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 On the confinement parameter in HRAM bubble Rayleigh-Plesset modelling.

Sur le paramètre de confinement dans les modélisations de type Rayleigh-Plesset des bulles

créées lors de coups de bélier hydrodynamiques.
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Résumé traduit : 
La conception de réservoirs de carburant au regard des pressions générées par des phénomènes de coup de bélier
hydrodynamique est un besoin majeur pour les aéronefs Civils et Militaires, afin de réduire leurs vulnérabilités. Des
similarités dans le comportement des bulles entre le coup de bélier hydrodynamique et les explosions sous-marines ont
été observées dans des essais récents de pénétration / entrée dans l'eau de projectiles hautes vitesses. Les travaux
présentés concernent l'application de l'équation de Rayleigh-Plesset - classiquement utilisée pour l'analyse de la
dynamique d'une bulle (incluant les explosion sous-marines) - aux bulles créées par des coups de bélier
hydrodynamique induits par la pénétration de projectiles balistiques dans une géométrie confinée remplie d'un liquide.
L'équation de Rayleigh-Plesset est appliquée à deux cas d'impacts, un dans un reservoir de dimmentions restraintes,
fermé et un dans une piscine hydrodynamique de plus grandes dimmentions. L'initialisation du modèle est basée sur
des données expériementales et sur le principe de conservation de l'énergie cinétique initiale du projectile.  Pour
appliquer cette equation une relation entre les pressions appliquées à la structure et les déformations de la structure est
nécessaire. Cependant cette relation ne peut être obtenue explicitement que pour des réservoirs sphériques. Les
auteurs discutent sur les paramètres de cette équation et comparent leurs valeurs calibrées avec celles obtenues avec
des formules analytiques. 

NB : Ce Tiré à part fait référence au Document d'Accompagnement de Publication DADS14009
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Abstract

The design of fuel tanks with respect to Hydrodynamic Ram (HRAM) pres-
sure is a major need for Civil and Military aircraft in order to reduce their
vulnerability. Similarities in bubble behaviour between HRAM and under-
water explosion situations were observed in recent high-speed tank penetra-
tion/water entry experiments. The present work concerns the application of
a confined version of the Rayleigh-Plesset equation - which is classically used
for bubble dynamics analysis (including underwater explosion) - to simulate
a bubble created by an HRAM event induced by projectile penetration at
ballistic speed in a confined geometry filled with a liquid. This equation is
applied to two cases of impact, one in a small closed tank and one in a
larger pool. The initialisation of the model is based on experimental data
and a conservation principle of the initial energy (of the projectile). To apply
this equation a relationship between the pressure applied on the structure
and the structure deformation is needed. However it can only be obtained
explicitly for spherical containers. The authors discuss on the parameters
needed in this equation and compare their calibrated values to theoretical
ones calculated with analytical plates formulae.

1 Introduction

In the event of impact of high speed/high energy projectiles on liquid filled
tanks, the container may suffer large hydrodynamic loads that could possi-
bly rupture the entire structure. This impact scenario is referred as Hydro-
dynamic Ram (HRAM). The need of tools for physical understanding of the



hydrodynamic effects that occur during a HRAM event is an increasing one
as well in the civil domain as for the military aircraft design (vulnerabil-
ity requirement). Indeed physical understanding of HRAM dynamics would
permit to improve structures with respect to this particular threat.

The HRAM event is generally characterized by four phases first described
by Ball [2]: the shock phase, the drag phase, the cavity growth and collapse
phases. These phases and the associated loads are illustrated in Figure 1.
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Figure 1: General scenario of Hydrodynamic Ram event in liquid filled tank.

The first experimental observations on the subject were done by McMillen
[6] who recorded the shock waves and drag phase produced by the pene-
tration of small steel spheres at high speed (610 m.s−1 to 1500 m.s−1) into
water by using a shadowgraphs method. He was particularly interested in
the shock waves characteristics. He observed that the projectile is quickly
slowed down by drag and that the shock wave propagates at the speed of
sound in water.

Shi et al.[8] observed the cavity motion induced by a medium speed (342
m.s−1) water entry of a bullet. More recently Deletombe et al. [5] presented
experiments of impact in water of non-academic projectiles (7.62 mm bullet)
at ballistic speed (850 m.s−1). The same phases of water entry occurred
during these experiments. They enlightened the effect of the tumbling of
projectiles on the cavity shape during HRAM events.

During tumbling the projectile transmits more quickly its momentum to
the liquid medium. An extreme case would be an instantaneous transfer
that would lead to a spheric cavity bubble. At the opposite, a projectile
that cannot tumble will transfer its kinetic energy more slowly and will
create a more elongated cavity shape in its wake. Bless [3] observed that
the pressure resulting from the tumbling of the projectile could be five times
superior to the one observed in a case without tumbling.

Generally, during the water entry of a projectile, the cavity created by the
drag of the projectile will be enclosed by the surrounding free surface of the
liquid, and a cavity bubble will then be created. After it has completed its
growth, this cavity will eventually collapse. Deletombe et al. [4] performed
pressure measurements for 7.62 mm bullet impacts on water filled tanks,
and observed greater pressures during the drag phase than during the cavity



growth but in shorter time time. They nevertheless concluded that none of
these phases could be neglected for the sizing of structures because they
both could carry significant impulse.

The present work focuses on the cavity growth and collapse phase in the
case of tumbling of projectiles. This case seems to lead to higher pressures.
A conservative approach would be to design structures to resist this threat.
However tumbling of projectiles is particularly difficult to correctly simulate
with current numerical tools. The more advanced numerical simulations of
this phenomenon presented in the open literature deal with non-deformable
projectiles [11]. These studies either use Lagrange-Euler finite element meth-
ods or particle type solutions. Anyway the whole sequence of event up to the
collapse (that might take up to 30 ms) is not simulated. Another approach is
chosen here, which is to study this complex phenomenon with an analytical
tool. Pioneer works on the subject were done by Stepka and Morse [9]. They
identified the factors that affect the liquid loading during an HRAM event,
tried to analyse the effects of the different parameters on the survivability of
tanks, but they could not clearly establish a correlation that could include
the effects of all the parameters.

Recent experimental results in particular those presented in [5] permit
to observe the evolution of the bubble created in the wake of a tumbling
projectile. The bubble dynamics seems to be comparable to bubble dynam-
ics observed in during underwater explosion phenomena [1]. This bubble
dynamics is described using a modified version of the Rayleigh-Plesset equa-
tion introducing confinement effect of the container on the bubble pulsating.
The object of the present work is to discuss on the confinement parameter
in this confined version of the classic Rayleigh-Plesset equation for bubble
dynamics, that is applied to bubbles created by ballistic impacts.

2 Studied cases

The Rayleigh-Plesset approach has been used for two cases : the first one
is a 7.62 mm NATO ballistic impact in a generic Airbus-Innovation closed
water-filled tank. The second case is a ballistic shot in a large ONERA/
DAAP pool. In both cases the impact is normal to the entry wall of the tank
or free surface of liquid. These experiments are reported in [5]. These two
tests correspond respectively to a confined tank and a larger domain. The
pool dimensions are approximately 22x1.5x1.5 m3 and the tank dimensions
are 0.3x0.54x0.66 m3.

3 Confined Rayleigh-Plesset equation

A modification of the classic Rayleigh-Plesset equation is proposed here to
account for confinement effects without changing the method of resolution.
To obtain this equation and use it to predict HRAM bubble dynamics, a



spherical gas bubble in a spherical finite domain of liquid is first considered,
and the following assumptions are made:
• Spherical deformation of the bubble interface;
• Instantaneous energy transfer from kinetic energy of the bullet to the

liquid;
• Gravity effects are negligible;
• Idealised case of zero mass transport across the bubble interface is

considered,
• Dynamic viscosity and surface tension effects are negligible due to the

large dimensions of the bubbles,
• An initial amount of non-condensable gas (here air) is considered, in

first approach its behaviour is assumed to be adiabatic.
• The liquid domain is considered to be incompressible and of finite

dimensions;
• An elastic structural confinement is added by means of a spherical

shell.
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Figure 2: Sketch of the system considered in the proposed confined Rayleigh-
Plesset equation.

The equation of mass conservation for a radial movement is expressed in
spherical coordinates, it reduces due to the assumptions to (1).

r2ṙ = R2
bṘb (1)

with Rb the radius of the bubble and ṙ the radial speed of the liquid at
radius r. Using the previous assumptions, the equation of conservation of
momentum in the radial direction is reduced to (2).

r̈ + ṙ
∂ṙ

∂r
+

1

ρ

∂P

∂r
= 0 (2)

It is considered that the centre of the bubble corresponds to the centre
of the container. The initial external radii Rs0 of the liquid domains were
defined as the radii that yield the same volume as the tested containers
(respectively 50 m3 for the pool and 7.7.10−2m3 for the tank). The behaviour



of the liquid is assumed to be incompressible, hence the current radius of
the elastic sphere Rs is related to the radius of the bubble (3):

Rs = (R3
s0 +R3

b −R3
b0)1/3 (3)

Integrating (2) between Rs and Rb, using (1) and defining Λ = Rb/Rs, the
same equation as in [7] is found (4):

RbR̈b +
3

2
Ṙb

2
+
Ps(t)− Pb(t)

ρ
− 2Ṙb

2
Λ−RbR̈bΛ +

1

2
Ṙb

2
Λ4 = 0 (4)

with Ps the pressure at the interface between the liquid and the structural
sphere. Λ is then defining a geometrical parameter with respect to the finite
size of the considered fluid domains.

A similar equation to the Rayleigh-Plesset equation is obtained with the
addition of three terms that vanish when Rs =∞ (infinite medium)).

Another relation between the pressure applied on the wall and the struc-
tural sphere response is needed. If the containers behaviour is assumed
elastic and linear, a good approximation of the relationship is obtained by
assuming proportionality between the variation of pressure on the sphere
wall Ps − Ps0 and the variation of the internal volume of the sphere V −
V0. This coefficient of proportionality will be hereafter called confinement
parameter, and denoted α in (5).

Ps − Ps0 = α.(V − V0) (5)

4 Application of confined Rayleigh-Plesset equation for
bubble created by HRAM events

The initial conditions of the Rayleigh-Plesset equation determined from the
ONERA experiments are linked to the initial time chosen for the analysis
(when a bubble cavity reasonably appears). To choose the starting times
for Rayleigh-Plesset simulations, energetic considerations are used e.g. when
the liquid initial kinetic energy in Rayleigh-Plesset equation is equal to the
theoretical initial kinetic energy of the projectile that created the bubble
(approximately 3.5 kJ in the pool and 2.9 kJ in the tank). It has been
observed that it corresponded approximately to the beginning of the growth
stage of the bubble cavity in the tests. As the energetic partition between
the kinetic energy transferred to the liquid and the energy dissipated by
the deformation of the projectile is not known, no dissipative phenomena
are considered here: the whole projectile kinetic energy is assumed to be
transferred to the liquid. The amount of kinetic energy of the liquid is
calculated using the assumption of incompressibility of the liquid (6):



Ek = 2πρR4
bṘb

2
(

1

Rb
− 1

Rs

)
(6)

4.1 Experimental calibration of α

First, before searching to obtain the numerical values of α from analyti-
cal formulae, its values are obtained by calibration using the experimental
results. These values are denoted αcalib.

The modified Rayleigh-Plesset equation is solved with a Runge-Kutta
forth order method. The coefficients αcalib have been chosen to obtain good
agreement in amplitude between the experimental radius and those obtained
numerically (see Figure 3). Table 1 summarises the initial conditions used
for these simulations. αcalib = 1.5 MPa.mm−3 and αcalib = 150 MPa.mm−3

for the pool and tank respectively.

Table 1: Numerical values of the initial conditions used for each case in
confined Rayleigh-Plesset simulations.

Case Pb0 t0 Rb0 Ṙb0 Rs0 αcalib

(MPa) (ms) (mm) (mm.ms−1) (mm) (MPa.mm−3)

Pool 8.1.10−3 0.5 42.3 86.44 2200 1.5

Tank 2.23.10−3 0.26 ms 48.5 70.6 264 150
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Figure 3: Radius evolution in tank test ( ), pool test ( ) and predicted with
confined RP in tank ( ) and pool ( ) with αcalib.

4.2 Application with elasticity formula for the structure response

The results obtained by calibrating the coefficients α are found to be quite
satisfactory. The extent to which the numerical values of this coefficient can
be predicted with analytical formulae will be now investigated.



First the case of an “academic container” is studied. For this a spheri-
cal elastic container is used. Obviously this model induces large differences
with the real containers. A mono-material spherical shell is used instead
of a multi-material parallelepipedic container assembled by metellic bolts.
However this model will be used as a reference to compare with more precise
modellings later.

4.2.1 Analytical value of α for spherical tanks
In case of a spherical container, the structure can be modelled using the
theory of elasticity on a spherical thick shell. The numerical values of the
coefficient α can be determined for this configuration, it will be denoted αs

in (7):

αs =
E

4π
.

(
(Rs0 + e)3 −R3

s0

R3
s0

)
.

(
2

2(1− 2ν)R3
s0 + (1 + ν)(Rs0 + e)3

)
(7)

The confinement parameter obtained by taking into account confinement
effect with structure modelled as a mono-material spherical elastic thick
shell with materials presented in Tables 2 and 3 is far from the calibrated
values.

Table 2: Numerical values used for the calculation of the coefficient αs for
a V =0.3x0.54x0.66 m3 tank (see Airbus-Innovation tank).

Tank material E ν e αs

(MPa) (mm) (MPa.mm−3)

OMCa 110000 0.3 6 3.0.104

Plexiglass 2600 0.3 40 5.1.103

Steel 210000 0.3 50 3.4.105

aOrganic Matrix Composite

Table 3: Numerical values used for the calculation of the coefficient αs for
a V =22x1.5x1.5 m3 tank (see ONERA DAAP Pool).

Pool material E ν e αs

(MPa) (mm) (MPa.mm−3)

Concrete 30000 0.3 120 3.3

Glass 70000 0.3 40 26

Free surface – – – –



As expected none of the materials permits to correlate with the experi-
mental results. There is respectively a ratio 30 and 2 between the calibrated
values and the best obtained by considering spherical shell that yield the
same volume than the tank and the pool. The larger difference in the tank
case is probably due to weaker confinement effects induced by the pool than
by the tank, due to the large dimensions of the pool and to its free surface.

4.2.2 Application with elastic plates formulae
Indeed in the experiment the containers are not spherical, and are assemblies
of several parts with different materials. In this part the numerical values
of the coefficient α is calculated with plates formulae. It will be denoted
αplate. In this part only the tank case is considered as the pool yield a free
surface, that cannot be taken into account with this model.

4.2.2.1 Plates formulae to obtain ∆V

The total variation of the container volume is obtained by adding the
variation of volume allowed by the deformation of each panel of the tank:
∆V = 2(∆VplateOMC

+ ∆VplateSteel
+ ∆VplatePlexi

). The plate are considered
to be embedded and submitted to a uniform pressure field.

The variation of volume allowed by a single panel (see fig 5), is calculated
using (8).
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Figure 4: Variation of volume for
a quarter of the structural sphere
submitted to uniform internal
pressure before application of the
pressure (blue) and after (red).
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Figure 5: Variation of volume for
half of an embedded plate sub-
mitted to uniform pressure before
application of the pressure (blue)
and after (red).

∆Vplate =

∫∫
S

wemb.dS (8)

The bending of each plate wemb is calculated according to Timoshenko
[10]:



wemb = wss + w1 + w2 (9)

wss =
4(Pw(t)− Pw0

).a4

π5.D

∞∑
m=1,3,5...

(−1)(m−1)/2

m5
cos
(mπx

a

)
(

1− βatanh(βa) + 2

2cosh(βa)
cosh

(mπy
a

)
+

1

2cosh(βa)

mπy

a
sinh

(mπy
a

))
(10)

With a and b the dimensions of the plate, and D the stiffness of the plate
to bending: D = E.e3/(12((1− ν2)), βa = mbπ/(2a) and βb = maπ/(2b).

w1 = − a2

2π2D

∞∑
m=1,3,5...

Em
(−1)(m−1)/2

m2cosh(βa)
cos
(mπx

a

)
(mπx

a
sinh

(mπx
a

)
− βatanh(βa)cosh

(mπx
a

))
(11)

w2 = − b2

2π2D

∞∑
m=1,3,5...

Fm
(−1)(m−1)/2

m2cosh(βb)
cos
(mπy

b

)
(mπy

b
sinh

(mπy
b

)
− βbtanh(βb)cosh

(mπy
b

))
(12)

with:

(My)y=±b/2 =

∞∑
m=1,3,5...

(−1)(m−1)/2Emcos
(mπx

a

)
(13)

(Mx)x=±a/2 =

∞∑
m=1,3,5...

(−1)(m−1)/2Fmcos
(mπy

b

)
(14)

and: (
∂w

∂y

)
y=±b/2

+

(
∂w1

∂y
+
∂w2

∂x

)
x=±a/2

= 0 (15)

(
∂w

∂x

)
x=±b/2

+

(
∂w1

∂x
+
∂w2

∂y

)
x=±a/2

= 0 (16)



4.2.2.2 Numerical value of α for a parallelepipedic tank

To obtain the numerical value of αplate such as ∆P = α∆V for the tank
case, one needs to solve a system of partial differential equations, which
requires a numerical resolution. First the variation of volume induced by an
arbitrary variation of pressure of Ps − Ps0 = 1 MPa is calculated for each
plate. The obtained numerical values are presented in Table 4.

Table 4: Variation of volume authorised by the plates with respect to 1 MPa
variation of pressure.

Material a b ∆Vplate
(mm) (mm) (m3)

Tank OMC 540 660 7.5.10−3

Plexiglass 300 540 6.9.10−5

Steel 300 660 6.0.10−7

Using (5) with Ps − Ps0 = 1 MPa, ∆V = 1.52.10−2 m3, the obtained
numerical value for the confinement parameter is: αplate = 66 MPa.mm−3

for the tank case. It is found to be closer to the calibrated one which is
αcalib = 150 MPa.mm−1 than the one obtained with a spherical container
(αs = 5100 MPa.mm−1). The ratio in the tank case between the calibrated
confinement parameter and the calculated one with plates formulae is 2.27
instead of 30 with the spherical container. The bubble dynamics obtained
with αcalib is shown in Figure 6.

The prediction of the bubble dynamics obtained with αplate is quite satis-
factory (difference between the maximum radius is 11 %, and collapse time
is almost the same) knowing that the model is only an approximation of the
real container response. The plates in the real container are not perfectly
embedded but bolted, there are an extra reinforcement in the corners of the
tank, the dimensions of the plates that effectively work in bending are not
known and there are parts that are simply not modelled.

5 Conclusion

In the present study, the confinement in the modified Rayleigh-Plesset
equation depends on two parameters : Λ and α. The first one quantifies a
correction of the Rayleigh-Plesset equation due to the finite size of the liquid
domain. The second defines the confinement effect brought by the structure
against the liquid expansion.

In fact, this relationship between the pressure applied to the structure
and the deformation of the structure is a complex one. It depends on the
container dimensions, materials, fixations, shape and on the bubble posi-
tion. Obtaining this relationship would require the use of full 3D physical
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Figure 6: Radius evolution in tank test ( ) and predicted with confined RP
in tank ( ) with αplate.

numerical simulations. In the present work the authors inquire on the extend
to which analytical formulae permit to predict the numerical value of the
confinement parameter, that is used in the Rayleigh-Plesset 1D model.

First the authors introduce a factor α to obtain the simplest relationship
between the pressures applied on the container and its volumic deformation.
Assuming linear relationships between the internal pressure in the liquid and
the volume evolution of elastic spherical containers, that are first used to
represent the tested structures, the Rayleigh-Plesset equation enhanced with
the confinement effect allows to describe well the radius evolution observed
in the case of the pool and in the case of the water-filled tank by calibrating
the proposed confinement parameter.

To the calibrated values the authors compare values calculated analyti-
cally by using an elastic formula on mono-material spherical containers with
various single container materials, and with the value predicted by consider-
ing the variation of volume authorised by a multi-material parallelepipedic
container. It is not possible to obtain good numerical values with the mono-
material spherical container. In fact the tank walls in the tests are bending,
while an elastic sphere acts as a membrane. Eventually a good estimation
of the value of this parameter is obtained using plates formulae in the tank
case (it is not possible to obtain this value for the pool due to the free
surface). The difference between the maximal bubble radius with calibrated
and calculated α is 11%, knowing that several aspects such as the fixations
and the bubble position effects, were not included in these formulae.

Further works are currentlly in progress to experimentally validate the
added confinement effect to the Rayleigh-Plesset equation in 1D conditions,
and to numerically assess other models and solving methods applicable to
general geometries (Finite Elements, Finite Volumes, ...) to progress on the
HRAM bubble dynamics understanding and prediction.
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