND KNOWLEDGE

A. Fuzzy classification

Let us consider a set of sample vectors (objects) Y =
{y1, . . . ,yn} to be classified on the frame of classes Ω =
{w1, . . . , wc}. The fuzzy classification of these objects y ∈ Y
will specify the degree of membership of each object in each of

c classes, and the degree of membership of yi belonging to wj

is µi(wj). In order to satisfy the mathematical tractability, the

sum of an object’s memberships in the c classes are generally

constrained to be one.

B. Basics of belief functions

Belief Functions (BF) theory [4]–[6] is also referred as

Dempster-Shafer theory (DST), or evidence theory. In this the-

ory, one starts with a frame of discernment Ω = {w1, . . . , wc}
consisting of a finite discrete set of mutually exclusive and

exhaustive hypotheses (classes). The power-set of Ω, denoted

2Ω, is the set of all the subsets of Ω. The singleton class

(e.g. wi) is called a specific class. The disjunctions of several

single classes that represent the partial ignorance in 2Ω (e.g.

wi ∪ wj , or wi ∪ wj ∪ wk, etc) are called meta-classes. The

whole frame of discernment Ω is called the (full) ignorant class

and serve to characterize the noise and outlier class. A basic

belief assignment (BBA) is a function m(.) from 2Ω to [0, 1]
satisfying

∑

A∈2Ω
m(A) = 1,m(∅) = 0.

The subsets A of Ω such that m(A) > 0 are called

the focal elements of m(.). The lower and upper bounds of

imprecise probability associated with BBA’s correspond to the

belief function Bel(.) and the plausibility function Pl(.) [4].

[Bel(.), P l(.)] is interpreted as the imprecise interval of the

unknown probability P (.). A BBA can also be approximated

into a probability measure using the pignistic probability

transformation BetP (.) [5] for the decision-making support.

BetP (.) transformation is mathematically defined by

BetP (A) =
∑

B∈2Ω

|A ∩B|

|B|
·m(B). (1)

where |B| is the cardinality of the element B ∈ 2Ω, which is

the number of singleton elements included in B. For example,

if B = wi ∪ wj , then |B| = 2.

III. FUZZY-BELIEF K-NEAREST NEIGHBOR CLASSIFIER

Let us consider the input samples (objects) Y =
{y1, . . . ,yn} to be classified over the frame of the classes

Ω = {w0, w1, · · · , wc}, and the set of labeled training samples

X = {x1, . . . ,xz}. The element w0 represents the potential

unknown class. It is included in Ω here for the exhaustiveness

of the frame, and it is also used to distinguish the ignorant class

denoted by Ω discriminating the objects too far from all the

training samples and the meta-class w1∪ . . . wc describing the

objects lying the overlapped zone of all the singleton classes.

The credal classification consists to classify each object

using the belief functions framework. It can be defined as n-

tuple M = (m1, · · · ,mn), where mi is the BBA of the object



yi ∈ Y , i = 1, . . . , n associated with the different elements

(classes) of the power-set2 2Ω. We recall that if the frame Ω has

|Ω| = c elements (c > 1), the objects can be committed with

different memberships only to c distinct single classes if we

use a fuzzy classification. Whereas, in a credal classification

method, the objects can belong to 2|Ω| > |Ω| elements (specific

classes and meta-classes as well) with different masses of

belief.

A. Fuzzy membership of the labeled samples

The local information around the training sample can be

useful and interesting to specify the membership value, and

it can make the classification more robust to the abnormal

labeled samples. For example, if one training sample is labeled

with w1, but all its neighborhoods in the training data space

are labeled with w2, then it very plausible that this training

sample labeled with w1 is in fact an abnormal sample that

seldom occurs in the class w1. If we use the local information

(e.g. the neighborhood) to assign each labeled sample a fuzzy

membership, it can distribute some membership of the abnor-

mal sample to other classes. The distance measure has been

used for determination of the membership in fuzzy c-means

clustering [19] method. We propose to define the membership

of xi based on the distance between xi and its KNNs as

follows






























ui(wj) = 0.51 +

∑

xs|L(xs)=wj

d−1(xi,xs)

K∑

s=1
d−1(xi,xs)

× 0.49, wj = L(xi)

ui(wk) =

∑

xs|L(xs)=wk

d−1(xi,xs)

K∑

s=1
d−1(xi,xs)

× 0.49, wk ̸= L(xi)

(2)

where {xs, s = 1, 2, . . . ,K} is the set of the KNNs of the

training sample xi, and d−1(xi, xs) , 1/||xi − xs|| which is

the inverse of the Euclidean distance between xi and xs.

The normalization condition
∑

wj∈Ω

ui(wj) = 1 holds. In the

determination of class membership of each training sample,

we globally take into account the information including the

known label of samples, the number of neighbors in each class

and the distances to the neighbors. If one training sample xi

is in class wj , it will naturally take the biggest membership

value belonging to wj . The bigger number of neighbors in

class wj should lead to the higher degree of membership in

wj . Moreover, if one neighbor is closer to the sample, this

sample will have a bigger membership in the class label of

the neighbor. This new method is expected to assign a better

suitable membership for the training samples.

B. Determination of basic belief assignments

As with the classical K-NN method, the KNNs of an object

ys are found at first in the FBK-NN method. If the object

ys to classify is very close to one of its K close neighbors

2The element w0 is not necessarily considered in the determination of
power-set, since the meta-classes involved with w0 like w0 ∪ wi are not
taken into account in this work.

xi, we consider that ys and xi must share the similar class

membership. Whereas, if ys is far from xi then xi provides

only little useful information for the class of ys, and xi plays

almost a neutral role in the classification for ys. In Dempster-

Shafer’s theory of belief functions, a complete ignorant source

of evidence is modeled by the basic belief assignment m(Ω) =
1, where Ω is the whole frame of discernment.

In our context, the information provided by xi for the class

membership of ys will be represented by a BBA defined by
{

ms,i(wj) = αs,iui(wj), wj ∈ Ω

ms,i(Ω) = 1− αs,i
(3)

where αs,i is the confidence measure of the class membership

of ys with respect to the training sample xi. α
s,i is determined

based on the distance between ys and xi, and the bigger

distance generally leads to the smaller confidence measure.

Thus, αs,i should be a decreasing function of ds,i. This

confidence measure αs,i ∈ (0, 1] is defined for λL(xi) > 0
and ds,i ≥ 0 by:

αs,i = e−λL(xi)
ds,i (4)

One gets L(xi) = wp when the training sample xi is labeled by

class wp. For the notation conciseness, one uses λp , λL(xi)

in the sequel. The tuning parameter λp must be positive, and

its determination depends on the training data and it is done

as follows. The average distance between each training sample

in class wp and its KNNs is calculated at first, and the mean

value d̄wp of all the average distances for the training samples

in wp is used to calculate λp, and it is defined by:

λp =
1

d̄p
(5)

with

d̄p =
1

Np

Np
∑

i=1

1

K

K
∑

j=1

||xp
i −xi,j || =

1

KNp

Np
∑

i=1

K
∑

j=1

||xp
i −xi,j ||

(6)

where Np is the number of training samples in class wp,

x
p
i , i = 1, . . . , Ns are the training samples in wp, and xi,j , j =

1, . . . ,K are the K nearest neighbors of x
p
i in training data

space.

C. Fusion of basic belief assignments

The K BBA’s will be fused for the classification of the

objects, and the decision about class of the objects will depend

on the global fusion results. The fusion of BBA’s consists of

two steps:

1) the sub-combination of the BBA’s obtained from the

neighbors having the same class label;

2) the global fusion of these sub-combination results.

If several BBA’s are obtained from the neighbors with the

same class label (e.g. wj), the most masses of belief in these

BBA’s should be focused on the same class wj . Thus, these

BBA’s are usually not in high conflict. Moreover, the structure

of these BBA’s is quite usual and considered as appropriate for

using DS rule. For this reason and its simplicity, we use DS



rule here to combine these BBA’s. The DS combination rule

is defined as: ∀A,Bi, Ci ⊆ Ω

ms,j
DS(A) =

∑

g(wj)∩

i=1
Bi=A

g(wj)
∏

i=1

ms,i(Bi)

1−
∑

g(wj)∩

i=1
Ci=∅

g(wj)
∏

i=1

ms,i(Ci)

(7)

where g(wj) is the number of the neighbors whose given

label is wj , and where ms,i(.) is given in (3). Because of

the particular structure of the BBA’s ms,i(.) having only

singletons and Ω as focal elements, the resulting BBA

obtained by DS rule (7) also carries in this particular context

the same type of focal elements. ms,j
DS(.) is the resulting

(combined) basic belief assignment obtained from the object

ys and its neighbors with the label wj .

In these sub-combination results, the most masses of be-

lief in different BBA’s are generally committed to different

classes. Hence, these sub-combination results are likely in

high conflict. If DS rule is still applied, it may produce

very unreasonable results which could lead to wrong decision.

The mass of partial conflicting belief (e.g. m(A ∩ B) =
m1(A)m2(B) +m1(B)m2(A)) produced by the conjunctive

combination reflects the level of difficulty for committing the

objects to class A or to class B. So it is better to commit

these partial conflicting beliefs to the corresponding meta-class

(e.g. A∪B), which avoids a misclassification. However, if all

the partial conflicting beliefs are transferred to meta-classes,

then too many objects will be automatically assigned to meta-

classes. This can seriously degrade the overall precision of the

classification. To circumvent this problem, we need to find an

acceptable compromise between the imprecision degree and

the error rate for classification. The imprecision degree ri is

defined by ri , ni

T
, where ni is the number of objects in

meta-classes, and T is the total number of objects. We propose

that the partial conflicting beliefs transfer to the meta-class

should be done conditionally according to the current context

as explained in the following.

Let us consider that the sub-combination results of these

BBA’s for the object ys are given by m
s,1
DS , . . . ,m

s,h
DS , where

m
s,j
DS is the sub-combination result of the BBA’s obtained from

the neighbors labeled by class wj . In the transferable belief

model (TBM) [5], the pignistic probability BetP (.) defined in

(1) can approximate a BBA by a probability measure for hard

decision making support. In this work, we use the pignistic

probability measure to automatically select the meta-classes if

partial conflicting belief transfer has to be done.

To explain how the partial conflicting belief transfer is

decided from the context, let us start with the fusion of

two pieces of sub-combination results ms,i
DS(.) and ms,j

DS(.).
Since the class wi takes bigger mass of belief than any

other class in the original combined BBA’s ms,i(·), one has

BetP
m

s,i
DS

(wi) = max(BetP
m

s,i
DS

(·)), similarly for wj with

ms,j(·) and BetP
m

s,j
DS

(wj). Thus, wi is the most likely class

of ys according to ms,i
DS(.), whereas wj is the most likely class

of ys according to ms,j
DS(.).

The absolute value of the difference between BetP
m

s,i
DS

(wi)

and BetP
m

s,j
DS

(wj) is denoted by κs(wi, wj), that is

κs(wi, wj) =

∣

∣

∣

∣

max
wi∈Ω

BetP
m

s,i
DS

(wi)− max
wj∈Ω

BetP
m

s,j
DS

(wj)

∣

∣

∣

∣

(8)

If κs(wi, wj) is very small (according to a given threshold),

it indicates that ys is close to both the classes wi and wj

according to ms,i
DS(.) and ms,j

DS(.), and wi and wj cannot be

clearly distinguished for the classification of ys. So κs(wi, wj)
is used to reflect the power of assignment of the classification

of ys with class wi and wj . If κs(wi, wj) is smaller than a

given little threshold ϵ, it indicates that the class of ys is not

very distinguishable between wi and wj . Then, the meta-class

wi ∪wj should be selected, and the corresponding conflicting

belief m(wi ∩wj) must be transferred to the meta class wi ∪
wj . If κs(wi, wj) > ϵ the classes wi and wj are considered

discriminable, and the meta-class wi ∪ wj is not necessarily

involved in the classification process, and in such case the

conflicting mass will be distributed to the other available focal

elements through the normalization procedure.

In the global fusion of h > 2 pieces of sub-

combination results, we must find BetPm
s,max
DS

(wmax) =
max[BetP

m
s,1
DS

(w1), . . . , BetPm
s,h
DS

(wh)] at first. Then one

gets the most likely class wmax of ys in betting sense. If

κ(wmax, wi) = |BetPm
s,max
DS

(wmax) − BetP
m

s,i
DS

(wi)| < ϵ
condition is satisfied, it means that the class wi is also a very

likely label class of ys. So the object ys will be (imprecisely)

associated with the meta-classes built from the disjunctions of

specific classes included in the set ψs defined by

ψs = {wi|κs(wmax, wi) < ϵ} (9)

In order to consider all the classes in a fair and unbiased

manner, all the meta-classes whose cardinality is no bigger

than |ψs| are selected and taken into account in the global

fusion process. The set of the selected meta-classes is denoted

by Ψs.

A new compound rule of combination inspired by DS rule

and Dubois-Prade (DP) rule [20] is proposed here for the FBK-

NN approach. The new global fusion rule is mathematically

defined:

ms(A) =























































1
k

∑

c∩

i=1

Bi=A

c
∏

i=1

ms,i
DS(Bi), A ∈ Ω or A = Ω

1
k

∑

|A|∪

i=1

Bi=A,

|A|∩

i=1

Bi=∅

|A|
∏

i=1

ms,i
DS(Bi)

c
∏

j=|A|+1

ms,j
DS(Ω), A ∈ Ψs

0, otherwise
(10)



where

k = 1−
∑

q∩

i=1

Ci=∅

Ci∈Ω

q
∏

i=1

ms
i (Ci)

c
∏

j=q+1

ms
j(Ω), q > |ψs|.

(11)

The coefficient 1
k

in eq. (10) is the normalization factor. In

some real applications, if one knows that there is no outlier in

the data set, then the mass of belief of the ignorant class Ω that

we use to represent the outlier class can be committed to the

conflicting beliefs and redistributed to other focal elements.

This new compound combination rule includes two

parts: a conjunctive combination part and and a disjunctive

combination part. The conjunctive combination is used in

the first formula of (10) to calculate the belief committed

to the specific classes and to the ignorant class as well,

since the degree of assignment of the object to a specific

class or to the ignorant class depends on the consensus of

all the sources of evidences. The belief on the meta-class

reflects the imprecision one has to commit the object since

it can in fact belong to several specific classes involved in

the meta-class. So the disjunctive combination is applied in

the second formula of (10) for computing the belief of the

selected meta-classes.

The pseudo-code of the FBK-NN is given in Table I to

explicitly show the procedure of this new method.

Table I
FUZZY-BELIEF K-NEAREST NEIGHBOR ALGORITHM

Input:

Training samples: X = {x1, . . . ,xz} in R
p

Objects to classify: Y = {y1, . . . ,yn} in R
p

Parameters:

K: number of nearest neighbors

ϵ > 0: threshold for imprecision degree

Determination of membership of training sample by (2);

for i=1 to n
Select the KNNs of yi

Construction of K BBA’s by (3);

Fusion of BBA’s from neighbors with same label by (7);

Selection of meta-classes according to (8);

Global fusion of these sub-combination results by (10);

end

Guideline for choosing the meta-class threshold ϵ: In

the applications, the threshold ϵ of FBK-NN must be tuned

according to the number of objects in meta-class. The bigger

ϵ generally leads to more objects in meta-classes, which is

not efficient for the specific classification of the objects. The

smaller ϵ produces fewer objects in meta-class, but it may

cause more misclassifications for the imprecise objects. So ϵ
can be tuned according to the imprecision degree of the fusion

results that one is ready to accept. ϵ can also be optimized

by the cross-validation (e.g. leave-one-out) in the training

data space. In the optimization procedure, one can find a fine

compromise between the imprecision degree and error rate by

a grid search of ϵ with the given value of K nearest neighbors.

Example 1 : Let’s consider the following frame of classes Ω =
{w0, w1, w2, w3}, and an object y with 5-nearest neighbors

including two neighbors labeled by classes w1 and two by w2

and one by w3. It is supposed that the fuzzy class memberships

of the five neighbors determined using eq. (2) are

µ1(w1) = 0.7, µ1(w2) = 0.3

µ2(w1) = 0.8, µ2(w2) = 0.2

µ3(w1) = 0.1, µ3(w2) = 0.9

µ4(w1) = 0.1, µ4(w2) = 0.7, µ4(w3) = 0.2

µ5(w1) = 0.2, µ5(w2) = 0.2, µ5(w3) = 0.6

The confidence measures of the class membership of the

neighbors can be calculated according to the distance between

y and its five neighbors using (4), and they are given by:

α1 = 0.8, α2 = 0.9, α3 = 0.7, α4 = 0.9, α5 = 0.5

Then, the BBA’s can be constructed using the membership µi

and confidence measure αi by (3)

w1 w2 w3 Ω
m1 0.56 0.24 0 0.20

m2 0.72 0.18 0 0.10

m3 0.07 0.63 0 0.30

m4 0.09 0.63 0.18 0.10

m5 0.10 0.10 0.30 0.50

One sees that m1(.) and m2(.) supports with more weight

the label w1, m3(.) and m4(.) supports w2, and m5(.) supports

the label w3. Then the BBA’s from the neighbors with the same

class label are combined using DS rule eq. (7) as follows:

m1
DS(.) = [m1 ⊕m2](.)

m2
DS(.) = [m3 ⊕m4](.)

m3
DS(.) = m5(.)

where ⊕ is the symbolic notation of DS fusion rule.

The numerical result is

w1 w2 w3 Ω
m1

DS 0.8304 0.1421 0 0.0275

m2
DS 0.0522 0.8392 0.0698 0.0388

m3
DS 0.1 0.1 0.3 0.5

The largest pignistic probability values obtained with (1) for

each BBA mi
DS(.), i = 1, 2, 3 are

BetPm1
DS

(w1) = 0.8304 + (0.0275/3) ≈ 0.8396

BetPm2
DS

(w2) = 0.8392 + (0.0388/3) ≈ 0.8521

BetPm3
DS

(w3) = 0.3 + (0.5/3) ≈ 0.4667

and the maximum of these pignistic probabilities corresponds

to BetPm2
DS

(w2), so that the label ω2 serves as the refer-

ence label to compute κs(wi, wj) with (8) for selecting (or

not) the meta-classes in an eventual partial conflicting belief



transfer. If one chooses ϵ = 0.1 as the meta-class selection

threshold, one gets |BetPm2
DS

(w2) − BetPm1
DS

(w1)| < ϵ
and |BetPm2

DS
(w2) − BetPm3

DS
(w3)| > ϵ. The result of this

selection test indicates that w1 and w2 are in fact not clearly

distinguishable for the class of this object according to the

given ϵ value. Thus, ψ = {w1, w2}, and all the meta-classes

with cardinality less or equal to |ψ| = 2 are selected and

Ψ = {w1 ∪w2, w1 ∪w3, w2 ∪w3}. Then, the sub-combination

results: m1
DS(.), m

2
DS(.) and m3

DS(.) are fused using the

new compound combination rule (10), denoted symbolically

⊗. That is

m(.) = [m1
DS ⊗m2

DS ⊗m3
DS ](.)

The numerical values of this global fusion are

m(w1) = 0.0844, m(w2) = 0.1618,

m(w3) = 0.0034, m(Ω) = 0.0010,

m(w1 ∪ w3) = 0.0715, m(w2 ∪ w3) = 0.0250,

m(w1 ∪ w2) = 0.6529

One sees that the meta-class w1 ∪w2 carries the biggest mass

of belief. It indicates that the object y is likely to belong to w1

or w2, but the two classes are not very distinguishable for the

object according to the used attribute information. It is difficult

to commit the object correctly to a particular specific class w1

or w2. So the meta-class w1 ∪w2 can be a good compromise

for the classification of this object, which can reduce the error,

and this solution is also consistent with our intuition.

IV. EXPERIMENTS

Three experiments have been carried out to test and evaluate

the performance of FBK-NN with respect to the recent BK-NN

and several other traditional methods including K-NN, FK-NN

and EK-NN. The parameters of EK-NN were automatically op-

timized using the method proposed in [17]. In the applications

of FBK-NN and BK-NN with real data, the involved tuning

parameters are automatically optimized using training data. In

order to show the ability of FBK-NN to deal with the meta-

classes, each object is decided according to the maximal mass

of belief criterion.

A. Experiment 1

This experiment is to explicitly illustrate the difference

between the credal classification obtained by FBK-NN and

the classical classification done by K-NN and by FK-NN (the

fuzzy K-NN). Two classes of artificial data set w1 and w2 are

obtained from two uniform distributions as shown by Fig. 1-a.

Each class has 150 training samples and 150 test samples, and

one more noisy sample (a true outlier belonging to the class

w0) is included in the test samples. The uniform distributions

of the samples of the two classes are characterized by the

following bounds:

x-label interval y-label interval

w1 (-1.5, 1.5) (-0.15, 0.15)

w2 (-0.25, 0.25) (-2, 2)

A particular value of K = 11 is selected here, since it

provides good results for all the three methods. The classifica-

tion results of the test objects by different methods are given

by Fig. 1-b–1-d. For notation conciseness, we have denoted

wte , wtest, wtr , wtraining and wi,...,k , wi ∪ . . . ∪ wk.
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Figure 1. Classification results of 2-class data set by K-NN, EK-NN and
FBK-NN .

The objects of classes w1 and in w2 are distributed over

two overlapping areas following a cross shape as we can see

on Fig. 1-a. Naturally the objects belonging to the middle of

the cross area are really difficult to associate with a particular

class. However, K-NN and FK-NN just commit most of objects

of this middle cross area to w1 as shown on Fig. 1-b and on

Fig. 1-c. Obviously, such classification methods generate many

misclassification errors. FBK-NN provides one more meta-

class w1 ∪ w2 than FK-NN and K-NN as shown on Fig. 1-

d. The classes w1 and w2 seems undistinguishable for these

objects in the intersecting (overlapping) zone. Thus, it is better

to prudently assign these objects to the meta-class w1 ∪ w2.

By doing this, one reduces the number of misclassification,

and one deeply reveals the imprecision degree of class of the

objects. An object too far from the others is considered as an

outlier by FBK-NN as shown on Fig. 1-d, which means that

we cannot get useful information about the class of this object

from the data set. However, the outlier is committed with the

class w2 by K-NN and FK-NN due to the inherent limitation

of fuzzy classification that cannot model explicitly the outlier

class. This example shows the advantaged and interest of the

fuzzy-credal classification proposed in the FBK-NN approach.

B. Experiment 2

We consider a 3-class data set composed by three rings as

shown on Fig. 2-(a). Each class contains 303 training samples

and 303 test objects. The radiuses and centers of the three

rings are given by:



center radius interval

w1 (-2, 0) [3, 4]

w2 (2, 0) [3, 4]

w3 (0, 3.5) [3, 4]

We selected K = 11 nearest neighbors in the three methods.

The classification results of test data by K-NN, FK-NN and

FBK-NN are respectively shown in Fig. 2-(b)-(d). The meta-

class selection threshold ϵ = 0.3 in FBK-NN has been chosen

in our simulations.
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Figure 2. Classification results of a 3-class data set by K-NN, FK-NN and
FBK-NN.

We can see that the three rings intersect with each other,

and these objects in the overlapped zones are impossible to be

correctly classified. In the fuzzy classification of K-NN and

FK-NN, all the objects are committed to a particular class as on

Fig. 2-(b), (c). In fact, K-NN generates 146 misclassifications,

and FK-NN generates 187 misclassifications in this example.

In FBK-NN, the objects in the overlapped zones are reasonably

considered as belonging to some meta-classes as shown on Fig.

2-(d). This indicates that the used attribute information is not

sufficient for making a correct and specific classification of

these objects. There are just two misclassifications produced

by FBK-NN. In the meanwhile, FBK-NN commits 227 objects

in the meta-classes. This example shows the effectiveness of

FBK-NN for dealing with the overlapped data in a complex

situation by not committing objects to specific classes when

there exists a high risk of misclassification.

C. Experiment 3

Four well-known real data sets obtained from UCI Machine

Learning Repository [21] (the Glass, Seeds, Ecoli and Breast

cancer data sets) are tested in this experiment to evaluate the

performance of FBK-NN compared with K-NN, FK-NN, EK-

NN and BK-NN. For the Ecoli data set, three classes named

as cp, im and imU are selected here, since these three classes

are close and hard to be classified. For the similar reason, we

also choose three classes as building-windows-float-processed,

building-windows-non-float-processed and vehicle-windows-

float-processed from Glass data set. The main characteristics of

the four data sets are summarized in Table II, and the detailed

information can be found at http://archive.ics.uci.edu/ml/.

Table II
BASIC INFORMATION OF THE USED DATA SETS.

name classes attributes instances

Glass 3 10 164

Seeds 3 7 210

Ecoli 3 7 255

Breast cancer 2 9 683

The k -fold cross validation is performed on the four data

sets by different classification methods, and k generally re-

mains a free parameter. We use the simplest 2-fold cross

validation here, since it has the advantage that the training

and test sets are both large. In our simulations, we use the

following measures of performances: the misclassification is

declared (counted) for one object truly originated from wi if it

is classified into A with wi∩A = ∅. If wi∩A ̸= ∅ and A ̸= wi

then it will be considered as an imprecise classification. The

error rate denoted by Re is calculated by Re = Ne/T , where

Ne is number of misclassification errors, and T is the number

of objects under test. The imprecision rate denoted by Rij is

calculated by Rij = Nij/T , where Nij is number of objects

committed to the meta-classes with the cardinality value j.
Here we only take Ri2 since there is no object committed to

a meta-class with cardinality value of three.

In the training data sets, we use the leave-one-out cross

validation method to optimize the tuning parameters ϵ in

FBK-NN and the parameters γta , γtr and η in BK-NN. The

best parameters corresponding to the suitable (acceptable)

compromise between error rate and imprecision rate will be

found by the grid search with value of step length as 0.01, on

the scope of ϵ ∈ [0, 1]. The classification results obtained by

the different methods with values of K ranging from 5 to 20

are shown in Fig. 3-(a)–(d).

From the Fig. 3-(a)-(d), one sees that FBK-NN and BK-

NN provide the smaller error rate than other classical methods,

since the objects difficult to classify correctly have been rea-

sonably and automatically committed to the associated meta-

classes. The decrease of error rates leads to the increase of

imprecision rate, since the objects that are wrongly classified

could be assigned into meta-classes. So one should find a com-

promise between them. It shows that the credal classification

can effectively reduce error occurrences, and the meta-classes

reveal that the attributes information is not enough to obtain

the correct specific class of some objects, and it indicates that

other complementary information sources or techniques are

necessary if one wants to discriminate the objects in meta-

classes. Nevertheless, the classification results of BK-NN seem
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Figure 3. Classification results of real data sets by different methods.

sensitive to the K value, which brings the trouble for choosing

K in the application. This is mainly because that K is used in

the selection of meta-class in BK-NN. In FBK-NN, BetP (.)
is applied for the choice of meta-class. So the results of FBK-

NN are not so sensitive to K value as the BK-NN. Moreover,

there fewer parameters in FBK-NN to be tuned than in BK-

NN. Thus, FBK-NN is more efficient than BK-NN in the real

applications.

V. CONCLUSION

A new fuzzy-belief K-nearest neighbor (FBK-NN) method

has been presented for classifying the uncertain data based

on the fusion of evidence information. The interest and ef-

fectiveness of this new classifier have been shown by the

comparison with several classical K-NN classifiers and BK-

NN using three experiments based on both artificial and real

data sets. In FBK-NN, a fuzzy membership is assigned to each

labeled training sample to represent its credal assignment to

different classes based on its K neighborhood. The K basic

belief assignment (BBA) associated with each object to classify

are computed from the distances between the object and its

KNNs, and the KNNs’ membership values. A new compound

rule of combination of the K BBA’s that manages efficiently

the specific classes, the meta classes and the outlier class has

been developed and used to classify the object. The object too

far from the others will be considered as outliers. As soon as an

object (e.g. lying in the overlapped zone of several different

classes) is difficult to commit to a specific class, it will be

reasonably and automatically committed to a proper meta-class

by the FBK-NN. This flexibility provides a deep insight to the

data and reduces the misclassification errors.
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