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Abstract—The missing data in incomplete pattern can have
different estimations, and the classification result of pattern with
different estimations may be quite distinct. Such uncertainty
(ambiguity) of classification is mainly caused by the loss of
information in missing data. A new prototype-based credal
classification (PCC) method is proposed to classify incomplete
patterns using belief functions. The class prototypes obtained by
the training data are respectively used to estimate the missing
values. Typically, in a c-class problem, one has to deal with
c prototypes which yields c estimations. The different edited
patterns based on each possible estimation are then classified
by a standard classifier and one can get c classification results
for an incomplete pattern. Because all these classification results
are potentially admissible, they are fused altogether to obtain
the credal classification of the incomplete pattern. A new credal
combination method is introduced for solving the classification
problem, and it is able to characterize the inherent uncertainty
due to the possible conflicting results delivered by the different
estimations of missing data. The incomplete patterns that are
hard to correctly classify will be reasonably committed to some
proper meta-classes by PCC method in order to reduce the
misclassification rate. The use and potential of PCC method is
illustrated through several experiments with artificial and real
data sets.

Index Terms—belief functions, evidence theory, missing data,
data classification, fusion rule

I. INTRODUCTION

The classification of incomplete patterns with missing val-

ues is an important topic in the field of machine learning.

There have been many methods [1] emerged for classifying

incomplete patterns, and it mainly concerns the handling miss-

ing values and pattern classification. The simplest method just

deletes the incomplete patterns [2], and the classifier is applied

only for the complete patterns. The model of probability

density function (pdf) of the whole data set is also sometimes

derived for the classification based on the Bayes decision

theory [3]. Some classifiers [4] particularly designed for deal-

ing with the incomplete data without estimation of missing

values have also been developed. The imputation strategy [5]

is often adopted for missing values in many cases, and then the

edited patterns with estimated values are classified. A number

of methods have been introduced for imputation of missing

values, and they can be generally grouped into two types [1].

One type is statistical analysis imputation methods including

mean imputation, regression imputation, multiple imputation,

hot deck imputation, and so on. Particularly, in the mean

imputation (MI) method [6], the missing values are replaced

by the mean of known values of that attribute. Another type is

imputation methods based on machine learning, it includes the

K-nearest neighbor imputation (KNNI) and SOM imputation,

etc. In the often used KNNI method [7], the missing values

are estimated using the K-nearest neighbors of the object

(incomplete pattern).

The missing data can have several different possible esti-

mated values, and the classification result of the incomplete

pattern (test sample) with different estimations can be very

different sometimes. For example, an object using a given

estimation of missing data can be classified into the class

A with biggest probability, but it could also be most likely

classified into the class B, with A ∩ B = ∅ using another

given estimation of missing data. Such conflict (uncertainty)

of classification is caused by the lack of information of the

missing (unknown) values, and it is really hard to correctly

classify the object in such condition because the known (avail-

able) attributes information is really insufficient for making

a specific classification. The belief function framework intro-

duced by Shafer [8]–[10] in Dempster-Shafer theory (DST) is

appealing for dealing with such uncertain and imprecise infor-

mation [11]. Belief functions have been already used in many

fields, such as data classification [12]–[16], data clustering

[17]–[20], and decision-making [21]. Some data classification

methods [16] have been developed based on DST. A K-nearest

neighbors rule based on DST is proposed in [13], and a neural

network classifier working with DST is presented in [14].

In the aforementioned methods, the meta-classes defined by

the disjunction of several specific classes (i.e. the partially

ignorant classes) are not considered as potential solutions of

the classification. In our very recent work, a new belief K-

nearest neighbor (BK-NN) classifier [15] working with credal

classification has been presented to deal with uncertain data

by considering all possible meta-classes in the classification

process because the meta-classes are truly useful and important

to represent the imprecision of the classification. Nevertheless,

these classification methods working with belief functions were

all designed for classifying complete patterns only, and the

missing data aspect was not taken into account.

In this work, a new prototype-based1 credal classification

1The estimation of missing data in this new method is based on the
prototypes of the classes.



(PCC) method is proposed for the classification of incomplete

patterns under belief function framework. The object hard to

correctly classify due to the uncertainty (imprecision) caused

by the missing values will be reasonably committed to the

proper meta-class defined by the union (disjunction) of several

specific classes (e.g. A ∪B) that the object likely belongs to.

This approach allows us to both reduce the misclassification

error rate, and to reveal the imprecision of the classification.

This paper is organized as follows. After a brief introduction

of the basics of evidential reasoning in section II, the new

prototype-based credal classification method is presented in

the section III. The proposed method PCC is then tested in

section IV and compared with two other classical methods,

followed by conclusions.

II. BRIEF RECALL OF EVIDENCE THEORY

The belief functions have been introduced by Shafer in

his original Mathematical Theory of Evidence [8]–[10]. This

theory is also known classically as Evidential Reasoning

(ER) approach, or also as Dempster-Shafer Theory (DST).

In this theory, one starts with a frame of discernment Ω =
{ω1, . . . , ωi, . . . , ωc} consisting of a finite discrete set of mutu-

ally exclusive and exhaustive hypotheses (classes). The power-

set of Ω, denoted 2Ω, is the set of all the subsets of Ω. For

example, if Ω = {w1, w2, w3}, then 2Ω = {∅, ω1, ω2, ω3, ω1 ∪
ω2, ω1∪ω3, ω2∪ω3,Ω}. The singleton class (e.g. ωi) is called a

specific class. The disjunctions (union) of several single classes

that represent the partial ignorances in 2Ω (e.g. ωi ∪ ωj , or

ωi ∪ ωj ∪ ωk, etc) are called meta-classes.

A basic belief assignment (BBA) is a function m(.) from 2Ω

to [0, 1] satisfying
∑

A∈2Ω

m(A) = 1 and m(∅) = 0. The subsets

A of Ω such that m(A) > 0 are called the focal elements of

m(.). The credal classification (partition) [17], [18] is defined

as n-tuple M = (m1, · · · ,mn), where mi is the basic belief

assignment of the object xi ∈ X , i = 1, . . . , n associated with

the different elements of the power-set 2Θ. The mass of belief

of meta-class can well reflect the imprecision (ambiguity)

degree of the classification of the uncertain data. The lower and

upper bounds of imprecise probability associated with BBAS

correspond to the belief function Bel(.) and the plausibility

function Pl(.) [8]. They are given for all A ∈ 2Ω by

Bel(A) =
∑

B⊆A

m(B) (1)

Pl(A) =
∑

B∩A ̸=∅

m(B) (2)

Bel(.) and Pl(.) can be used for decision-making support

when adopting pessimistic or optimistic attitudes if necessary.

In DST framework, Shafer proposed that the different

pieces of evidence represented by BBAS should be combined

using Dempster’s rule [8], commonly denoted DS rule in the

literature and represented by ⊕ symbol. Mathematically, DS

rule of combination of two BBAS m1(.) and m2(.) defined on

2Θ is defined by mDS(∅) = 0 and for A ̸= ∅, B, C ∈ 2Θ by

mDS(A) = [m1 ⊕m2](A) =

∑

B∩C=A

m1(B)m2(C)

∑

B∩C ̸=∅

m1(B)m2(C)
(3)

In DS rule, the total conflicting belief mass is redistributed

back to all the focal elements through a classical normaliza-

tion step. However, it is known that DS rule produces very

unreasonable results not only in the high conflicting cases, but

also in some very special low conflicting cases as well [23],

[24], and that is why many other combination rules [25] have

been developed to overcome its limitations.

III. NEW METHOD FOR CLASSIFICATION OF INCOMPLETE

PATTERNS

The new prototype-based credal classification (PCC)

method provides multiple possible estimations of missing

values according to class prototypes obtained by the training

samples. For a c-class problem, it will produce c probable

estimations. The object with each estimation is classified

using any standard2 classifier. Then, it yields c pieces of

classification results, but these results take different weighting

factors depending on the distance between the object and the

corresponding prototype. So the c classification results should

be discounted with different weights, and the discounted results

are globally fused for the credal classification of the object. If

the c classification results are quite consistent on the decision

of class of the object, the fusion result will naturally commit

this object to the specific class that is supported by the

classification results. However, it can happen that high conflict

among the c classification results occurs which indicates that

the class of this object is quite imprecise (ambiguous) only

based on the known attribute values. In such conflicting case,

it becomes very difficult to correctly classify the object in

a particular (specific) class, and it becomes more prudent

and reasonable to assign the object to a meta-class (partial

imprecise class) in order to reduce the misclassification rate.

By doing this, PCC is able to reveal the imprecision of the

classification due to the missing values which is a nice and

useful property. Indeed in some applications, specially those

related to defense and security (like in target classification) the

robust credal classification results are usually more preferable

than the precise classification results subject potentially to a

high risk of error. The classification of the uncertain object in

meta-class can be eventually precisiated (refined) using some

other (costly) techniques or with extra information sources if

it is really necessary. So PCC approach prevents us to take

erroneous fatal decision by robustifying the specificity of the

classification result whenever it is necessary to do it.

A. Determination of c estimations of missing values in incom-

plete patterns

Let us consider a test data set X = {x1, . . . ,xN} to be

classified using the training data set Y = {y1, . . . ,yH} in the

frame of discernment Ω = {ω1, . . . , ωc}. Because we focus on

2In our context, we call standard a classifier working with complete patterns.



the classification of the incomplete data (test sample) in this

work, one assumes that the test samples are all incomplete

data (vector) with single or multiple missing values, and the

training data set Y consists of a set of complete patterns.

The prototype of each class i.e. {o1, . . . ,oc} is calculated

using the training data at first, and og corresponds to class

ωg. There exists many methods to produce the prototypes. For

example, the K-means method can be applied for each class

of the training data, and the clustering center is chosen for the

prototype. The simple arithmetic average vector of the training

data in each class can also be considered as the prototype, and

this method is adopted here for its simplicity. Mathematically,

the prototype is computed for g = 1, . . . , c by

og =
1

Tg

∑

yj∈ωg

yj (4)

where Tg is the number of the training samples in the class

ωg.

Once each class prototype is obtained, we use the value

of the prototype to fill the missing values of the object

(incomplete pattern) in the same attribute dimension. Because

one has considered c possible classes with their prototypes,

one gets c versions of estimated values for the object. For the

object xi with some unknown (missing) component values, the

c versions of estimations of the missing component values xij

of xi are given by

xg
ij = ogj (5)

where ogj is the j-th component of the prototype og, g =
1, 2, . . . , c.

From each complete estimated vector x
g
i , g = 1, 2 . . . , c,

we can draw a classification result using any standard classifier

working with the complete pattern. At this step, the choice of

the classifier, denoted Γ(.), is left to user’s preference. For

instance, one can use for Γ(.) the artificial neural network

(ANN) approach, or the EK-NN, etc. The c pieces of sub-

classification results for xi are given for g = 1, . . . , c by

P
g
i = Γ(xg

i |Y ) (6)

where Γ(.) represents the chosen classifier, and P
g
i is the

output (i.e. classification result) of the classifier when using

the prototype of class ωg to fill the incomplete pattern xi. P
g
i

can be a Bayesian BBA if the chosen classifier works under

probability framework (e.g. K-NN, ANN), and it can also be a

regular BBA with having some mass of belief committed to the

ignorant class Ω if the classifier works under belief functions

framework (e.g. EK-NN).

In this new PCC approach, we propose to combine these

c pieces of classification results in order to get a credal

classification of the incomplete pattern to classify. These c
pieces of classification results are considered as c distinct

sources of evidences. Because the distances between the object

and the c prototypes are usually different, some discounting

technique must be applied to weight differently the impact

of these sources of evidences in the global fusion process.

If the distance of the object to prototype is big according to

the known attribute values, it means that the estimation of

the missing values using this prototype is not very reliable. So

the bigger distance dij usually leads to the smaller discounting

factor αj . A rational way that has been widely applied in many

works is adopted here to estimate at first the weighting factor

wg
i . For g = 1, . . . , c, this factor wg

i is defined by

wg
i = e−dig (7)

where

dig =

√

√

√

√

1

p

p
∑

s=1

(

xis − ogs
δgs

)2

(8)

with

δgs =

√

1

Tg

∑

yi∈ωg

(yis − ogs)
2

(9)

xis is value of xi in s-th dimension, and yis is value of yi

in s-th dimension. p is the number of dimensions of known

values of xi. The coefficient 1/p is necessary to normalize

the distance value because each test data can have a different

number of dimensions of missing values. δgs is the average

distance of all training data belonging to class ωg to the

prototype og in s-th dimension, and it is introduced mainly

for dealing for the anisotropic data set. Tg is the number of

training samples in the class ωg.

From these weighting factors wg
i for g = 1, . . . , c, one then

defines the relative reliability factors (discounting factor) αg
i

by

αg
i =

wg
i

wmax
i

(10)

where wmax
i = max(w1

i , . . . , w
c
i ).

The discounting method proposed by Shafer in [8] is applied

here to discount the BBA of each source of evidence according

to the factors αg
i . More precisely, the discounted masses of

belief are obtained for g = 1, . . . , c by
{

mg
i (A) = αs

iP
g
i (A), A ⊂ Ω

mg
i (Ω) = 1− αg

i + αg
iP

g
i (Ω)

(11)

In Eq. (11), the focal element A usually represents a

specific class in Ω because most classical classifiers work

with probability framework only, and thus they just consider

specific classes as an admissible solution of the classification.

Nevertheless, some classifiers based on DST, like EK-NN, can

generate results on specific classes and also on the full ignorant

class Ω as well. P g
i (A) is the probability (or belief mass)

committed to the class A by the chosen classifier.

B. Fusion of the c discounted classification results

The c classification results obtained according to the c pro-

totypes may strongly support different classes that the object

should belong to. For instance, several sources of evidence

could strongly support that the object is most likely in class

A, whereas some others could support strongly the class B,

with A∩B = ∅. In practice, some conflict usually exists in the



global fusion process. The maximum of belief function Bel(.)
given in Eq. (1) is used as criteria3 for the decision making

of the class which is strongly supported by the classification

results, and the c pieces of results can be divided into several

distinct groups G1, G2, . . . , Gr according to the classes they

strongly support.

The classification results in the same group are combined at

first, and then these sub-combination results are globally fused

for the credal classification. The classification results in the

same group are generally not in high conflict. Therefore, one

proposes to apply DS rule (3) to fuse these results, since DS

rule offers a reasonable compromise between the specificity of

the result and the level of complexity of the combination.

For Gs = {mj
i , . . . ,m

k
i }, the fusion results of the BBAS

in the group Gs using DS rule are given for a focal element

A ∈ 2Ω by:

m
ωs

i (A) = [mj
i ⊕ . . .⊕mk

i ](A) (12)

where ⊕ represents the DS combination defined in Eq. (3).

Since DS rule is associative, these BBAS can be combined

sequentially using eq. (3) and the sequential order doesn’t

matter.

These sub-combined BBAS m
ωs

i (.), for s = 1, . . . , r, will

then be globally fused to get the final BBA of the credal clas-

sification. In the global fusion process, these sub-combination

results of the different groups of sub-classification results can

be in high conflict because of the distinct classes they strongly

support according to their belief functions. Because DS rule is

known to produce counter-intuitive results specially in high

conflicting situations [26] due to its way of redistributing

the conflicting beliefs, we propose to use another fusion

rule to circumvent this problem. We recall that in DS rule

the conflicting masses of belief are redistributed to all focal

elements by the classical normalization step of Eq. (3). In our

context, the partial conflicting information are very important

to characterize the degree of uncertainty and imprecision of

the classification caused by the missing values, and they

should be preserved and transferred to the corresponding meta-

classes specially in the high conflicting situation. But if all

the partial conflicts are always unconditionally kept in the

fusion results, they generate a high degree of imprecision of

the result which is not an efficient solution of the classification.

To avoid this drawback, in the PCC approach we make a

compromise between the misclassification error rate and the

imprecision degree we want to tolerate. This compromise is

obtained by selecting the conflicting beliefs that need to be

transferred to the corresponding meta-classes. The selection

is done conditionally and according to the current context

following the method explained in the sequel.

For simplicity and notation convenience, we assume that

the resulting sub-combined BBA of group Gs is focused on

the the class ωs. That is Belωs

i (ωs) = max(Belωs

i (.)) where

Belωs

i (.) is computed from the BBA mωs

i (.) thanks to Eq. (1),

3The plausibility function Pl(.) can also be used here, since Bel(.) and
P l(.) have a straight corresponding relationship in such particular BBAS
structure.

for s = 1, . . . , r. This indicates that ωs is strongly supported

by the BBAS in group Gs. Moreover, the class ωmax is the

most believed class of the object if one has

Belωmax

i (ωmax) = max(Belω1

i (ω1), . . . , Bel
ωg

i (ωg)) (13)

We remind that ωmax is the class having the biggest Bel(.)
value among all the classification groups, whereas ωs, s =
1, . . . , g just takes the biggest Bel(.) value in the group Gs.

In practice however, it can happen that the belief Belωs

i (ωs) of

the strongest class of the group Gs can be very close (or equal)

to Belωmax

i (ωmax) but ωs can be different of ωmax. When such

case occurs, the object can potentially belong to the other class

ωs with a high likelihood. So we must consider all the very

likely specific classes as potential solution of the classification

of the object xi. The set of these potential classes is denoted

Λi and it is defined by

Λi = {ωs|Belωmax

i (ωmax)−Belωs

i (ωs) < ϵ} (14)

where ϵ ∈ [0, 1] is a chosen threshold. Because all classes in Λi

can very likely correspond to the real (unknown) class of xi,

they appear not very distinguishable according to the choice

of the threshold ϵ. This means that a strategy of classification

of the object xi based only on one specific class of Λi is

very risky because all elements of Λi must be considered as

acceptable in fact. To reduce misclassification errors with such

type of strategy, we propose to keep all the subsets of Λi in

the fusion process and we deal with the involved meta-class.

If the beliefs of the other classes (e.g. ωf )

are all much smaller than Belωmax

i (ωmax) as

Belωmax

i (ωmax) − Bel
ωf

i (ωf ) > ϵ, it means that the

class ωmax is generally distinct for the object with respect

to the other classes (e.g. ωf ). Then, there is no necessity to

keep the meta-class, and one can just use the specific classes

in such case.

The global fusion rule for these sub-combination results is

defined by: ∀Bi ⊆ Ω

m̃i(A) =































































for A ∈ Ω with|A| = 1, or A = Ω
∑

r∩

g=1

Bg=A

mω1

i (B1) · · ·m
ωr

i (Br),

for A ⊆ Λi,with |A| ≥ 2
∑

|A|∩

i=1

Bi=∅

|A|∪

i=1

Bi=A

[mω1

i (B1) · · ·m
ωs

i (Bs)
r
∏

g=|A|+1

m
ωg

i (Ω)]

(15)

In Eq. (15), r is the number of the groups of the clas-

sification results. |A| is the cardinality of the hypothesis A,

and it is equal to the number of singleton elements included

in A. For example, if A = ωi ∪ ωj , then |A| = 2. The

conjunctive combination, which corresponds to the consensus

of sub-combination results, is used in the first part of formula

to calculate the mass of belief of the specific classes and of



the ignorant class4. In the second part of Eq. (15), the partial

conflicting beliefs are committed to the selected meta-classes

to reflect the imprecision degree of classification of the object

with the specific classes included in the meta-class.

Because not all partial conflicting masses of belief are

transferred into the meta-classes through the global fusion

formula (15), the combined BBA is normalized as follows

before making a decision:

mi(A) =
m̃i(A)

∑

Bj

m̃i(Bj)
(16)

The credal classification of the object can be made directly

based on this final normalized combined result BBAS, and

the object will be assigned to the focal element (a class or

a meta-class) with maximal mass of belief. The maximum of

belief Beli(.) of the singleton (specific) class, or the maximum

of plausibility Pli(.), or the maximum of pignistic probability

BetPi(.) drawn from the global combined BBA mi(.) are usu-

ally used as the criteria for making hard classification, but the

hard classification is not recommended in such uncertain case.

The credal classification based on the BBAS is preferred here

since it can well reflect the inherent imprecision (ambiguity)

degree of the classification due to the missing values.

Guideline for choosing the meta-class threshold ϵ: In

the applications, the threshold ϵ of PCC must be tuned

according to the number of objects in meta-class. A small

ϵ value generally leads to fewer objects in meta-classes,

but it may cause more misclassifications for the uncertain

objects. A big ϵ value yields more objects in meta-class and

leads to higher imprecision degree, which is not an efficient

solution for the classification. So ϵ should be tuned according

to the imprecision degree of the fusion results that one accepts.

The following simple example shows how PCC works.

Example 1: Let us consider a 3-D object xi = [xi1, ?, ?] with

the missing value in the 2nd dimension and 3rd dimension to

be classified over the frame of classes Ω = {ω1, ω2, ω3}. It

is assumed that the prototypes O = {o1,o2,o3} of the three

classes can be calculated using the training data as:

o1 = [o11, o12, o13]

o2 = [o21, o22, o23]

o3 = [o31, o32, o33]

So the object with three versions of estimation of the missing

value is obtained by:

x1
i = [xi1, o12, o13]

x2
i = [xi1, o22, o23]

x3
i = [xi1, o32, o33]

The patterns with three estimated values are respectively clas-

sified using a standard classifier, and the classification results

4The ignorant class represents the outlier (noisy) class.

represented by the probability membership are given by:

P 1
i (ω1) = 0.8, P 1

i (ω2) = 0.2

P 2
i (ω1) = 0.1, P 2

i (ω2) = 0.8, P 2
i (ω3) = 0.1

P 3
i (ω1) = 0.5, P 3

i (ω2) = 0.2, P 3
i (ω3) = 0.3

The relative weighting factor of each classification result is

calculated according to the distance between xi and the three

prototypes using Eq. (10). For simplicity and convenience, they

have been randomly chosen as follows for this example:

α1
i = 1, α2

i = 0.9, α3
i = 0.3

Then, each classification result P k
i (.), k = 1, . . . , 3 can be

discounted using Eq. (11), and the discounted BBAS are given

by

m1
i (ω1) = 0.8, m1

i (ω2) = 0.2

m2
i (ω1) = 0.09,m2

i (ω2) = 0.72,m2
i (ω2) = 0.09,m2

i (Ω) = 0.1

m3
i (ω1) = 0.15,m3

i (ω2) = 0.06,m3
i (ω3) = 0.09,m3

i (Ω) = 0.7

Because of the particular choice of α1
i = 1 the BBA m1

i (.) is

not discounted in this example.

The belief functions Beli(.) corresponding to each BBA

mi(.) are obtained using Eq. (1) and are given by

Bel1i (ω1) = 0.8, Bel1i (ω2) = 0.2

Bel2i (ω1) = 0.09, Bel2i (ω2) = 0.72, Bel2i (ω3) = 0.09

Bel3i (ω1) = 0.15, Bel3i (ω2) = 0.06, Bel3i (ω3) = 0.09

For the singleton (specific) class, m1
i (.) and m3

i (.) put the most

belief on class ω1, whereas m2
i (.) commits most of mass to

the class ω2. It means that the object likely belongs to class ω1

with the estimation from prototype o1 and o3, but it is very

probably classified into ω2 with the estimation according to

o2. This uncertainty (conflict) is mainly caused by the lack of

discriminant information inherent of the missing values. Then,

the three BBAS can be divided into the two following groups:

G1 = {m1
i (.),m

3
i (.)} and G2 = {m2

i (.)}.

The sub-combination results of each group of BBAS using DS

rule (3) are:

m
ω1

i (.) : mω1

i (w1) = 0.8173, mω1

i (w2) = 0.1827

m
ω2

i (.) : mω2

i (w1) = 0.09, mω2

i (w2) = 0.72,

mω2

i (w3) = 0.09, mω2

i (Ω) = 0.1.

Then one gets: Belωmax

i (ωmax) = Belω1

i (ω1) = 0.8173 and

Belω2

i (ω2) = 0.72. If the meta-class threshold is chosen as

ϵ = 0.3, we get Belω1

i (ω1) − Belω2

i (ω2) < ϵ, and thus

Λi = {ω1, ω2}. So the meta-class ω1 ∪ ω2 will be kept, and

the conflicting mass of belief produced by the conjunctive

combination mω1

i (w1)m
ω2

i (w2) + mω1

i (w2)m
ω2

i (w1) will be

transferred to ω1 ∪ ω2.

The global fusion of BBAS m
ω1

i (.) and m
ω2

i (.) using Eq.

(15) yields the following unormalized combined BBA

m̃i(.) : m̃i(ω1) = 0.1553, m̃i(ω2) = 0.1498,

m̃i(ω1 ∪ ω2) = 0.6049.



As we see, the BBA m̃i(.) is not a normalized BBA because

some conflicting masses of belief are voluntarily discarded of

the redistribution on the meta-classes. After the normalization

step, we finally get:

mi(.) : mi(ω1) = 0.1707, mi(ω2) = 0.1646,

mi(ω1 ∪ ω2) = 0.6647.

One sees that the biggest mass of belief is committed to the

meta-class ω1 ∪ ω2. This result indicates that the classes ω1

and ω2 are not very distinguishable based only on the known

attribute information, and the object must quite likely belong to

ω1 or ω2 according to the different estimations of the missing

values. In this simple example, it is difficult to commit the

object to a particular class. If one had to take a specific class

decision, one would very probably make a mistake. So the hard

classification is not recommended in such case, and the object

will be committed to the meta-class ω1∪ω2 by PCC approach,

which is prudent and reasonable behavior consistent with the

intuitive reasoning. Some additional sources (if available) need

to be used and combined with the available information to get

a more precise classification result.

IV. APPLICATION OF NEW METHOD

Two experiments have been carried out to test and evaluate

the performance of this new PCC method. The performances of

PCC are compared to the performances of the mean imputation

(MI) method [6], and the K-NN imputation (KNNI) methods

[7]. In this work, the EK-NN classifier [13] is adopted here

as the standard classifier to classify the test samples with the

estimated values in PCC, MI and KNNI, because EK-NN

produces good results in the classification5. The parameters

of EK-NN were automatically optimized using the method

proposed in [27]. In order to show the ability of PCC to

deal with the meta-classes, the class of each object is decided

according to the criterion of the maximal mass of belief.

In the applications of PCC, the tuning parameter ϵ can be

automatically tuned according to the imprecision rate one can

accept.

In our simulations, the misclassification is declared

(counted) for one object truly originated from wi if it is

classified into A with wi ∩A = ∅. If wi ∩A ̸= ∅ and A ̸= wi

then it will be considered as an imprecise classification. The

error rate denoted by Re is calculated by Re = Ne/T , where

Ne is number of misclassification errors, and T is the number

of objects under test. The imprecision rate denoted by Rij is

calculated by Rij = Nij/T , where Nij is number of objects

committed to the meta-classes with the cardinality value j.

A. Experiment 1

This experiment is used to illustrate the use of credal

classification obtained by PCC with respect to other classical

methods. We consider a particular 3-class data set Ω =
{ω1, ω2, ω3} in the circular shape as shown in Fig. 1-a. Each

5In fact, many other standard classifiers can be applied here according to
the actual request.

class contains 305 training samples and 305 test samples. Thus,

we consider 3×305 = 915 training samples and 3×305 = 915
test samples. The radius of the circle is r = 3, and the

centers of three circles are given by the points c1 = (3, 3)T ,

c2 = (13, 3)T , c3 = (8, 8)T , where T denotes the transposed

vector. The values in the second dimension corresponding to

y-coordinate of test samples are all missing, and the there is

only one known value in the first dimension corresponding

x-coordinate for each test sample. The different meta-class

selection thresholds ϵ = 0.3 and ϵ = 0.45 have been applied

in PCC to show their influences on the results. A particular

value of K = 9 is selected in the classifier EK-NN and the

K-NN imputation6. The classification results of the test objects

by different methods are given by Fig. 1-b–1-d. For notation

conciseness, we have denoted wte , wtest, wtr , wtraining

and wi,...,k , wi ∪ . . . ∪ wk. The error rate (in %) and

imprecision rate (in %) for PCC have been given in the caption

of each subfigure.
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(a). Training data and test
data.

(b). Classification result by
method with mean estimation

(Re = 8.52).
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(c). Classification result by
method with K-NN estimation

(Re = 4.15).

(d). Classification result by
PCC ϵ = 0.3

(Re = 1.75, Ri2 = 4.81).
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(e). Classification result by PCC ϵ = 0.45 (Re = 0.87, Ri2 =

8.31).

Figure 1. Classification results of 3-class data set by different methods.

The values of the y-coordinate of the test samples are all

missing, and the class of each test sample is determined only

6In fact, the choice of K ranking from 7 to 15 does not affect seriously the
results.



based on the value of x-coordinate. We can see from Fig. 1-(a)

that the class ω3 partly overlaps with the classes ω1 and ω2 on

their margins with respect to x-coordinate. The objects lying in

the overlapped zone are really difficult to be correctly classified

into a particular class, since ω1 and ω3 (resp. ω2 and ω3) seem

undistinguishable for these objects based on the values on x-

axis only. The mean and K-NN estimation methods provide

only one value for the missing data, and then the EK-NN

classifier is used to classify the test samples with this estimated

value. The objects are all committed to a particular class by

these two methods with big error rate, and the results cannot

well reflect the uncertainty and imprecision of classification

caused by the missing values. With the PCC approach, most

objects lying in the overlapped zones are reasonably assigned

to the proper meta-classes ω1∪ω3 and ω2∪ω3. So PCC is able

to reduce the error rate and well characterize the imprecision

(ambiguity) of the classification thanks to the use of meta-

class under belief functions framework. One can see that the

increases of ϵ value lead to the decrease of error rate but

meanwhile brings the increase of imprecision rate. So we

should find a good compromise between the error rate and

imprecision rate. In real applications, ϵ can be optimized using

the training data, and the optimized value should correspond to

a suitable compromise between the error rate and imprecision

rate. ϵ can also be tuned according to the imprecision rate one

can accept in the classification.

B. Experiment 2

We use the four real data sets (Breast cancer, Seeds, Yeast

and Wine data sets) available from UCI Machine Learning

Repository to test the performance of PCC with respect to

MI and KNNI. Three classes (CY T,NUC and ME3) are

selected in Yeast data set to the evaluate our method, since

these three classes are close and difficult to classify. The basic

information of the four data sets is given in Table I, and the

detailed information can be found at http://archive.ics.uci.edu/

ml/.

The k -fold cross validation was performed on the four data

sets by the different classification methods, and k generally

remains a free parameter. We used the simplest 2-fold cross

validation7 here, since it has the advantage that the training

and test sets are both large, and each sample is used for both

training and testing on each fold. Each test sample has n
missing (unknown) values, and they are missing completely

at random in every dimension. The average error rate Rea
and imprecision rate Ria (for PCC) of the different classical

methods with values of K ranging from 5 to 20 are given in

Table II.

The results of Table II clearly show that the PCC method

produces lower error rate than the MI and KNNI classification

methods, but meanwhile it yields some imprecision in the

classification result due to the introduction of meta-classes

7More precisely, the samples in each class are randomly assigned to two
sets S1 and S2 having equal size. Then we train on S1 and test on S2, and
reciprocally.

Table I
BASIC INFORMATION OF THE USED DATA SETS.

name classes attributes instances

Breast 2 9 699

Seeds 3 7 210

Wine 3 13 178

Yeast 3 8 1050

Table II
CLASSIFICATION RESULTS FOR DIFFERENT REAL DATA SETS (IN %).

MI KNNI PCC

n Re Re {Re, Ri2}
3 4.71 6.10 {4.10, 3.38}

Breast 5 8.20 8.15 {4.38, 4.69}
7 38.33 14.35 {7.91, 8.05}
1 37.59 38.13 {34.36, 6.95}

Yeast 3 45.08 44.29 {34.71, 18.00}
5 51.16 50.95 {33.46, 31.01}
3 21.03 9.68 {7.14, 3.72}

Seeds 5 33.49 12.54 {9.67, 6.70}
6 40.71 25.87 {16.79, 12.77}
3 30.71 26.59 {26.05, 1.05}

Wine 6 34.93 25.84 {26.62, 0.84}
10 39.23 30.90 {25.84, 3.86}

to reflect that some incomplete objects are very difficult to

classify because of lack of discriminant information. The

increasing of the number (i.e. n) of missing values in each

test sample generally causes the increment of error rate in

the three classifiers. The imprecision rate becomes bigger

in PCC, since the more missing values lead to the bigger

imprecision (uncertainty) in the classification problem. So the

credal classification including meta-class is very useful and

efficient here to represent the imprecision degree and it can

help also to decrease the misclassification rate. The PCC

approach allows to indicate that the objects in meta-classes

are really difficult to be correctly classified, and they should be

cautiously treated in the applications. If one wants to get more

precise results, some other (possibly costly) techniques seem

necessary to discriminate and classify such uncertain objects.

V. CONCLUSION

A new prototype-based credal classification (PCC) method

has been presented in this work for classifying incomplete

patterns thanks to the belief function framework. This PCC

method allows the object (incomplete pattern) to belong to

specific classes and meta-class (i.e. union of several specific

classes) with different masses of belief. The meta-class is used

to characterize the imprecision of the classification due to

the missing values and it can also reduce errors. Once the

PCC result indicates that an incomplete pattern belongs to a

meta-class, it means that the specific classes included in the

meta-class are undistinguishable based on the known partial

available attributes. This incomplete pattern with uncertain



classification should be treated more cautiously in the appli-

cation. If one wants to get more precise result, some more

(possibly costly) techniques or information sources must be

developed and used. Several experiments with artificial and

real data sets have been done to evaluate the performances

of PCC with respect to classical MI and KNNI methods. Our

results show that PCC is able to well represent the imprecision

of classification caused by the missing data, and reduce the

classification error rate.
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