
HAL Id: hal-01213652
https://hal.science/hal-01213652

Submitted on 8 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel verification of temporal properties using
dynamic analysis

Antoine Ferlin, Philippe Bon, Simon Collart-Dutilleul, Virginie Wiels

To cite this version:
Antoine Ferlin, Philippe Bon, Simon Collart-Dutilleul, Virginie Wiels. Parallel verification of temporal
properties using dynamic analysis. International Conference on Industrial Engineering and System
Management (IESM), Oct 2015, Séville, Spain. 10p. �hal-01213652�

https://hal.science/hal-01213652
https://hal.archives-ouvertes.fr

Parallel verification of temporal properties using
dynamic analysis

(presented at the 6th IESM Conference, October 2015, Seville, Spain) c© I4e2 2015

Antoine Ferlin
Philippe Bon

Simon Collart-Dutilleul
Ifsttar,

20 Rue Élisée Reclus,
Villeneuve d’Ascq, France

antoine.ferlin@ifsttar.fr
philippe.bon@ifsttar.fr

simon.collart-dutilleul@ifsttar.fr

Virginie Wiels

Onera,
2 Avenue Édouard Belin,
31000 Toulouse, France
virginie.wiels@onera.fr

Abstract—Verification methods can be classified according to
two kinds of criteria: static or not - i.e. dynamic - and formal or
not. This paper follows a work about verification of temporal
properties using dynamic analysis. The approach proposes to
transform an LTL property into a Büchi automaton and to run
the automaton on an execution trace to be verified. Because
traces are finite, the end of trace problem can be bypassed with
computation of statistical information about the verified trace if
and only if the property follows a predefined given pattern. For
very big traces, this approach is well-adapted, but traces have
to be sequentially verified. This paper proposes to parallelize
the verification approach by splitting the execution trace and
executing the Büchi automaton on each sub-trace separately
analysable, which allows a significant time saving.

I. INTRODUCTION

The development of critical software is constrained by
certification standards. The standard depends on the application
domain. For instance, DO-178 is the certification standard for
avionics software. In railway transportation, IEC 50128 is the
certification standard. Even if standards define goals for each
step of the software development, companies have responsibil-
ity for choosing the methods to achieve these goals. Known
methods are proposed by standards but are not mandatory.

The verification phase is one of the steps of the software
life-cycle. Several kinds of verification methods exist and
can be classified using two criteria: formal or not, static or
dynamic. Formal verification means the use of computable
mathematical rules based on a language with unambiguous
grammar and a defined semantics. These rules allow a math-
ematical verification of a given property. Static verification
means that the program to be verified is not executed. On
the contrary, dynamic verification requires the execution of
the program.

For instance, classic verification means are typically not
formal: the test is dynamic whereas reviews are static.
We can notice that a lot of formal techniques are static:
B methods [2], abstract interpretation [11], model check-

ing [10]. . . RuntimeVerification1, which is the purpose of this
paper, can be classified as formal and dynamic.

This work follows a PhD thesis done at AIRBUS and
at ONÉRA, the French aerospace lab, about verification of
temporal properties [15], [16]. Several proprietary embed-
ded programs have been studied in order to determine the
properties which are difficult to be verified. But for reasons
of industrial confidentiality, the detailed results cannot be
published. According to this study, it appears that temporal
properties are complex to be verified with the current industrial
practices. No automatic verification method is currently used.
Indeed, only code reviews are processed. The goal of the work
was to propose a new equipped method to verify these temporal
properties, in order to reduce time and cost of verification.

The resulting method is based on runtime verification. A
specific language has been defined to formalize encountered
temporal properties. This one is grounded on an aggregation of
Linear Temporal Logic (LTL) and regular expressions, which
are well adapted for sequence properties. The defined approach
consists of two major steps: transforming the temporal property
into a non-deterministic Büchi automaton, using Ltl2ba [17],
and then executing the Büchi automaton on an execution
trace to verify the property. Because LTL has a semantics on
infinite traces, the finite execution trace is transformed into
an infinite one by looping over the last state of the trace.
In order to counter the side effects, statistical information is
computed to help to the interpretation of the results, for unclear
cases. The topic of this paper is not the language definition,
the verification phase or the finite trace problem. Readers
interested in this topic will find this information in [16].

This approach has been reused in the railway context. In
order to save time during the verification phase, this paper
presents a parallelized version of this method. This new
method is based on the divide-and-conquer strategy using
parallel execution and the result should be predictable. But, this
strategy has to be validated, because we cut a partial execution
trace, and because the analysis of a sub-trace naturally depends

1Runtime Verification, 2001-2014, www.runtime-verification.org

www.runtime-verification.org

on the previous sub-traces. In addition, the fusion operation of
each sub-trace analysis requires the computation of additional
features in comparison with the classic sequential method. We
aim to test this approach on traces coming form an European
Rail Traffic Management (ERTMS) proprietary simulator[1].
However, because this platform is currently evolving with the
PERFECT project2, we first propose to do experimentation on
a generated trace.

After this introduction, section II discusses this approach
with regard to the related works and the industrial context. Sec-
tion III summarizes the approach defined in [16]. Section IV
defines some notations in this paper, then section V formalizes
the classic approach which consists in executing a Büchi
automaton on an execution trace and section VI formalizes the
parallelized approach. Then, section VII presents experiments
and comparison between the two methods. Finally, section VIII
concludes this article discussing efficiency of the parallelized
approach versus the sequential approach, and identifying the
current limitations of the parallel method.

II. CONTEXT

A. Related Work

The existing works on runtime verification can be clas-
sified in two categories: online methods which perform the
verification during execution of the program and a-posteriori
methods, which perform verification on execution traces. There
is a lot of work on online verification, especially for Java
programs [13], [23], [21], [20] and in the aspect-oriented
programming community [27]. Existing works are based on
rewriting techniques [20] or specific techniques, such as trans-
lation of LTL formula into state machines [12], [19].

Reduction of verification time is a crucial issue in allowing
us to deal with industrial software. In online verification,
many efforts are made in this way. [6] proposes to reduce
the number of monitors, using static analysis. [5] proposes
a parallel verification of several three-valued-LTL properties
encoded in a monitoring system using the GPU 3. [24], [28],
[29] separates monitors from the program to be verified.

The approach of this paper is an offline approach; ex-
ecution traces come from a railway simulation framework.
Verifications are done on execution traces rather than online,
for several reasons. One of the most important is that the ver-
ification phase must not disturb the execution of the program
to be verified. Actually, for real-time programs, a reduction
of the execution speed can change the veracity of a property.
In this context, there are three factors depending on the trace
and affecting the verification time: the size of the trace, the
number of variables inside the trace, and the format of the
trace. The last factor is not optimizable because the simulator
is proprietary.

In several existing works, execution traces are obtained
by listening to all variables of the program to be verified,
even if variables are not necessary to verify the specified
properties [4], [25]. These approaches lead to generation of
big traces, because some variables and states are unnecessary.

2Performing Enhanced Rail Formal Engineering Constraints Traceability,
http://perfect.ifsttar.fr/Site/

3Graphic Processing Unit

Actually, verification time increases linearly with the size of
traces, and with the average number of variables which are
modified at each state.

Static analysis may be used to minimize the size of
execution traces [15]. Static analysis detects all program points
where variables relevent for the verified property are modified.
An observation point is defined by collecting instruction at
each needed location. But reduction of trace is not sufficient
if the simulation goes on for several hours because some
variables perpetually evolve and hence the size of the trace
dramatically grows.

Consequently, the verification must be improved. [18]
proposes an approach to verify several traces coming from
a parallel application. Properties are verified using parallel
processes (one process for each trace) instead of merging all
traces into a unique trace to be analysed. This approach allows
the verification of traces coming from parallel programs. If
splitting the generation trace is not possible, another solution
consists in splitting the trace after its generation and verifying
the property on each piece of trace. This is our proposition.

B. Railway Transport context

Nowadays, each new line built inside the European Union
must comply with both national rules and ERTMS/ETCS
(European Railway Transport Management System/European
Train Control System). ERTMS/ETCS specification is a Euro-
pean proposition about embedded systems and communication
between trains and infrastructures.

This new technological and legal context must be imple-
mented in different European states. Indeed, line operation
rules must comply with the ERTMS/ETCS norm.

In this context, the considered software are critical and
their verification is essential for avoiding collisions or near-
collisions [3]. To do this, a proprietary simulator allows the
simulation of the train behaviours. This proprietary simulator
virtualizes control centres, railway with stations, markers, a
train with control command and the communication with the
control center. A train can be driven by an operator as a real
train or by a defined scenario. We propose to adapt and to
parallelize the approach of [16], in order to analyse temporal
properties on execution trace of the simulator.

III. VERIFICATION APPROACH

In this section, the approach defined in [16] is summarized.
The goal of this work has been to verify temporal properties
on avionics embedded software.

A. Language

Instead of using a complex language, we chose to define a
language which is well adapted to our needs. Hence, the first
step of our work was to study the documentation of a lot of
avionics software to extract temporal properties. For reasons
of confidentiality, this study has never been published.

After extracting temporal properties, they were classified
according to an extension of Dwyer’s classification [14].
This expansion was necessary because frequency properties,
properties with time interval, were not present in the original

http://perfect.ifsttar.fr/Site/

classification. The goal of this classification was to determine
what kind of logic and operators were necessary.

Finally, the defined language is a combination of LTL
(Linear Temporal Logic), regular expressions, and some addi-
tional operators for properties on numerical variables (integer,
float): comparison between two numerical numbers, addition,
substraction, multiplication, division. Operators on variables
have been defined to change the variable scope: if x is a
variable

• x?T refers to the last time when x was modified,

• x?C refers to the number of changes the variable
suffered,

• x?n refers to the value of the variable n changes ago,

• x?n?T refers to the time when x was modified n
changes ago,

• x?n?C refers to the number of modifications n
changes ago.

B. Trace Generation

In order to generate the trace, a dynamic analysis platform
was used. This virtualizes the hardware of the software to be
verified. For efficiency reasons, it was not possible to listen to
a variable of the program. Observation points are used instead.
As a consequence, in order to correctly verify a property using
a set V of variables, it was necessary to set an observation
point each time a variable of V changed.

Static analysis was used to find all necessary observation
points. A plugin for Frama-C [9], called Breakpointer, was
implemented to do this task. It was based on the Frama-C
plugin Value Analysis which performs a semantic analysis.
Hence, pointers on variables are taken into account.

Instead of using this avionics simulator, the ERTMS sim-
ulator will be used to generate execution traces. Each trace is
stored inside a database. Each trace maps to one table with a
timestamp, a type of message, and the associated values. The
type of message describes which variable is modified.

C. Verification

The verification phase consists in:

• Transforming the temporal property into a Büchi au-
tomaton using Ltl2ba

• Verifying the property by executing the generated
Büchi automaton on the trace execution.

If the temporal property follows a pattern, a statistical
automaton is generated and executed concurrently to the Büchi
automaton. This automaton is a state-transition machine, each
transition contains a propositional logic formula to activate the
transition and a list of counter assignments to change the value
of defined global counters representing interesting information
defined for each property pattern.

IV. RECALL

A. Notations

In the following sections, some notations are used to
help formalization of both approaches. The meaning of these
notations is described hereafter:

• P(Q) is the set of subsets of a set Q

• the set E is a Cartesian product such as E = E1 ×
E2 × ... × En, then E|i is projection of E on Ei. In
other words, E|i = Ei. If Ei is a Cartesian product
itself such as Ei = Ei,1 × ... × Ei,m, hence E|i,j
refers to Ei,j . This notation is applicable on function
; f : X1× ...×Xn → Y1× ...× Ym is a function. f|i
refers to projection of f on Yi.

• if E is a set, Eω is the infinite Cartesian product of
E.

• Ja; bK such as (a, b) ∈ N2 and a < b is the set of
integers {a, a+ 1, ..., b}.

• a trace σ is a sequence of states. A state σi ∈ Σ, where
Σ is the alphabet, at index i ∈ J0; |σ|−1K of the trace
σ is a total function which returns the value of a given
variable. |σ| is the length of the trace σ. In this paper,
a trace is considered as a word based on Σ alphabet
in the meaning of formal language theory [26].

• if K is a set of values, then K¿ = K ∪ {¿}, where ¿
is the unknown value;

In addition, item hereafter, to avoid confusions, we will
speak about element to define a trace state and about state to
define a automaton state.

B. Büchi automaton definition [8]

In this section, formal definitions of an automaton [22],
of a Büchi automaton and of a statistical Büchi automaton
are recalled. After, we schematized an execution of a Büchi
automaton.

1) Büchi automaton:

Definition 1: An automaton is classically defined as a five-
uplet A = (Q,Σ,→, q0, F) where:

• Q is a set of states

• Σ an alphabet

• →⊆ Q× Σ×Q is a transition relation

• q0 ∈ Q is the initial state;

• F ⊆ Q is a set of accepting states.

The accepting condition of a finite word by an automaton is:

Definition 2: A finite word w ∈ Σ∗ is recognized by an
automaton A = (Q,Σ,→, q0, F), if and only if there is a
sequence (q)i∈J0;|w|K, which starts with the initial state q0, such
that for all i ∈ J0;n−1K, (qi, wi, qi+1) ∈→, such that qn ∈ F .

A word w which is recognized by A is written w ∈ L(A),
where L(A) is the set of words recognized by A,

A Büchi automaton is a classic automaton with a special
accepting condition which allows the handling of infinite
traces. The accepting condition of a trace is:

Definition 3: An infinite word w ∈ Σω is a word inside
L(B), where B = (Q,Σ,→, q0, F) is a Büchi automaton, if
and only if:

• there is a sequence (q)i∈N such that ∀i ∈ N,
(qi, wi, qi+1) ∈→

• ∀j ∈ N ∃k ∈ N such that k > j and qk ∈ F .

In this paper, a property has to be verified on an execution
trace. Hence, the corresponding Büchi automaton is executed
on this trace. Consequently, the alphabet used is built from the
trace states.

In order to compute statistical information on a given
infinite word, a statistical Büchi automaton is defined as an
extension of a Büchi automaton. When a formula of a given
transition is true, then primary operations, defined below, are
done on some given counters. At the end of the execution of
the statistical automaton, counters quantify properties which
are orthogonal to the temporal property. The statistical Büchi
automaton can be deterministic or not. Actually, a statistical
automaton is not an automaton used to analyse a program
whose the behaviour is not determined as in [7]. The word
statistical only refers to the statistical information which are
computed.

Example 1: For instance, the property to be verified is �
(♦ e), which means e infinitely often occurs. The number of
occurrences of e inside a given trace is statistical information.

Contrary to the work in [16], in this article, the statistical
Büchi automaton replaces the classic Büchi automaton when
a temporal property maps to the pattern of the statistical
automaton. Before defining a statistical Büchi automaton, we
define statistical operations.

Definition 4: C is a set of integer variables which will be
called counters. ΛC : (C → Z¿)→ (C → Z¿) is a set of action
on C, depending on current value of all variables. Operations
can be:

• doing nothing,

• assigning a constant or another counter value, or an
expression which can be:
◦ addition, subtraction, multiplication, division

of counter/constant
◦ minimum, maximum of counter/constant

In the case of parallel execution of a statistical deterministic
Büchi automaton, the unknown value (¿) is used and allows the
symbolic computation of the value of counters.

As a definition, the statistical operation λ of a given
transition is a list of actions.

Finally, the statistical Büchi automaton is defined as fol-
lows:

Definition 5: A statistical automaton is a five-uplet A =
(Q,Σ,→, q0, F, C0) where:

• Q is a set of states

• Σ an alphabet

• →⊆ Q× Σ× ΛC ×Q a transition relation

• q0 ∈ Q is the initial state;

• F ⊆ Q a set of accepting states;

• C0 : C → Z¿, is a function which returns initial value
of each element of C

Hereafter, the term word is replaced by execution trace.

2) Execution of a Büchi automaton: We use three cases
of Büchi automaton: the deterministic one, the statistical
deterministic one and the non-deterministic one. Before giving
a formal definition of an execution of a Büchi automaton for
each case, we illustrate these three cases with examples.

We speak about a step of computation when the Büchi
automaton consumes an element in order to enable accessi-
ble transitions. When the Büchi automaton is deterministic
(figure 1), at each step of computation, there is only one
state before the consumption of the mapping element (current
element) and at most one state after the consumption of the
element. Hence, the execution of the Büchi automaton can be
seen as a path with several nodes. Each node is a computation
step and there is only one link between two nodes.

A B B A C

σ0 σ1 σ2 σ3 σ4 σ5

computation
step

Fig. 1: Execution of a deterministic Büchi automaton

The execution of a statistical deterministic Büchi automa-
ton corresponds to the execution of a deterministic Büchi
automaton with a set of counters with their value for each
current state. In figure 2, counters with their value are modelled
by Ci.

A B B A C

σ0 σ1 σ2 σ3 σ4 σ5

computation
step

C0 C1 C2 C3 C4

Fig. 2: Execution of a statistical deterministic Büchi automa-
ton

If the Büchi automaton is not deterministic, then there will
be a set of current states instead of one state. The path becomes
a lattice instead of a sequence of automaton states. In figure 3,

each rectangle is a set of current states. Rectangle of level 1 is
the initial state, the set {A}. One of level 2 is the set {A,B}
after consumption of the first element. And so on...

A

B

A

B

B

A

A

C

A

σ0 σ1 σ2 σ3 σ4 σ5

level 1
{A}

level 2
{A,B}

level 3
{A,B}

level 4
{A,B}

level 5
{A,C}

computation
step

Fig. 3: Execution of a non-deterministic Büchi automaton

Schematically, a computation step consists in going from
a rectangle of level i to the nearby one (i + 1). Hence, the
formal definition of an execution of a program has to contain
two sets of state(s). The following sections take this fact into
account.

The execution of a statistical non-deterministic Büchi au-
tomaton is not described. Consequently, in the rest of the
article, we will speak about statistical automaton for a Büchi
statistical deterministic automaton.

V. CLASSICAL EXECUTION OF BÜCHI AUTOMATON ON
TRACES

Now, we formalize a sequential execution of a non-
deterministic Büchi automaton and a statistical Büchi automa-
ton.

A. Execution of a non-deterministic automaton on trace

The formalization of the execution of a non-deterministic
Büchi automaton is a core material for the other cases.

In the approach in [16], regular expression are trans-
lated into deterministic Büchi automaton by an AIRBUS-
proprietary tool, whereas LTL formulas are translated into non-
deterministic Büchi automaton by Ltl2ba.

As a reminder, the formal definition 3 requires a sequence
of states, hence the definition is sufficient for describing the
first case. On the contrary, generated Büchi automata are
non-deterministic in the second case. To deal with this case,
definition 3 is sufficient. However, the complete formalization
requires the definition of a sequence of set of states instead of
a sequence of states.

Formalization of an execution of a non-deterministic Büchi
automaton on a trace is based on figure 3. An automaton execu-
tion is a sequence of computation steps. Each computation step
is a pair of state sets: one set before the trace state consumption
and one set after. Formally, the definition of an execution of a
Büchi automaton on a trace is:

Definition 6: An infinite word w ∈ Σω is a word inside
L(Bnd), where Bnd = (Q,Σ,→, q0, F) is a non-deterministic
Büchi automaton, if and only if there is a sequence Ri∈N ∈
P(Q)2 such that:

• R0 = ({q0}, {q0}) (1)

• ∀i ∈ N∗, Ri ∈ P(Q)2, such that:
◦ Ri|1 = Ri−1|2 (2)
◦ ∀ri ∈ Ri|2,∃ri−1 ∈ Ri|1, such that

(ri−1, wi, ri) ∈→ (3)

• ∀j ∈ N, ∃k ∈ N, k > j and ∃Rk|1 ∩ F 6= ∅. (4)

Property 2 ensures the consistency of the automaton exe-
cution. Property 3 is the part of the definition of an accepted
word, which handles the existing path, for a given Büchi
automaton. Property 4 is the other part of the definition of
an accepted word, which requires an accepting state which is
infinitely often reached.

If an infinite word w is not recognized by a non-
deterministic Büchi automaton, then ∃k such that Rk|2 = ∅
and for all k′ > k,Rk′ = (∅, ∅), or else the sequence of the
set of the current automaton states contains a finite number of
accepting states.

In figure 3, we obtain the following sequence:

R0 = ({A}, {A})
R1 = ({A}, {A,B})
R2 = ({A,B}, {A,B})
R3 = ({A,B}, {A,B})
R4 = ({A,B}, {A,C})

In our industrial railway context, handled finite traces are
transformed into infinite ones by looping over the last state of
the trace. This choice allows the use of existing tools such as
Ltl2ba without modification. The finite trace problem is not
the purpose of this article and was broached in [16].

The limit of the classic verification of a trace with a Büchi
automaton is that the sequence Ri∈J0;|σ|−1K is sequentially
computed. Hence, it slows the verification process.

B. Execution of a deterministic statistical Büchi automaton on
trace

In this section, an execution of a statistical deterministic
Büchi automaton on a trace is formalized.

Definition 7: An infinite word w ∈ Σω is a word of
L(BS), where BS = (Q,Σ,→, q0, F, C0), if and only if there
is a sequence RSi∈N ∈ (Q)2 × (C −→ Z¿)2 such that :

• RS0 = (q0, q0, C0, C0) (5)

• ∀n ∈ N∗, RSn ∈ (Q)2 × (C −→ Z¿)2 such that:

◦ RSn|1 = RSn−1|2 et RSn|3 = RSn−1|4 (6)

◦ (RSn|1, wi, λn, R
S
n|2) ∈→ (7)

◦ RSn|4 = λn(RSn|3) (8)

• ∀j ∈ N, ∃k ∈ N, k > j and RSk|1 ∈ F . (9)
Property 6 ensures consistency of automaton execution. Prop-
erty 7 is a part of the definition of an accepted word. Property 9
is the other pat of the definition of an accepted word, which re-
quires an infinitely-often-reached accepting states. In property
7, wn is the current element and λn is the current operation
applied to the counters (property 8).

If we deal with figure 2, then the sequence will be:
RS0 = (A,A, C0, C0)
RS1 = (A,B, C0, C1)
RS2 = (B,B, C1, C2)
RS3 = (B,A, C2, C3)
RS4 = (A,C, C3, C4)

Despite the fact that trace analysis naturally looks like a
single sequential process, we will show that parallel execution
of the Büchi automaton improves the computing efficiency.

VI. PARALLEL EXECUTION OF BÜCHI AUTOMATON ON
FINITE TRACES

A. Principle

Until now, when a trace has been verified by execution
of a Büchi automaton, it has been necessary to compute
R0, ..., Ri−1, before computing Ri, because of the equality
Ri−1|2 = Ri|1. We propose the following new approach:

1) splitting the execution trace in several pieces,
2) executing a Büchi automaton B on each piece of the

trace
3) merging the results of each execution of B to deter-

mine if the trace belongs to L(B).

Figure 4 synthesises the approach on a trace which is split
into two pieces, at trace state 3. Two identical Büchi automata
are executed on traces σ0..σ2 and σ3...σn. The execution of
the Büchi automaton on the first trace follows the rules defined
in the previous section. The execution of the Büchi automaton
on the second trace begins with Q ({A,B,C}) as the set of
initial states.

The verification of the property on the entire trace is
performed using a function which acts as a short-cut between
the beginning and the end of each part of the trace.

For instance, if the execution trace stops after trace state
5, we can see in Figure 4 that:

• state A before element 3 leads to nothing after element
5.

• states B and C before element 3 lead to A and C after
element 5.

Because at level 3 the set of current states is {A,B}, the
set of states after trace state 5 is {A,C}.

After presenting the principle, we will formalize it on non-
deterministic and statistical deterministic Büchi automata. For
reasons of clarity, the formalization will be done on a trace
which is split into two sub-traces, but this one is generalizable
to several divisions.

A

B

A

B

A A

B

A

B

C A

C

level 1
{A}

level 2
{A,B}

level 3
{A,B}

level 3
Q

level 4
{A,B}

level 5
{A,C}

σ0 σ1 σ2 σ3 σ3 σ4 σ5 σ6

(a) non-deterministic

A B B

A

B A

C B A

C

level 1
{A}
C0

level 2
{A,B}
C1

level 3
{A,B}
C2

level 3
Q

I0

level 4
{A,B}
I1

level 5
{A,C}
I2

σ0 σ1 σ2 σ3 σ3 σ4 σ5 σ6

(b) statistical

Fig. 4: Principle of parallel approach

B. Execution of a non deterministic Büchi automaton

The trace σ is split into two sub-traces at element index c.
The Büchi automaton will be executed on the both sub-traces.
To do so, two sequences of computation steps will be defined:
Rn∈J0;cK and Rn∈J0;|σ|−c+1K.

Rn∈J0;cK is the sequence of computation steps which begins
at element σ0 as defined in section V. Hence, for all n ∈ J0; cK,
Rn = Rn.

The sequence of computation steps on the second trace is
defined as:

Definition 8: Sequence Rn∈J0;|σ|−c+1K ∈ (P(Q))2 ×
(Q −→ P(Q))2 is such that :

• Definition of the first two components of Rn as
following:

◦ R0|1 = Q (10)

◦ ∀n ∈ J0; |σ|+ 1− cK,Rn|1 = Rn−1|2.
(11)

◦ ∀n ∈ J0; |σ|+1−cK, ∀r′n ∈ Rn|2, ∃rn ∈ Rn|1,

such that (rn, σc+n+1, r
′
n) ∈→ (12)

• The definition of the last two components of Rn
corresponds to the α function:

◦ ∀n ∈ J0; |σ|+1−cK,Rn|3 = αn, (13)

◦ ∀n ∈ J1; |σ|+ 1− cK,Rn|4 = Rn+1|3,
(14)

∀q ∈ Q, α0(q) = {q}. (15)
αn(q) = {q′′|∃q′ ∈ αn−1(q),

(q′σc+n+1, q
′′) ∈→}. (16)

Concretely,R is the sequence of the execution of the Büchi
automaton which begins at element index c and ends at element
index |σ|−1. The initial set of states is Q. Function αn records
the link between the set of states at element c+ 1 and the set
of states at element index |σ| − 1.

Property 10 means that the sequence of computation steps
is initialized with Q as the initial set of states. Properties 11
and 12 respectively ensure the consistency of the execution
and th acceptance of a trace by the automaton. α is initialized
with the identity function (property 15). For each state, α
is recursively computed depending on activated transitions
(property 16).

In figure 4a, the sequence will be:

R0 = ({A}, {A})
R1 = ({A}, {A,B})
R2 = ({A,B}, {A,B})
R0 = ({A,B,C}, {A,B}, α = id, {α(A) = ∅, α(B) =
{A,B}, α(C) = {A,B}})
R1 = ({A,B}, {A,C}, {α(A) = ∅, α(B) = {A,B},
α(C) = {A,B}}, {α(A) = ∅, α(B) = {A,C}, α(C) =
{A,C}})

Execution of the Büchi automaton on the first sub-trace can
be performed independently of the execution on the second
one. The results of the analysis of each sub-trace have to be
merged using the α function.

Using the same approach, it is possible to divide the trace
into more than two sub-traces. Actually, the prefix of the trace
is classically analysed and we use the definition of R for each
other sub-trace.

C. Execution of a statistical deterministic Büchi automaton

Let us recall some notations: σ is an execution trace,
BS = (Q,Σ,→, q0, F, C0) is a statistical deterministic Büchi
automaton.

The execution sequences look like R defined in sec-
tion VI-B. An additional function is computed as α function,
in order to built the operation applied on counters between the
beginning and the end of each piece of trace.

RSn∈J0;cK is the execution sequence which begins at trace
state σ0 as defined in section V-B. Hence for all n ∈ J0; cK,
RSn = RSn .

The other sequence of computation steps is built as the
previous-section one, taking into account the computation of
statistical information.

Definition 9: RSn∈J0;|σ|+1−cK ∈ (P(Q))2 × (Q →
P(Q))2 × (Q→ ΛC)

2, where, for all n ∈ J0; |σ|+ 1− cK:

• RSn|1 = Rn|1, RSn|2 = Rn|2

• RSn|3 (α function) is close to Rn|3. The last property
about α defined at section VI-B is the only one which
is modified:
◦ ∀q ∈ Q,αn(q) =

⋃
q′′ such that ∃q ∈

αn−1, (q
′, σc+n+1, λn,q′ , q

′′) ∈→
◦ property RSn|4=RSn+1|3 is preserved

• ∀q ∈ Q,RS0|5(q) = Unknown.

• ∀q ∈ Q,RSn|6(q) = λ(n,q′)(R
S

n|5(q)).

• ∀q ∈ Q,RSn|6(q) = RSn+1|5(q).

In figure 4b, if we take into account the statistical infor-
mation, the sequence will be:

R0 = ({A}, {A}, C0, C0)
R1 = ({A}, {A,B}, C0, C1)
R2 = ({A,B}, {A,B}, C1, C2)
R0 = ({A,B,C}, {A,B}, α = id, {α(A) = ∅, α(B) =
{A}, α(C) = {B}}, I0, I1)
R1 = ({A,B}, {A,C}, {α(A) = ∅, α(B) = {A}, α(C) =
{B}}, {α(A) = ∅, α(B) = {C}, α(C) = {A}}, I1, I2)

If transition of X at Y implies the statistical computation
λX,Y , then:

I2(A) = Unknown
I2(B) = λA,C(I1(B)) = λA,C(λB,A(Unknown))
I2(C) = λB,A(I1(C)) = λB,A(λC,B(Unknown))}

D. The merging operation

After executing the Büchi automaton on each part of the
trace, the result has to be generated using α function.

Let F, the set of states at element |σ|−1. Hence F = {q ∈
R|σ|−1|2, such that ∃q′ ∈ Rc|2 et q ∈ αn(q′)}.

Theorem 1: The Verification of a property by sequential
execution of a Büchi automaton is equivalent to verification of
a property by parallel execution of a Büchi automaton.

If the trace is split into more than two sub-traces, then the
results will have to be sequentially merged.

Proof: Function α is constructed such that it allows the
selection of states of R|σ||1 coming from the setR0. The fusion
operation consists in determining states of R0 which have to
be kept. The states to be kept are those of the set Rc. As
a reminder, we have Rc ⊂ R0 = Q. Hence, the selection
of states of R|σ||1 coming from the set R0 is equivalent to
determining the generated states, for each state of Rc. By
definition of F, therefore, we have F = R|σ||1.

Hence, the verification result can be computed using the
end of trace algorithm defined in [16] and F.

E. Limitations

In [16], specific operators on variables have been defined
in order to use a counter of variable modifications or the value
of a variable at a given number of its modification before the
current trace state. See the examples given in section III-A.

Because these elements are recursively computed, parallel
verification cannot be used. A possibility to handle these
operators could consist in adding new variables inside the trace
which map to these specific asked values.

VII. EXPERIMENTS

In this section, the experiments results about the parallel-
verification implemented approach are presented. Tests are
performed on generic traces, for the reasons given in section I.
The goal of this section is to test the efficiency of the approach,
and the to compare it, in term of execution time, with the
classic approach.

A. Implementation

Due to industrial confidentiality, it is not possible to provide
the source code of the program which implements the approach
of this paper. Nevertheless, some technical elements are given
below. The prototype is written in C++ and is 32, 900 length
(number of lines of code), with 13, 000 length of header file.

1) A distributed architecture: The implementation of both
approaches (sequential and parallel) follows a distributed ar-
chitecture, in order to efficiently share the available hardware
resources. Indeed, the reading action of the trace is separated
from the Büchi automaton execution. Figure 5 illustrates the
relation between the processes of the sequential approach.
The execution process and the reading process communicate
through a TCP/IP interface. The execution process can load
information from one or several readers. Actually, trace reading
can be split and shared out among several reader processes.
Figure 6 illustrates the communication relations between the
processes of the parallel approach. The fusion operation is not
presented in this figure. Each execution process can interact
with one or several reader processes. In figure 6 only the case
where each execution process maps with a reader process is
presented.

Büchi
automaton
execution

trace reader

Büchi
automaton
execution

Trace reader 1 Trace reader 2

TCP/IP

TCP/IPTCP/IP

Fig. 5: Sequential implementation

Büchi
automaton
execution 1

trace reader 1

Büchi
automaton
execution 2

trace reader 2

TCP/IP TCP/IP

Fig. 6: Parallel implementation

2) The trace format: For this prototype, the trace format is
based on Xml. The trace is split into several blocks which
contain the same number of states |b|. Hence, when the
execution process needs a state σi, it calls the reader process
which returns the full block containing σi. The first state σi
of this block contains the sub-trace σi...σi+|b|−1. The use of
blocks has two explanations.

Firstly, it limits the network latency. Test have shown that
verification time increases dramatically if states are sent one
by one. Secondly, Büchi automaton split follows the block
segmentation. Actually, traces are partial4. But elements σi
and σi+|b|−1 are complete5 for each block b beginning at σi.

B. Load experiments

Two experiments are done: without statistical information,
and with statistical information. The tests are done on the same
generic execution trace for the two experiments. This trace
has 10 million states and contains only one variable called x.
For each trace state, the value of the variable changes. The
domain of variation of the variable is J−10; 10K. In order to
do verification on different-sized traces, the verification can be
stopped after a given number of states. Hence, we can verify
a prefix of the given trace to simulate smaller traces.

Figure 8 gathers the results of the two experiments. The
trace has been split into 2, 4, 8 or 10 sub-traces. The ver-
ification has been done for each sub-trace and the maximal
time for each class of division has been placed in the graph.
The memory process was launched in a 24Go-RAM computer,
whereas the execution processes have been run on a 4Go-RAM
computer with a Core-5i processor (2Ghz, 3Mo cache, 64-bits).

1) Without statistical information: The targeted property to
verify on this trace is � (x 6 10 ∧ x > −10) which means
that constraint x 6 10 ∧ x > −10 has to be true for each state
of the trace. The goal of this test is to compare a sequential
verification with a parallel verification of this property on the
trace.

The Büchi automaton of this property, which is obtained
by Ltl2ba, is defined by figure 7a.

According to figure 8a, comparison with the sequential
verification, verification time is reduced by 40% when the trace
is split into two sub-traces. If the trace is split into ten sub-
traces, verification time is reduced by 90%. The fusion time
is weak: less than 0.01 seconds when the trace is divided into
ten pieces.

2) With statistical information: The targeted property to
verify is � (♦ (x = 5)), which means that the constraint x = 5
occurs infinitely often. During the analysis of the trace, the
number of states where the property x = 5 occurs is computed
using the count counter whose initial value is 0.

Figure 8b shows that the verification of the property is
more efficient when the trace is split than when the trace is
sequentially browsed. Time verification is divided by two when
the trace is split into two pieces,and divided by four when the
trace is split into four pieces of trace... The fusion time is
weak: less than 0.01 of a second when the trace is divided
into ten pieces.

This approach seems to be more efficient than the sequen-
tial one. The fusion operation which allows the merging of
intermediate results requires less than 1 second. The next step
of this work will consist in verifying traces which come from
real industrial cases, with more complex properties, and traces
with more variables. Actually, Büchi automata of complex

4An element only contains modified variables
5All variables with their current values are inside these elements.

Astart

x 6 10 ∧ x > −10

(a) � (x 6 10 ∧ x > −10)

Astart B

x = 5
{count ++}

x 6= 5

x 6= 5

x = 5
{count ++}

(b) � (♦ (x = 5))

Fig. 7: Büchi automata of the experiments

property generally have more transitions and states than the
experiments presented above.

VIII. CONCLUSION

In this paper, we formalize the execution on a trace of a
non-deterministic Büchi automaton, of a deterministic one and
of a statistical one. This formalizations are based on the classic
formal definition of a Büchi automaton, which is not complete
to entirely describe each computation step. This formalization
is the basis of the main contribution of this paper which
consists in parallelizing the execution of a Büchi automaton
on a trace.

The analysed trace is split into several sub-traces. Then, the
Büchi automaton is executed on each sub-trace. The execution
on the first sub-trace is classic, whereas the execution on
each other sub-trace is different. Indeed, the Büchi automaton
is initialized with the set of automaton states instead of the
initial state. During the execution of the Büchi automaton on
a sub-trace, a short-cut is computed between an automaton
state at the beginning of the execution and its generated set of
automaton states at the end of the execution. After that, this
short-cut is used to perform the fusion of the results of the
first sub-trace with the results of the second one, in order to
deduce the global result.

This new approach has been used to carry out experiments
on generic traces of different sizes. The verification times of
the parallel approach are compared to the ones of sequential
approach. The verification time is approximatively divided
by the number of sub-traces analysed. As a result, this new
approach allows the splitting of the verification of a property
on an execution trace to limit time and memory requirements.
The next step consists in verifying a property on a real
industrial case with the parallel approach and comparing time
requirements with the sequential one.

A theoretical improvement moderation of this parallel
approach is that the specific operators on variables developed
in [16] cannot be used because they imply an on-the-fly

0 0.2 0.4 0.6 0.8 1
·107

0

0.2

0.4

0.6

0.8

1

·104

Number of trace states

Ti
m

e
(s

)

2 divisions 4 divisions 8 divisions
10 divisions sequentiel

(a) without statistical information

0 0.2 0.4 0.6 0.8 1
·107

0

0.5

1

·104

Number of trace states

Ti
m

e
(s

)

2 divisions 4 divisions 8 divisions
10 divisions sequentiel

(b) with statistical information

Fig. 8: Maximal time requirement for verification of a trace

computation which is not parallelizable. However, we show
that the verification time is better with the parallel approach
than with the classic one. In addition, this approach includes
computation of statistical information on traces. The relevance
of the divide-and-conquer strategy using parallel execution had
to be proved in this context. The computing performance is a
validation.

A perspective could be to enrich the trace with necessary
data to allow the verification of properties with the specific
operators. Another direction of research could be to determine
after how many splits we no longer save verification time.
Finally, this new parallel method has to be confronted with a
real industrial case.

ACKNOWLEDGEMENT

The work is funded by the French national research agency
(ANR) in the context of the PERFECT Project. This project
is also supported by the French I-TRANS competitive pole.

REFERENCES

[1] European rail software applications. http://www.ersa-france.com/.
[2] J.-R. Abrial. The B-book: Assigning Programs to Meanings. Cambridge

University Press, New York, NY, USA, 1996.
[3] F. Aguirre, M. Sallak, W. Schon, and F. Belmonte. Application

of evidential networks in quantitative analysis of railway accidents.
Proceedings of the Institution of Mechanical Engineers, Part O, Journal
of Risk and Reliability, 227(4):368–384, Nov 2013.

[4] Howard Barringer, Allen Goldberg, Klaus Havelund, and Koushik Sen.
Eagle does space efficient ltl monitoring. Technical report, Nasa, 2003.

[5] Shay Berkovich, Borzoo Bonakdarpour, and Sebastian Fischmeister.
Gpu-based runtime verification. In Proceedings of the 2013 IEEE 27th
International Symposium on Parallel and Distributed Processing, IPDPS
’13, pages 1025–1036, Washington, DC, USA, 2013. IEEE Computer
Society.

[6] E. Bodden. Efficient hybrid typestate analysis by determin-
ing continuation-equivalent states. In Software Engineering, 2010
ACM/IEEE 32nd International Conference on, volume 1, pages 5–14,
May 2010.

[7] Peter Bulychev, Alexandre David, Kim Guldstrand Larsen, Axel Legay,
Guangyuan Li, Danny Bøgsted Poulsen, and Amelie Stainer. Monitor-
based statistical model checking for weighted metric temporal logic. In
Nikolaj Bjørner and Andrei Voronkov, editors, Logic for Programming,
Artificial Intelligence, and Reasoning, volume 7180 of Lecture Notes in
Computer Science, pages 168–182. Springer Berlin Heidelberg, 2012.

[8] J.Richard Büchi. On a decision method in restricted second order
arithmetic. In Saunders Mac Lane and Dirk Siefkes, editors, The
Collected Works of J. Richard Büchi, pages 425–435. Springer New
York, 1990.

[9] CEA-LIST and INRIA-Saclay. The frama-c platform for static analysis
of c programs, 2008.

[10] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification
of finite-state concurrent systems using temporal logic specifications.
ACM Trans. Program. Lang. Syst., 8(2):244–263, April 1986.

[11] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction or approxi-
mation of fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages, 1977.

[12] Marcelo d’Amorim and Grigore Rosu. Efficient monitoring of omega-
languages. In CAV’05, pages 364–378, 2005.

[13] Doron Drusinsky. The temporal rover and the atg rover. In K. Havelund,
J. Penix, and W. Visser, editors, SPIN Model Checking and Software
Verification, volume 1885 of Lecture Notes in Computer Science.
Springer, 2000.

[14] M. Dwyer, G. Avrunin, and J. Corbett. Property specification patterns
for finite-state verification. In Proceedings of the second workshop on
Formal methods in software practice, FMSP ’98. ACM, 1998.

[15] A. Ferlin and V. Wiels. Combination of static and dynamic analyses
for the certification of avionics software. In Software Reliability
Engineering Workshops (ISSREW), 2012 IEEE 23rd International
Symposium on, pages 331–336, Nov.

[16] Antoine Ferlin. Vérification de propriétés temporelles sur des logiciels
avioniques par analyse dynamique formelle. PhD thesis, Institut
Supérieur de l’Aeronautique et de l’Espace (ISAE), Université de
Toulouse, ED-MITT, September 2013.

[17] P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation. In
Proceedings of the 13th International Conference on Computer Aided
Verification (CAV’01), volume 2102 of LNCS. Springer, 2001.

[18] Markus Geimer, Felix Wolf, BrianJ.N. Wylie, and Bernd Mohr. Scalable
parallel trace-based performance analysis. In Bernd Mohr, Jesper-
Larsson Träff, Joachim Worringen, and Jack Dongarra, editors, Recent
Advances in Parallel Virtual Machine and Message Passing Interface,

volume 4192 of Lecture Notes in Computer Science, pages 303–312.
Springer Berlin Heidelberg, 2006.

[19] D. Giannakopoulou and K. Havelund. Automata-based verification
of temporal properties on running programs. In Automated Software
Engineering, 2001.

[20] K. Havelund and G. Rosu. Monitoring programs using rewriting. In
Automated Software Engineering, pages 135 – 143, 2001.

[21] Klaus Havelund and Kestrel Technology. A rewriting-based approach
to trace analysis. Automated Software Engineering, 12:2005, 2002.

[22] S C Kleene. Representation of events in nerve nets and finite automata.
In In Automata Studies. Princeton University Press: Princeton, 1956.

[23] Patrick O’Neil Meredith, Dongyun Jin, Dennis Griffith, Feng Chen,
and Grigore Roşu. An overview of the mop runtime verification
framework. International Journal on Software Tools for Technology
Transfer, 14:249–289, 2012.

[24] R. Pellizzoni, P. Meredith, M. Caccamo, and G. Rosu. Hardware
runtime monitoring for dependable cots-based real-time embedded
systems. In Real-Time Systems Symposium, 2008, pages 481–491,
Nov 2008.

[25] A. Pnueli and A. Zaks. Psl model checking and run-time verification
via testers. In FM 2006: Formal Methods, volume 4085 of LNCS.
Springer, 2006.

[26] Grzegorz Rozenberg and Arto Salomaa, editors. Handbook of Formal
Languages, Vol. 1: Word, Language, Grammar. Springer-Verlag New
York, Inc., New York, NY, USA, 1997.

[27] Volker Stolz and Eric Bodden. Temporal assertions using aspectj.
Electronic Notes in Theoretical Computer Science, 144(4):109 – 124,
2006. Proceedings of the Fifth Workshop on Runtime Verification (RV
2005).

[28] Haitao Zhu, M.B. Dwyer, and S. Goddard. Predictable runtime
monitoring. In Real-Time Systems, 2009. ECRTS ’09. 21st Euromicro
Conference on, pages 173–183, July 2009.

[29] C.B. Zilles and G.S. Sohi. A programmable co-processor for profil-
ing. In High-Performance Computer Architecture, 2001. HPCA. The
Seventh International Symposium on, pages 241–252, 2001.

http://www.ersa-france.com/

	Introduction
	Context
	Related Work
	Railway Transport context

	Verification Approach
	Language
	Trace Generation
	Verification

	Recall
	Notations
	Büchi automaton definition OaDmiRSOA
	Büchi automaton
	Execution of a Büchi automaton

	Classical execution of Büchi automaton on traces
	Execution of a non-deterministic automaton on trace
	Execution of a deterministic statistical Büchi automaton on trace

	Parallel execution of Büchi automaton on finite traces
	Principle
	Execution of a non deterministic Büchi automaton
	Execution of a statistical deterministic Büchi automaton
	The merging operation
	Limitations

	Experiments
	Implementation
	A distributed architecture
	The trace format

	Load experiments
	Without statistical information
	With statistical information

	Conclusion
	References

