
HAL Id: hal-01070546
https://onera.hal.science/hal-01070546

Submitted on 1 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integrated Development Framework for Safety-Critical
Embedded Systems.

Luca Santinelli, Frédéric Boniol, Eric Noulard, Claire Pagetti, W. Puffitsch

To cite this version:
Luca Santinelli, Frédéric Boniol, Eric Noulard, Claire Pagetti, W. Puffitsch. Integrated Development
Framework for Safety-Critical Embedded Systems.. 19th International Symposium on Formal Methods
(FM 2014), May 2014, SINGAPOUR, Indonesia. �hal-01070546�

https://onera.hal.science/hal-01070546
https://hal.archives-ouvertes.fr

Integrated Development Framework for

Safety-Critical Embedded Systems

Luca Santinelli1, Frédéric Boniol1, Eric Noulard1, Claire Pagetti1 and Wolfgang
Puffitsch2

1 ONERA Toulouse, name.surname@onera.fr
2 Technical University of Denmark, wopu@dtu.dk

Abstract. This paper presents an integrated framework for designing and im-
plementing safety-critical embedded systems. The development begins with the
specification of the system using the Prelude language. Then there is the com-
pilation step, where the Prelude compiler translates the program into a set of
communicating periodic tasks that preserve the semantics of the original program.
The necessary schedulability analysis is performed with the SchedMCore ana-
lyzer that explores the timing requirements of the periodic tasks concluding about
the program schedulability. Finally, the task set can be executed on the single-
or multi-core architecture target using the SchedMCore execution environment.
We outline the benefits of an integrated development framework by applying it
to the task mapping problem, the functional requirement and non-functional re-
quirement co-scheduling problem, and the measurement-based probabilistic tim-
ing analysis problem.

1 Introduction

The development of safety-critical embedded systems undergoes strict development pro-
cesses. The main idea is to begin the development from the specification of the system,
then to consider each step of the development as a refinement of the system itself. Each
refinement is asked to produce a new system coherent with the previous: at each stage
the overall requirements have to be preserved . The flight control system of an aircraft
is an explicative example of a safety-critical embedded system that has to be developed
following DO-178B [1].

1.1 Context

In this context, the purpose of the paper is to present an integrated development frame-
work for safety-critical embedded systems that goes from the programming of high level
specifications to the execution of automatically generated, semantically equivalent mul-
tithreaded code on both single-core and symmetric multi-core architectures. In between
the programming and the execution there is the need for schedulability analysis of the
task set over the architecture considered. The respect of the timing constraints is the
safety level we are considering while presenting our integrated development framework.
Other safety mechanisms can be easily applied at each step of the development chain.

A correct implementation of safety-critical embedded systems implies both functional
and non-functional predictability. On the one hand, the functional determinism comes

from the guarantee that the outputs of the system are always the same for a given se-
quence of inputs. This implies fully deterministic task communications: for any execution
of the system the same task instance of the communication producer must communicate
with the same task instance of the communication consumer. On the other hand, the
non-functional determinism (the considered timing determinism) is achieved by guaran-
teeing all the system timing constraints. The completion of task instances is guaranteed
within a specified time window.

The integrated development environment has to take into account both problems
passing through the deterministic modeling, the deterministic analysis and the deter-
ministic verification of safety-critical embedded systems.

An example for the safety-critical embedded systems we consider is an adapted ver-
sion of the Flight Application Software (FAS) of the Automated Transfer Vehicle (ATV)
designed by Astrium for resupplying the International Space Station (ISS). Figure 1
provides an informal description of its software architecture. The FAS acquires several
data treated by dedicated sub-functions: orientation and speed (Gyro Acq), position
(GPS Acq and Str Acq) and telecommands from the ground station (TM/TC). The
Guidance Navigation and Control function (divided into GNC US and GNC DS) com-
putes the commands to apply, while the Failure Detection Isolation and Recovery func-
tion (FDIR) verifies the state of the FAS and checks for possible failures. Commands are
sent to the control devices: thruster orders (PDE), power distribution orders (PWS), so-
lar panel positioning orders (SGS) and telemetry towards the ground station (TM/TC).

Fig. 1. FAS architecture

The specification of such a system passes through the definition of a) the functional
behavior of each function, where each function can be programmed separately with ex-
isting languages, such as Simulink, Scade or directly in low-level code; b) the real-time
characteristics of the system such as periods and deadlines, which depend on the physical
characteristics of the system; c) the multi-rate communication patterns, which defines
how data is exchanged between functions, accounting for the different periods at which
they communicate.

1.2 Contribution

In this work we describe a complete operational toolset able to cope with safety-critical
embedded systems. The integrated framework we have in mind is made up of three
components:

1. the Prelude compiler, which generates code executable by the SchedMCore en-
vironment;

2. the SchedMCore multiprocessor schedulability analyzer;
3. the SchedMCore environment, which is an extensible, easy-to-use and portable

real-time scheduling framework for single- and multi-core architectures.

Each of those composing steps is detailed in the next section.
Another contribution from this paper is the illustration of how the Prelude-SchedMCore

framework is applied to three main problems for safety-critical embedded systems. They
are a) the task mapping to multi-core architectures, b) the task grouping for a functional/non-
functional requirement co-scheduling, and c) the execution time measurements and prob-
abilistic worst-case execution time estimation. We show how the framework can be pro-
ficiently applied to approach them.

The organization of the paper is the following. Section 2 describes the parts composing
our Prelude-SchedMCore integrated development framework. Section 3 illustrates
the task scheduling and task mapping problem and the Prelude-SchedMCore solution
proposed. Section 4 presents a grouping approach to the functional and non-functional
co-scheduling. We outline possible ideas on how to integrate that within the Prelude-
SchedMCore framework. Section 5 describes the usage of SchedMCore to measure
task execution times. Thus a real-time execution environment developed to accurately
measure execution times in different possible execution conditions. Finally, Section 6
sums up the Prelude-SchedMCore integrated development framework and outlines
future developments to it.

1.3 Related work

Development frameworks for multi-periodic systems. Simulink [2] is widely used in
many industrial application domains and allows the description of communicating multi-
periodic systems. Current code generators, such as Real-time workshop-embedded coder
from the MathWorks or TargetLink from dSpace, provide a multi-threaded code gener-
ation on uniprocessor. Caspi et al. [3] translate a multi-periodic Simulink specification
into a semantically equivalent synchronous program that is executed on a multiprocessor
time triggered architecture (TTA) where no preemption is allowed.

Synchronous data-flow languages, such as Lustre [4] or Scade [5], have been ex-
tended with operators that enable the specification of real-time constraints in order to
program multi-threaded systems more easily [6]. Thread synchronization relies on a spe-
cific communication protocol initially defined by Sofronis et al. [7] for uniprocessors and
later extended specifically for Loosely Time Triggered Architectures (LTTA) by Tripakis
et al. [8].

Finally, automated distribution of synchronous programs has been studied by several
authors [9,10]. All those works are considered references for Prelude-SchedMCore,
however, these studies are not dedicated to multi-periodic systems and thus scheduling
policies are not considered, as indeed in Prelude-SchedMCore.

Schedulability analysis. Lots of theoretical results on system schedulability are already
available considering independent task sets [11,12]. However, there are not so many for
dependent task sets and not so many tools (even for independent task sets) are available
yet. Among them we mention Storm [13], which is a multiprocessor scheduling simulator,
and MAST [14], to model system timing behaviors and perform schedulability analysis
in presence of precedence constraints.

David et al. [15] propose a framework allowing the analysis of tasks configuration for
multiprocessor machines withUppaalmodels. This framework supports rich task models
including timing uncertainties in arrival and execution times, and dependencies between
tasks (such as precedences and resource occupation). However, the task set should not
exceed 30 tasks due to performance concerns.

Execution environments. Multiple real-time execution environments or operating sys-
tems are available, e.g., industrial ones such as VxWorks, LynxOS or PikeOS. There are
also Linux variants like Xenomai, LitmusRT or SCHED EDF for Linux (see [16] and
references therein). Furthermore, academic operating systems like MaRTE OS [17] and
even user space runtimes like Meta-scheduler [18] exist. To covers our needs, we need an
open environment that enables the implementation of user-specific scheduling policies,
which rules out industrial solutions. Modified Linux kernels like LitmusRT or sub-kernel
approaches like Xenomai are too closely tied to the kernel for our purpose, as this requires
to patch and recompile the kernel when new releases of Linux occur. SchedMCore can
run on top of these environments but does not rely on them. MaRTE OS [17] and the
Meta-scheduler [18] answer our needs partially but, in both cases, those environments
only support uniprocessor platforms. In the end, we reused the conceptual idea of a plug-
gable scheduler framework (of MaRTE OS and the Meta-scheduler) but started with a
fresh new source code.

2 Integrated Development Framework

The Prelude-SchedMCore framework is composed by two main parts. Prelude is
a synchronous data-flow language and thus shares similarities with Lustre [4], Signal
[19] or Lucid Synchrone [20]. SchedMCore [21]1 is an open-source set of tools for
experimenting with real-time scheduling analysis and programming. Both have been
developed at ONERA.

Figure 2 illustrates the development process within the Prelude-SchedMCore

framework. The Prelude specification describes functional relationships between tasks
as well as the timing constraints that tasks subdue to. SchedMCore is then used
to check the schedulability and to execute the code on the target. In this section, we
describe this tool chain. The three problems (task mapping, grouping, and execution
time measurements) and their integration within Prelude-SchedMCore are detailed
in the next sections.

2.1 Prelude: a High Level Specification Language

Prelude2 is a formal language designed for the specification of the software architecture
of a critical embedded control system, [22,23]. It belongs to the family of synchronous

1 http://sites.onera.fr/schedmcore/
2 The Prelude compiler is available for download at http://www.lifl.fr/˜forget/prelude.html

Prelude specification

imported node tau k (i : i n t)
r e turns (j : i n t) wcet 7 ;

node conso (i) r e turns (o)
l e t
o=tau 2 ((0 fby tau 1 (i))∗ˆ4) ;

t e l

Functions

Real tasks

SchedMCore libraries

FP, gEDF, LLREF, off line

Dependent periodic task set

S = {τ1 = (40, 0, 7, 40), τ2 = (10, 0, 7, 10)
R = ∅, V = {i, o, v1}

C :

{

(τ1, i) → (1), (τ2, o) → (1),

(τ1, v1) → (21), (τ2, v1) → (11112222)

Grouping

Precedence constraints
Group abstractions

Schedulability analysis

〈S,R〉+policy+architecture|=real-time constraints

Measurements

LTTNG
Multi-core execution

Prelude compiler

SchedMCore converter

if schedulability succeeds
SchedMCore runner

Fig. 2. Development process

data-flow languages [24] and focuses on dealing with the functional and real-time aspects
of multi-periodic systems conjointly. From a Prelude program the compiler generates a
program consisting of a periodic dependent task set. By dependent tasks we mean tasks
that are linked by a functional relationship, such as precedence constraints. For each
pair of producer job and consumer job of the task set the following properties have to
be ensured. (1) The producer completes before the consumer starts. This is modeled by
adding a precedence constraint from the producer to the consumer; the scheduler has
to ensure that the schedule complies with the precedence constraint. (2) The produced
data remains available until the completion of the consumer. This is fulfilled by using
a specific communication protocol (directly generated by the compiler) derived from [7]
and detailed in [23]. Task dependencies imply that functional constraints must be added
to the classic non-functional constraints that real-time tasks subdue to.

For Prelude, variables and expressions are flows. A flow is a sequence of pairs
(vi, ti)i∈N, where vi is a value in some domain V and ti is a date in Q (∀i, ti < ti+1).
The clock of a flow is its projection on Q; it defines the set of instants during which
the values of the flow are computed: value vi must be computed during the interval (or
instant) [ti, ti+1[. According to this relaxed synchronous hypothesis, different clocks have
different durations for their instants. Two flows are synchronous if they have the same
clock. It is possible to distinguish a specific class of clocks corresponding to periodic task
activations, called strictly periodic clocks: the clock h = (ti)i∈N is strictly periodic if
there exists some n such that ti+1 − ti = n for all i. n is the period of h and t0 is its
phase.

The Prelude language comes with a compiler that guarantees the semantic correct-
ness of the whole compilation process and consequently of the compilation result. The
initial release of Prelude [23] targeted uniprocessor platforms. The task set was exe-
cuted with MaRTE OS [17], using a scheduling policy derived from Earliest Deadline

First (EDF) [25] and from the work of Chetto et al. [26]. Cordovilla et al. [21] extended
the compiler to enable the execution of Prelude programs on a multi-core architecture.

2.2 SchedMCore: A Multiprocessor Schedulability Analyzer and Execution

Environment

The task set generated by Prelude must be scheduled in a way that respects the real-
time attributes of each task and the extended precedence constraints between the tasks.
The schedulability analysis within the SchedMCore framework determines whether a
task set can be correctly scheduled by a given policy.

SchedMCore is provided as a fully operational toolset with the SchedMCore

Converter and the SchedMCore Runner as the main components.

SchedMCore Converter takes as input a task model and generates a formally ana-
lyzable model in C or UPPAAL, which encodes all the possible execution sequences of the
system as a finite automaton. Then, using either UPPAAL model checker or a generated
custom C program, the automaton is explored in order to find executions that violate the
system constraints. This automaton can also be used to generate off-line schedules, which
can even satisfy optimality requirements for fixed-priority assignments. The scheduling
policies SchedMCore implements are able to cope with multiprocessor platforms and
consider preemptive policies accepting full migration, non-preemptive and partitioned
policies. In particular, the implemented policies are Fixed Priority (FP), global Earliest
Deadline First (gEDF), global Least Laxity First (gLLF), and Largest Local Remaining
Execution First (LLREF).

SchedMCore Runner constitutes the execution environment (or runtime) tool which
is capable of running a set of real-time tasks with the previously mentioned schedul-
ing policies. It is realized as a pluggable scheduling framework which envisions precise
real-time execution on a multi-core target architecture. With this tool, all the required
real-time support can be provided: memory locking, switching to real-time scheduling
policy, core affinity etc. The SchedMCore Runner requires as inputs a) the task set
description, which can be either a simple descriptive text file or a dynamic library pro-
duced by the compilation of a C file generated by Prelude [27]; b) the number of cores
to be used, and, possibly, a core affinity mask; c) the scheduling policy to be used: besides
the ones listed above, the user is allowed to create his own customized policy, pluggable
into the runtime system.

The SchedMCore runtime is implemented as a user-space library, in order to avoid
the burden of going inside the OS kernel. In particular, its evolution does not need
to follow the underlying operating system, allowing easy maintenance and portability,
without the need of patching the Linux kernel. The same approach has been used in the
past [18], and a recent study demonstrated that such an approach can be efficient [28].

3 The Task Scheduling and Task Mapping Problem

The purpose of an integrated framework for embedded systems is to help the designer
finding an adequate solution for scheduling task sets using any scheduling policy.

In general, the scheduling problem involves functional and non-functional require-
ments. A task set is feasible for a given architecture if there exists a schedule that

respects the temporal and the precedence constraints of every task (regardless of any
specific policy). A scheduling algorithm is optimal, with respect to an architecture and
a class of policies (preemptive/non-preemptive, static/dynamic priority, etc.), if it can
schedule all the feasible task sets.

The task set schedulability is fully integrated into the Prelude-SchedMCore

framework, and in the following we discuss solutions to the off-line scheduling problem
as well as task mapping to multi-core architectures.

3.1 Off-line Scheduling of Dependent Periodic Tasks

An initial solution to the off-line scheduling, presented by Cordovilla et al. [29], was the
brute force exploration of priority assignment as proposed by Cucu and Goossens [30].
Such a method quickly encounters the state space explosion problem, and there is a
need for heuristics. Cordovilla et al. [29] proposed a sub-optimal heuristic. It offers good
results in the sense that it finds solutions for task sets that are non-trivial both in size and
“hardness”. The heuristic is a modified Audsley-like algorithm based on a branch and
bound algorithm with efficient cuts by using schedulability results. The implementation
is in C.

Computing an off-line sequence requires to have a cycle of repetition. On uniproces-
sors, the feasible window [31] for independent constrained deadline synchronous task sets
is known to be [0, H], with H being the task set’s hyperperiod. In case of independent
constrained deadline asynchronous task sets on uniprocessors, it is [0,maxi(Oi) + 2H].
As soon as there are precedences, the window is more complex to determine [32]. In the
multiprocessor case, Cucu and Goossens [30] have proved the feasible window to be [0, H]
in case of synchronous independent constrained deadline sets.

Xu and Parnas [33,34] have worked on pre-run-time scheduling which is equivalent to
off-line feasible schedule. They propose an optimal scheduling method based on a branch
and bound approach for synchronous dependent periodic task sets on uniprocessor and
multiprocessor platforms with additional constraints such as mutual exclusion. Shepard
and Gagné [35] extend the results of Xu and Parnas for multiprocessors without migra-
tion. The model the problem as bin packing problem that consists in finding an adequate
partitioning of the tasks on the processors and then applying uniprocessor scheduling.
Behrmann et al. [36] use priced timed automata for searching an optimal schedule for
a set of jobs related by precedence constraints. They apply the model checker Uppaal

[37] for the effective search. Their modeling relies on several automata and states which
is not efficient.

Cordovilla et al. [29] define an optimal search of off-line global preemptive schedules
for asynchronous periodic dependent task sets. The general problem of finding such a
schedule is NP-hard in the strong sense [38]. The search in [29] is implemented in Uppaal

due to the complexity of the configuration graph; model checkers that are dedicated to
the efficient exploration of such data structure are better suited. In there it has also
illustrated the integration within the Prelude-SchedMCore framework.

3.2 Task Mapping Problem

The Prelude-SchedMCore framework can also be used to execute real-time systems
on a many-core platform [39]. The high-level system specification is translated in order
to generate a mapping of real-time tasks to the underlying many-core platform. Then,

in [39] it has been addressed a many-core Single-chip Cloud Computer (SCC) architec-
ture, which scheduler is not the scheduler on SchedMCore. The applicability to the
SchedMCore scheduler is under investigation.

In the following, we briefly outline the main task mapping steps for many-core ar-
chitectures. This gives us a further insight on how the scheduling/mapping problem is
integrated into the Prelude-SchedMCore framework.

Given a periodic task set, the objective is to define a static mapping on the many-core
platform. This consists in defining on which core each task executes and also mapping
the communication buffers created by Prelude to the message passing infrastructure.
Due to the large number of tasks and cores, performing this mapping manually would
be time-consuming and error-prone. Therefore, the mapping process is required to be
automated as far as possible.

Puffitsch et al. [39] developed a partitioning heuristic that takes into account the
specifics of the real-time task set, the run-time system, and the underlying hardware. A
cost model is detailed for the Intel SCC architecture, and the heuristic is based on that
cost model. The partitioning heuristic relies on the schedulability test for non-preemptive
EDF scheduling of Fisher and Baruah [40]. While their schedulability test does not
consider dependencies as in our case, it is discovered that it approximates schedulability
reasonably well when additionally bounding the load on each processor. To ensure the
validity of the generated partitioning, the Prelude-SchedMCore tool chain integrates
a schedulability analysis for non-preemptive partitioned EDF scheduling.

.c

.txt

.c

.plu .c

.txt
.c

.c

.bin

Application

Prelude

InterludeAnalysis

Library Compilation

SCC

Scheduler

Fig. 3. Tool flow

Figure 3 shows the flow of information between the individual tools in the proposed
framework. The top layer is the application, which comprises the implementations of
the individual tasks in C, and a description of the communication between tasks in a
Prelude source file (.plu). This description is translated by Prelude, which generates
C code that implements the communication between tasks. The general communication
mechanism is kept, and Prelude is modified to leave the allocation of communication
buffers to later stages and to access them via functions instead of direct reads and writes.
Furthermore, Prelude generates a description of the tasks properties, their dependen-
cies, and the buffers required for communication to a .txt file. This task set description
is mapped to the SCC by Interlude. Interlude emits a description of the task set

like Prelude, with additional information about the mapping of tasks to cores. This
description is then passed on to the schedulability analysis. In case the generated map-
ping is unschedulable, the description can be edited to pre-map tasks to cores and avoid
undesirable configurations. Interlude also generates C code describing the mapping of
tasks to cores, their dependencies, and the locations of communication buffers.

4 The Grouping Problem

Due to its complexity, the scheduling/mapping problem does not scale to huge task sets.
That is the reason why Santinelli et al. [41] define an approach to group tasks in order
to translate task scheduling into group scheduling. The idea of the grouping is to create
groups of tasks and make the functional/non-functional co-scheduling problem tractable
by reducing the number of elements to be scheduled. Some reference to the grouping
comes form papers about clustering and functional partitioning, [42,43,44].

The grouping is a two-stage approach where first tasks are grouped according to
their functional requirements, and then the groups of tasks are scheduled to guarantee
the timing requirements.

4.1 Task Grouping

A real-time system can be seen as a task set Γ = {τ1, τ2, . . . τn} where tasks are de-
scribed through their parameters (worst-case execution time, period, deadline, etc.) and
their mutual relationships. In particular, Santinelli et al. [41] considered the functional
dependencies as precedence constraints or data-flows. The precedence constraints be-
tween tasks are described as a directed acyclic graph G = (V,E) where V is the set of
tasks Γ , Γ ≡ V, and E ⊆ V × V is the set of edges, which represent the precedence
constraints between tasks.

The grouping classification is according to the task dependencies and a grouping
partition G = {G1, . . . ,Gn} divides the task set into disjoint subsets such that ∀Gi,Gj ∈
G, Gi ∩ Gj = ∅ and

⋃n

i=1 Gi = V.
The criteria for grouping may be chosen arbitrarily, and some grouping are more

helpful with regard to scheduling than others. Santinelli et al. [41] focused on two classes
of grouping: a) independence grouping, which exploits the notion of independence to
partition the task set, b) dependence grouping, which creates groups of dependence tasks.

Independence Grouping. We call a grouping I = {I1, I2, . . .} an independence grouping
if only independent tasks (⊲) belong to the same partition Ii, ∀ Ii ∈ I, ∀ τj , τk ∈
Ii, τj⊲τk.
I = {I1, I2, . . .} partitions the task set into groups Ii, where all the tasks within a group
are mutually independent. Santinelli et al. [41] developed forward and backward inde-

pendence grouping algorithms to partition the graph into independence groups, starting
from the beginning or the end of the graph, respectively.

Dependence Grouping. Instead of grouping independent tasks, we can group tasks that
form chains of dependent tasks. Two tasks τi and τk form a chain if τk is the only
successor of τi and τi the only predecessor of τk, or if there exists a sequence of chains
between τi and τk through intermediate tasks. This way, a dependence grouping D is a

partitioning of the task set such that chains of dependent tasks belong to the same group

Di. A dependence grouping D = {D1,D2, . . .} partitions the task set into groups Di,
where all the tasks within a group are dependent. A dependence grouping algorithm [41]
starts from the tasks without any predecessors and iterates over them creating a group
for each of these, which includes the task and all those that form a chain with it.

The grouping reduces the scheduling possibilities (the degree of flexibility) and intro-
duces some pessimism into the task timing constraints. The pessimism depends on the
case study considered (the graph topology), but also on the latencies applied. On the
other hand, the scheduling complexity is drastically reduced with the grouping, since the
number of elements to be scheduled is smaller than the case without grouping.

4.2 Grouping Application.

Santinelli et al. [41] applied the grouping abstraction to the FAS initial motivational
example, Figure 1. Figure 4(a) shows the graph representation for the precedence con-
straints of the FAS task set. Figures 4(b) and 4(c) present the independence group and
the dependence group classification for those tasks. In those figures it is possible to infer
the pessimism introduced by the scheduling as well as the complexity reduction due to
the groups classification and their scheduling. The FAS benchmark analyzed is a modified
version with mono-rate tasks; the task period has been set to 1000ms and the execution
times, expressed in milliseconds, have been set to fit into a 1000ms period. To evaluate

(a) Functional graph
representation

(b) Independence
grouping with the
forward algorithm

(c) Dependence group-
ing

Fig. 4. Functional graph and grouping to the FAS benchmark.

the impact of grouping on I/O latencies and the pessimism the grouping introduces, two
I/O latencies for the FAS benchmark have been defined. The first, L(gps0, gnc0), with
gps0 as the input task and gnc0 as the output task, and the second, L(str0, pws0), with
str0 as the input task and pws0 as the output task. By defining the optimal latency as
the smallest latency, it is possible to have an optimization problem where all the possible
task schedules are explored looking for the smallest I/O latency.

Without grouping, the optimal latencies are 275ms and 605ms for L(gps0, gnc0) and
L(str0, pws0), respectively. In case of independence grouping (with the forward grouping
algorithm) the optimal L(gps0, gnc0) latency become 465ms, while for the L(str0, pws0)
is 845ms. In case of dependence grouping the optimal L(gps0, gnc0) latency stays 275ms

(as the no-grouping case), while for the L(str0, pws0) it is 835ms. Combining the two la-
tencies, we could look for the maximum between them,max{L(gps0, gnc0), L(str0, pws0)}.

The latencies results into 615ms with no grouping applied, 855ms with the independence
grouping (forward independence grouping) and 835ms with the dependence grouping.
Results are slightly larger than the single latency case, due to the combination of the
two requirements.

Grouping Integration. We are currently working on integrating the grouping approach
with the Prelude-SchedMCore framework. By definition, the grouping represents
an intermediate task abstraction. Thus, it could be a module aside the schedulability
analysis, as shown in Figure 2, which would take the task description in the form of
precedence and timing constraints and produce the task set partitioning as output for
what we could call the grouping schedulability analysis. The task set partition is then
given to the SchedMCore modules to verify schedulability of the groups and execute
them while evaluating their timing performance. As future work, we plan to compare
schedulability analysis with or without grouping in a more formal manner. Furthermore,
we plan to implement the UPPAAL analysis with grouping and compare it with other
schedulability analysis tools.

5 The Execution Time Measurement Problem

The schedulability analysis relies on Worst-Case Execution Time (WCET) knowledge.
Recently, researchers have investigated measurements with extreme value theory as an
alternative to static timing analysis. Among those works there is [45], which measures
task execution times with the help of Prelude-SchedMCore.

5.1 Tracing approaches

Measuring and observing a real-time system requires to set up an appropriate envi-
ronment to execute various real-time task-sets and to collect information about their
behavior at each iteration. In particular, there is need for a real-time environment that
ensures real-time execution with appropriate scheduling policies, memory locking, core
affinity, etc. such as SchedMCore. Since the objective is to address any kind of real
execution target, it is not possible to rely on simulation. The support has also to be
abstract enough to approach any computational architecture and consider the widest
range of execution condition for task sets.

It is also required to have a tracing tool which allows to collect timestamped traces
containing execution information, such as execution time, response time, number of cache
misses, etc. Hardware-specific assisted observation may be unavailable, thus the best op-
tion is to perform instrumented real execution, often called tracing, ensuring a minimal
perturbation due to real-time measurements. LTTng (Linux Trace Toolkit new genera-
tion) [46] applies static instrumentation to achieve low overhead, at the cost of only a
small increase in the code size.

In order to conduct low-level performance analysis or tuning, retrieving counts of
hardware-related activities, hardware performance counters are a common choice, since
they are available in most of modern processors, also in the embedded computing area.
Hardware performance counters are a set of special-purpose registers built into modern
microprocessors that track low-level operations or events within the processor accurately
and with minimal overhead.

Compared to software profilers, such as gprof and Valgrind, hardware counters provide
low-overhead access to a wealth of detailed performance information related to CPU’s
functional units, cache memories, main memory etc. Besides, in general no source code
modifications are needed, although the types and the meaning of counters may vary
depending on the architecture, due to the different hardware organizations.

It is also important to have a precise characterization of the benchmark set we wish to
adopt, in order to quantify in advance the runtime behavior of the program. To this aim
we could explore MICA3 [47], a PIN tool4 which allows to collect program characteristics
independently from the microarchitecture on which the measurements are done.

Finally, a way to integrate realistic task implementations into the real-time execution
and tracing environment is required. SchedMCore can support any C function to be
loaded as the body of a task. Melani et al. [45] used CMake5 for managing the build
process of software, in particular creating a dynamic library starting from the C function
we want to use as the task implementation. The result is a shared object which is the task
implementation function, and a taskfile with the description of the tasks that will run in
the system, their mapping on a specific core mask and the user functions to be associated
to each one of the tasks. The shared object and the taskfile have all the information that
SchedMCore requires to verify system schedulability and execute it.

The LTTng session has to be created, enabling all the kernel events and the start and
stop events specified by the user (implemented by SchedMCore). A Python script to
extract data from LTTng traces is available within SchedMCore.

5.2 Task Measurements

Once a real-time measurement environment with SchedMCore has been set up, it is
possible to measure task execution time profiles in different execution conditions. Task
executions exhibit variability due to the interferences from the system. The measured
profiles are probability distribution representations of such variabilities. Those measure-
ments can have a twofold application. At one hand they can be applied to estimate
worst-case execution time and perform scheduling analysis. At the other hand, they can
be used to validate worst-case execution time estimations and thus scheduling validation.
Figure 2 depicts the measurements applied to generate task models.

As a first example where to apply the Prelude-SchedMCore framework to the
measurement problem, we consider a cnt task from the Mälardalen Benchmark suite [48].
This is a single path task. With SchedMCore we are able to isolate most of the in-
terferences and measure their effects on the task execution times. Figure 5(a) shows the
execution time profile as a 1-Cumulative Distribution Function (1-CDF) of task cnt in
different execution configuration. ISO is the isolation case where the monitored task
suffers a minimal set of interferences from the system. pre 50x50 is where the cnt task is
preempted by a task with a small 50x50 data structure; pre 750x750 to mean that cnt
is preempted by 750x750 data structure, and so on. Figure 5(a) shows the effects that
preemptions have on the caches and consequently on task execution time.

3 http://boegel.kejo.be/ELIS/MICA/
4 A PIN is a dynamic binary instrumentation framework for the IA-32 and x86-64
instruction-set architectures that enables the creation of dynamic program analysis,
http://www.pintool.org

5 www.cmake.org

20600 20800 21000 21200 21400 21600 21800 22000

1
e
-1
1

1
e
-0
8

1
e
-0
5

1
e
-0
2

Execution Time

P
ro
b
a
b
ili
ty

ISO

pre 50x50

pre 750x750

pre 1000x1000

pre 1600x1600

(a) cnt: execution time comparison

21000 22000 23000 24000 25000 26000 27000

1
e
-1
1

1
e
-0
8

1
e
-0
5

1
e
-0
2

Execution Time

P
ro
b
a
b
ili
ty ISO

pre 1600x1600

3cores

3cores pre

(b) cnt: execution time comparison

Fig. 5. cnt benchmark example with execution times in different conditions.

Figure 5(b) outlines the effects that multi-core (3 cores total) executions with or
without preemption, have on the measured task execution time profiles. There is still
the isolation case as reference, then a condition where cnt is preempted by a task (pre
1600x1600), and also the case with 2 more cores executing other interfering tasks.

50 100 200 500 1000 2000 5000

1
e
-1
1

1
e
-0
8

1
e
-0
5

1
e
-0
2

Execution Time

P
ro
b
a
b
ili
ty

ISO

pre

3cores ns

3cores cnt

3cores pre

(a) ns: execution time comparison

1 2 5 10 20 50 100 200 500

1
e
-1
1

1
e
-0
8

1
e
-0
5

1
e
-0
2

(Last Level)-Cache misses

P
ro
b
a
b
ili
ty

ISO

3cores pre

ISO shifted

(b) ns: number of last level cache misses

Fig. 6. ns benchmark example with execution times and cache misses compared.

The second example is the Mälardalen benchmark ns, which is a multi-path task.
Figure 6(a) depicts the effects that multi-core interferences have on the ns execution
time profiles. Through the 1-CDF representation we are able to identify those effects on
all three paths of the ns task. The worst case is the case where ns suffers preemptions and
there are 2 other cores (3 in total) that execute tasks and are able to interfere with the
reference task ns through the shared cache. Finally, Figure 6(b) shows the flexibility of the
measurement approach applied to shared caches. With SchedMCore and LTTng it is
possible to accurately measure the number of cache misses per run and build probability
distributions out of measurements. Intuitively, the 1-CDF representation outlines how
3cores pre is the worst possible condition in terms of number of cache misses. The curve
ISO shifted has been built from the isolation case in order to upper-bound the worst-
condition. It could be used for safe and pessimistic cache analysis.

6 Conclusion

With this paper we have first described the integrated development framework based
on Prelude and SchedMCore. We are able to cope with the modeling, analysis, and
verification of safety-critical embedded systems which combine functional requirements
and non-functional requirements. We have also shown how the framework applies to
problems of today’s embedded systems.

The Prelude-SchedMCore is also flexible to approach further scheduling and ver-
ification applications. The developed solutions for new problems can be plugged into the
integrated framework to give it new potentials. On the other hand, to apply an integrated
framework to those problems would give means to better integrate modeling, analysis,
and verification, to enhance the development of safety-critical embedded systems.

References

1. Software Considerations in Airborne systems and Equipment Certification, RTCA, 1992.

2. The Mathworks, Simulink: User’s Guide, The Mathworks, 2009.

3. P. Caspi, A. Curic, A. Maignan, C. Sofronis, S. Tripakis, and P. Niebert, “From simulink to
scade/lustre to tta: a layered approach for distributed embedded applications,” in Pro-
ceedings of the Conference on Languages, Compilers, and Tools for Embedded Systems
(LCTES’03), 2003, pp. 153–162.

4. N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The synchronous data-flow program-
ming language LUSTRE,” Proceedings of the IEEE, vol. 79, no. 9, pp. 1305–1320, 1991.

5. F.-X. Dormoy, “Scade 6 a model based solution for safety critical software development,”
in Embedded Real-Time Systems Conference (2008), 2008.

6. A. Curic, “Implementing Lustre programs on distributed platforms with real-time con-
straints,” Ph.D. dissertation, Université Joseph Fourier, Grenoble, 2005.

7. C. Sofronis, S. Tripakis, and P. Caspi, “A memory-optimal buffering protocol for preser-
vation of synchronous semantics under preemptive scheduling,” in Proceedings of the 6th
International Conference on Embedded Software (EMSOFT’06), Seoul, South Korea, Oct.
2006, pp. 21–33.

8. S. Tripakis, C. Pinello, A. Benveniste, Albert Sangiovanni-Vincentelli, P. Caspi, and
M. Di Natale, “Implementing synchronous models on loosely time-triggered architectures,”
IEEE Transactions on Computers, vol. 57, no. 10, pp. 1300–1314, Oct. 2008.

9. A. Girault, X. Nicollin, and M. Pouzet, “Automatic rate desynchronization of embedded
reactive programs,” ACM Trans. Embedded Comput. Syst., vol. 5, no. 3, pp. 687–717, 2006.

10. P. Aubry, P. Le Guernic, and S. Machard, “Synchronous distribution of Signal programs,”
in Proceedings of the 29th Hawaii International Conference on System Sciences (HICSS’96)
Volume 1: Software Technology and Architecture, 1996, pp. 656–665.

11. T. P. Baker and S. K. Baruah, “Schedulability analysis of multiprocessor sporadic task
systems,” in Handbook of Realtime and Embedded Systems. CRC Press, 2007.

12. R. I. Davis and A. Burns, “A survey of hard real-time scheduling algorithms and schedu-
lability analysis techniques for multiprocessor systems,” University of York, Department of
Computer Science, techreport YCS-2009-443, 2009.

13. R. Urunuela, A.-M. Déplanche, and Y. Trinquet, “STORM, simulation tool for real-time
multiprocessor scheduling,” Institut de Recherche en Communications et Cybernétique de
Nantes, Tech. Rep., september 2009.

14. J. Pasaje, M. Harbour, and J. Drake, “Mast real-time view: a graphic uml tool for modeling
object-oriented real-time systems,” in Real-Time Systems Symposium, 2001. (RTSS 2001).
Proceedings. 22nd IEEE, Dec 2001, pp. 245–256.

15. A. David, J. Illum, K. G. Larsen, and A. Skou, Model-Based Design for Embedded Systems.
CRC Press, 2010, ch. Model-Based Framework for Schedulability Analysis Using UPPAAL
4.1, pp. 93–119.

16. D. Faggioli, F. Checconi, M. Trimarchi, and C. Scordino, “An edf scheduling class for the
linux kernel,” in Proceedings of 2009 Real Time Linux Workshop, 2011, revised version.

17. M. A. Rivas and M. G. Harbour, “A POSIX-Ada Interface for Application-Defined Schedul-
ing,” in International Conference on Reliable Software Technologies, Ada-Europe 2002, 2002,
pp. 136–150.

18. P. Li, B. Ravindran, S. Suhaib, and S. Feizabadi, “A formally verified application-
level framework for real-time scheduling on posix real-time operating systems,”
IEEE Trans. Softw. Eng., vol. 30, pp. 613–629, September 2004. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1018037.1018391

19. A. Benveniste, P. Le Guernic, and C. Jacquemot, “Synchronous programming with events
and relations: the Signal language and its semantics,” Sci. of Compu. Prog., vol. 16, no. 2,
1991.

20. M. Pouzet, Lucid Synchrone, version 3. Tutorial and reference manual, Université Paris-
Sud, LRI, 2006.

21. M. Cordovilla, F. Boniol, J. Forget, E. Noulard, C. Pagetti et al., “Developing critical
embedded systems on multicore architectures: the prelude-schedmcore toolset,” in 19th In-
ternational Conference on Real-Time and Network Systems, 2011.

22. J. Forget, F. Boniol, D. Lesens, and C. Pagetti, “A multi-periodic synchronous data-flow
language,” in 11th IEEE High Assurance Systems Engineering Symposium (HASE’08), Nan-
jing, China, Dec. 2008.

23. J. Forget, “A synchronous language for critical embedded systems with multiple real-time
constraints,” Ph.D. dissertation, Université de Toulouse - ISAE/ONERA, Toulouse, France,
Nov. 2009.

24. A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. Le Guernic, and R. de Simone,
“The synchronous languages 12 years later,” Proceedings of the IEEE, vol. 91, no. 1, pp.
64–83, 2003.

25. C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in a hard-real-
time environmet,” Journal of the ACM JACM, vol. 20, no. 1, pp. 46–61, 1973.

26. H. Chetto, M. Silly, and T. Bouchentouf, “Dynamic scheduling of real-time tasks under
precedence constraints,” Real-Time Systems, vol. 2, 1990.

27. C. Pagetti, J. Forget, F. Boniol, M. Cordovilla, and D. Lesens, “Multi-task implementation
of multi-periodic synchronous programs,” Discrete Event Dynamic Systems, vol. 21, no. 3,
pp. 307–338, 2011.

28. M. Mollison and J. Anderson, “Bringing theory into practice: A userspace library for multi-
core real-time scheduling,” in Proceeding of 19th IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2013.

29. M. Cordovilla, F. Boniol, E. Noulard, and C. Pagetti, “Multiprocessor schedulability anal-
yser,” in Proceedings of the 26th ACM Symposium on Applied Computing (SAC’11), 2011.

30. L. Cucu and J. Goossens, “Feasibility intervals for multiprocessor fixed-priority scheduling of
arbitrary deadline periodic systems,” in Proceedings of the conference on Design, automation
and test in Europe (DATE’07). San Jose, CA, USA: EDA Consortium, 2007, pp. 1635–1640.

31. F. Cottet, J. Delacroix, C. Kaiser, and Z. Mammeri, Scheduling in real-time systems. John
Wiley & Sons, October 2002.

32. E. Grolleau and A. Choquet-Geniet, “Off-line computation of real-time schedules by means
of petri nets,” in Workshop On Discrete Event Systems, WODES2000, ser. Discrete Event
Systems: Analysis and Control. Ghent, Belgium: Kluwer Academic Publishers, 2000, pp.
309–316.

33. J. Xu and D. Parnas, “Scheduling processes with release times, deadlines, precedence and
exclusion relations,” IEEE Trans. Softw. Eng., vol. 16, pp. 360–369, March 1990.

http://portal.acm.org/citation.cfm?id=1018037.1018391

34. J. Xu and D. L. Parnas, “On satisfying timing constraints in hard-real-time systems,” IEEE
Transaction Software Engineering, vol. 19, pp. 70–84, January 1993.

35. T. Shepard and J. A. M. Gagné, “A pre-run-time scheduling algorithm for hard real-time
systems,” IEEE Trans. Softw. Eng., vol. 17, pp. 669–677, July 1991.

36. G. Behrmann, K. G. Larsen, and J. I. Rasmussen, “Optimal scheduling using priced timed
automata,” SIGMETRICS Perform. Eval. Rev., vol. 32, pp. 34–40, March 2005.

37. G. Behrmann, A. David, and K. G. Larsen, “A tutorial on uppaal,” in 4th International
School on Formal Methods for the Design of Computer, Communication, and Software Sys-
tems, SFM-RT 2004, ser. LNCS, no. 3185. Springer–Verlag, September 2004, pp. 200–236.

38. J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, and S. Baruah, “A catego-
rization of real-time multiprocessor scheduling problems and algorithms,” in Handbook on
Scheduling Algorithms, Methods, and Models. Chapman Hall/CRC, Boca, 2004.

39. W. Puffitsch, E. Noulard, and C. Pagetti, “Mappting a multi-rate synchronous language to a
many-core processor,” in Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2013.

40. N. Fisher and S. Baruah, “The partitioned multiprocessor scheduling of non-preemptive spo-
radic task systems,” in 14th International COnference on Real-Time and Network Systems,
2006.

41. L. Santinelli, W. Puffitsch, A. Dumerat, F. Boniol, C. Pagetti, and J. Victor, “A grouping
approach to task scheduling with functional and non-functional requirements,” in Embedded
Real-time Software and Systems (ERTS), 2014.

42. C. Bartolini, G. Lipari, and M. Di Natale, “From functional blocks to the synthesis of
the architectural model in embedded real-time applications,” in Real Time and Embedded
Technology and Applications Symposium, 2005. RTAS 2005. 11th IEEE, March 2005, pp.
458–467.

43. S. Kodase, S. Wang, and K. G. Shin, “Transforming structural model to runtime model
of embedded software with real-time constraints,” in Proceedings of the Conference on
Design, Automation and Test in Europe: Designers’ Forum - Volume 2, ser. DATE ’03.
Washington, DC, USA: IEEE Computer Society, 2003, pp. 20 170–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1022685.1022945

44. A. Mehiaoui, E. Wozniak, S. Tucci-Piergiovanni, C. Mraidha, M. Di Natale, H. Zeng, J.-P.
Babau, L. Lemarchand, and S. Gerard, “A two-step optimization technique for functions
placement, partitioning, and priority assignment in distributed systems,” in Proceedings
of the 14th ACM SIGPLAN/SIGBED Conference on Languages, Compilers and Tools for
Embedded Systems, 2013, pp. 121–132.

45. A. Melani, E. Noulard, and L. Santinelli, “Learning from probabilities: Dependences within
real-time systems,” in 8th IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA), 2013.

46. P.-M. Fournier, M. Desnoyer, and M. R. Dagenais, “Combined tracing of the kernel and
applications with lttng,” in Linux Symposium, 2009.

47. K. Hoste and L. Eeckhout, “Microarchitecture-independent workload characterization,” Mi-
cro, IEEE, vol. 27, no. 3, pp. 63–72, 2007.

48. J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper, “The Mälardalen WCET benchmarks
– past, present and future,” B. Lisper, Ed. Brussels, Belgium: OCG, Jul. 2010.

http://dl.acm.org/citation.cfm?id=1022685.1022945

	Integrated Development Framework for Safety-Critical Embedded Systems

