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Minimization of the Rate of Change in Torques during Motion and
Force Control Under Discontinuous Constraints

Yang Tan1, Darwin Lau1, Mingxing Liu1, Philippe Bidaud1,2 and Vincent Padois1

Abstract— Large and sudden changes in the torques of the
motors of a robot are highly undesirable and should be avoided
during robot control as they may result in unpredictable
behaviours. One cause of large changes in torques is the
presence of discontinuities in the constraints that the robot must
satisfy, such as the avoidance of an obstacle or the breaking of
contacts with the environment. In this paper, a model predictive
control (MPC) approach to approximate constraints that can
be predicted over a finite horizon is proposed to minimize
the derivative of torques during robot control. The proposed
method does not directly modify the desired task trajectory
but the constraints to ensure that the worst case of changes
in torques is well-managed. From the simulation results on the
control of a Kuka LWR robot, it is shown that our approach
significantly decreases the maximum derivative of joint torques
for both force and acceleration task control examples.

I. INTRODUCTION

The redundancy of robots makes it possible to simulta-
neously execute complex tasks while satisfying constraints.
These constraints can either be related to some intrinsic
limitations of the system, such as joint limits and actuation
capacities, or to the surrounding environment, for example
obstacles to avoid and contacts to maintain. These constraints
have to be accounted for when solving the control problem
and thus must be monitored. More specifically constraints
can be: 1) added to the control problem when needed, e.g.
when a contact is established; 2) updated within the control
problem, e.g. when the distance to an obstacle is updated
based on some sensor information; 3) removed from the
control problem, e.g. when a contact is broken.

The addition, removal or abrupt change of a constraint
is a source of discontinuity for the control law and may
result in large instantaneous changes in the actuation torque
and unpredictable behaviours of robots. Rapid changes in
the motor torques are undesired for many reasons: damage
to the actuators, bad control performance or even unstable
robot motion. In fact, the problem of large rate of change in
the actuation torque has not yet been fully resolved.

The problem of large changes in motor torques has been
related to different types of causes and studied in the
literature. First, sudden changes of task target in operational
space can lead to great discontinuities in joint torques. In
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this case trajectory planning is a proper way to solve this
problem. In [1] a minimum jerk path generation is proposed
to produce a continuous Cartesian trajectory. The work
[2] introduces a time-optimal, jerk-limited online trajectory
planning, complying with the maximal velocity, acceleration
and jerk of joints. In [3] a jerk-bounded trajectory planner
is used to generate continuous trajectories online. Second,
changes in hierarchical priorities amongst a set of tasks can
also lead to discontinuities in joint torques. A large number
of works [4]–[6] have aimed to create a continuous null
space projector that allows switches among task priorities
without causing large changes in motor control torques. A
generalized continuous projector is used to deal with the task
transitions in [7] with an optimization approach. Moreover,
constraints can be handled by the task formulations. The
method of classical artificial potential fields [8] is widely
used to achieve the avoidance of obstacles. However, when
the obstacle avoidance constraint switches between inactive
and active, a discontinuous control law is produced. In [9]
a reactive continuous null space projection is extended to
prevent large changes in torques while activating/deactivating
the constraints. The intermediate desired value approach [10]
is applied to avoid large changes in torques by smoothly
activating the obstacle avoidance constraints.

In addition to the previously identified causes of large
rate of change in torques, discontinuities in constraints are
also able to induce sudden changes in torques and have not
been previously studied. When considering the discontinuity
of constraints, two different situations may occur. In some
situations, sudden changes in constraints cannot be known in
advance and hence the controller cannot avoid the induced
large change in motor torques. However, if the appearance,
disappearance or sudden change of constraints can be known
in advance, then the controller can handle this in a predictive
manner. Changes in constraints can be known in advance in
several ways, for example:

• constraint from the control scenario for the system can
be anticipated, such as when a robot is about to sit on
a chair or to put a foot on the ground;

• constraint is sensed ahead of time, such as the detection
of an obstacle using vision before the obstacle avoid-
ance actually becomes a constraint.

Optimization is one common approach to determine the
motor torques required to produce a desired motion subject
to constraints. This type of formulation is starting to prevail
in Robotics as it allows to properly account for constraints
which are expressed as inequalities [11]. If the objective



function is quadratic and the system is subject to linear con-
straints, Quadratic Program (QP) solvers can be efficiently
employed [12]–[15]. In this scheme, the computed torques
may exhibit sudden changes due to three different reasons: 1)
if the objective function is discontinuous; 2) if the solution of
the QP is on the boundary of the constraint and the constraint
is discontinuous; and 3) if the solution of the QP transitions
between the interior and the boundary of the feasible set.

In this paper, a predictive control scheme to minimise
the rate of change in torques over time in the presence
of discontinuities in constraints is proposed. Assuming that
information about the evolution of constraints within a finite
horizon is known, a Model Predictive Control (MPC) scheme
is employed. The MPC is used to design a new constraint that
results in minimised changes in joint torques compared with
the original discontinuous constraints. The new constraint,
which is shown to be more conservative, replaces the original
constraint, and the new constraints are used within a reactive
controller scheme. The effectiveness of the proposed ap-
proach is demonstrated through simulations on a Kuka LWR
robot with kinematic and force constraint discontinuities.
The results show a significantly lower instantaneous change
in joint torques compared with the controller output if the
original discontinuous constraints are used.

One key feature of this approach is that the constraints of
the reactive controller are modified rather than the objective
function. As such, the proposed method does not directly
modify the task trajectory but ensure that the worst case
torque derivative is minimised. It is a very generic approach
which can be applied independently from the way the control
law is formulated. Furthermore, the proposed MPC formula-
tion provides the potential to adjust the balance between the
worst case change in joint torques and the conservativeness
of the new constraint.

II. CONTROL FRAMEWORK

The equation of motion of a fixed-base robot with n
degrees of freedom (DoF) can be derived from the Euler-
Lagrange formalism and expressed as

M(q)q̈ + n(q, q̇) = τ + Jc(q)
TF c , (1)

where q, q̇, q̈ ∈ Rn are respectively the generalised coor-
dinates, velocities and accelerations, M(q) ∈ Rn×n is the
generalized inertia matrix, n(q, q̇) ∈ Rn is the vector of
Coriolis, centrifugal and gravity induced joint torques, and τ
is the vector of joint torques. F c is the external contact force,
Jc(q)

T is the Jacobian at the contact point. Defining the

action variable as χ =
[
q̈T τT F T

c

]T
allows the equation

of motion (1) to be represented linearly as

Aχ = b . (2)

A. Tasks

A motion task of a frame attached to the robot here is
defined as the tracking of a desired trajectory in operational
space. The kinematic relationship between the operational
and joint spaces can be expressed as ẋ = J(q)q̇ and

ẍ = J(q)q̈+ J̇(q, q̇)q̇, where J(q) and J̇(q, q̇) are the task
Jacobian matrix and its derivative, respectively. The tracking
error T (χ) relative to a 3D trajectory xref can be expressed
linearly as T (χ) = J(q)q̈ + J̇(q, q̇)q̇ − ẍcmd, where
the task command ẍcmd is computed using a proportional-
derivative (PD) controller with a feedforward term ẍref :
ẍcmd = ẍref +Kp(x−xref )+Kd(ẋ− ẋref ), and Kp and
Kd are the proportional and derivative gains, respectively.

When a body of the robot is expected to apply a desired
force in operational space, the force error is: T (χ) = F c −
F ref

c , where F ref
c is the desired value of the force.

B. Constraints

While performing the task, the robot must respect con-
straints, such as joint limits and collision avoidance with
obstacles. It is shown in this section that different types
of constraints can be expressed linearly with respect to the
action variable χ in the form

Gχ ≤ h . (3)

1) Joint limits: Bounds on the joint positions and ve-
locities can be locally expressed with respect to the joint
accelerations based on a discrete linear approximation with
a time step of δt:

q̇min ≤ q̇k + q̈kδt ≤ q̇max , (4)

qmin ≤ qk + q̇kδt+ q̈k
δt2

2
≤ qmax , (5)

where qk, q̇k and q̈k are the joint positions, velocities and
accelerations, respectively. Bounds on joint torques can be
directly expressed:

τmin ≤ τ k ≤ τmax . (6)

Task Trajectory

Fig. 1: Description of the obstacle avoidance constraint.

2) Obstacle avoidance constraint: As shown in Figure 1,
the obstacle avoidance constraint can be defined as requiring
the minimum distance d = ‖pr,k − po,k‖ between the robot
body and the obstacle to be strictly non-zero, where p•,k =

[x•,k y•,k z•,k]
T represents the a position in Cartesian space.

Using a discrete linear approximation with a time step of δt,
the minimum distance dk+1 can be expressed as

dk+1 = dk+n
T (ṗr,k− ṗo,k)δt+

δt2

2
nT (p̈r,k− p̈o,k) , (7)



where n is the vector associated to the shortest distance
from the robot to the object, which is assumed to evolve
continuously in this paper. pr,k and ṗr,k are the current
position and velocity of the closest point of the robot with
respect to the obstacle, p̈r,k is the acceleration resulting from
the next control action. They evolves continuously according
to the continuous motion task or force task. It is worth noting
that constraint (7) relies on the knowledge of po,k, ṗo,k and
p̈o,k which are the current position, velocity and acceleration
of the obstacle. If the velocity and acceleration of the
obstacle are unknown, i.e. neither measured nor estimated,
(7) assumes that the obstacle is quasi-static over a control
period which can be a valid working assumption. Using
the kinematic relationship between the operational space
velocity/acceleration and the generalized coordinates in (7),
the obstacle avoidance constraint can be expressed linearly
with respect to q̈k as:

dk + nT (J(qk)q̇k − ṗo,k)δt

+
δt2

2
nT (J(qk)q̈k + J̇(qk)q̇k − p̈o,k) ≥ 0 .

(8)

3) Contact constraint: Contact forces can be constrained
according to different scenarios. For example, when there is
no contact, contact force must be 0. For safety reasons, it can
also be necessary to limit the maximum value of the contact
force. In this case, the contact constraint can be written:

0 ≤ fn = nT
f F c ≤ fmax , (9)

where fn = nT
f F c is the normal contact force along the

normal direction to the contact surface nf , and Fmax is the
maximum allowable force related to the scenarios.

C. Control Framework

The optimal action variable χ∗ can be determined through
QP by minimising a weighted sum of the task error ‖T (χ)‖2
and the action effort ‖χ‖2, while satisfying constraints:

χ∗ = argmin
χ

‖T (χ)‖2Q + ‖χ‖2R
subject to Aχ = b, Gχ ≤ h

. (10)

The notation ‖a‖2Q is the shorthand of the form aTQa. The
weighting matrices Q and R in (10) allow to modulate the
importance between the task objective and the regularization
term. As a reactive controller, this QP is solved at each time
step. Observing that (10) is a strictly convex QP problem, a
unique globally optimal solution for the redundant robot can
be determined. For this type of problem with constraints (4)-
(8), G and A are matrices related to the rigid body model of
the system and are always continuous. So time discontinuous
solutions to (10) can occur under following situations:

• The original task reference is discontinuous. This task
discontinuity could be handled by trajectory planning
and the task reference is assumed to be continuous
throughout this work;

Fig. 2: The change of bi in equality constraints can cause
change in joint torques. The solution always lies on the
constraint Aχ = b.

Fig. 3: The change of the dimension of b can cause change
in joint torques. A new equality constraint is added at tk+1

and then is removed at tk+2. The solution χ may undergo a
large change.

Fig. 4: Due to the evolution of task reference, the inequality
constraint switches from inactive to active, which can cause
large instantaneous changes in joint torques.

• Equality constraints (2) are active at all feasible so-
lutions1. Assuming that the task reference is constant
and A is continuous, there are two possible cases
that large instantaneous changes in joint torques may
occur. 1) Any bi in b = [b1 . . . bm ] ∈ Rm has large
instantaneous changes. For example, in Figure 2, the
large change of bi can cause large change in joint
torques. 2) The dimension of b increases or decreases
with additions and removals of equality constraints,
which is shown in Figure 3.

• Assuming G is continuous, the solution changes from
being on the interior of the feasible set of (3) to the
boundary, or vice versa (see in Figure 4). In other words,
any of the constraints Giχ ≤ hi switches between
inactive and active.

1If χ is feasible and Giχ = hi, we say the ith inequality constraint
Giχ ≤ hi is active at χ. If Giχ < hi, we say the constraint Giχ ≤ hi
is inactive [16, p. 128].



III. MPC CONTINUOUS CONSTRAINT GENERATION

The discontinuous evolution of any active constraint
causes inevitably discontinuous control torques as stated in
Section II, which is not desirable. Therefore, smoothing
the discontinuous evolution of inequality constraints is a
prerequisite to minimize the changes in joint torques. As
shown in Figure 5, given the information from sensors and/or
environment contexts, we can know discontinuous variations
in a look ahead window of N steps with T being the time
step. A continuous constraint h∗i can thus be generated. Then
it can replace hi in the constraint (3):

Gχ ≤ h∗ . (11)

Horizon

FuturePast

Time step

Fig. 5: Smoothing the discontinuous evolution of inequality
constraints using a receding horizon technique.

Model Predictive Control (MPC) [17] is a good candidate
to generate a smooth evolution of h∗ with respect to h. MPC,
also known as receding horizon control [18], is based on
iterative, finite horizon optimization of a dynamic model.
MPC uses the current dynamic states of the system, the
dynamic model, the variable targets and limits to calculate
a set of future inputs. These inputs can hold variables close
to their targets as well as respect their constraints in the
future. At time step k, the current states are measured and
a cost minimizing the tracking errors is computed for a
time horizon [k, k + N ] to find a sequence of the system
inputs until step k + N . Only the first step of the system
inputs is fed to update the states of the system, then the
calculation shifts to the next time step, yielding repeatedly a
new set of system future inputs. With these properties, MPC
is well qualified to generate smooth constraints evolution
with respect to discontinuous constraints.

Control Framework (13)Local 
Controller (4)

Constraint

Task

s.t.
MPC 

Constraint 
Generation

Control Scenario

Fig. 6: Block diagram of the control framework.

The overall control framework is shown in Figure 6. MPC
is used to deal with discontinuous constraints by generating a
new constraint evolution that can minimise the rate of change
in joint torques in the QP control framework. According
to the types of constraints, two main continuous constraint
generation based on MPC are presented in this section.

A. Continuous Force Constraint Generation

For the force constraint (9), the goal of MPC is to generate
smooth maximum allowable force f with respect to fmax.
Then, it can replace fmax in constraint (9):

0 ≤ fn ≤ f . (12)

A discrete-time model of the force can be expressed as:

fk+1 = fk + ḟkT , (13)

where fk is the maximum allowable forces at time step k.
ḟk is the first-order time derivative of fk. fk should be
optimized according to the original profile of fmax. Within
the time horizon NT , the MPC for generating a optimized
f can be formulated as:

ḟ
∗
k = argmin

˙
fk,...,

˙
fk+N

k+N∑
j=k

‖f j − fmax,j‖2 + γ‖ḟ j‖2 (14a)

subject to f j+1 = f j + ḟ jT (14b)

0 ≤ f j ≤ fmax,j (14c)

where (14c) ensures that at each time step j every solu-
tion χ∗ that satisfies the constraint (12) also satisfies the
constraint (9). The coefficient γ is the weight, governing
the importance between the changes of f and the deviation
from the original maximum allowable force. In (14), ḟ

∗
k can

be computed by a Quadratic Program solver. The generated
maximum allowable force is fk+1 = fk + ḟ

∗
kT .

Note that an alternative method to address this problem
is to smooth the profile of fmax by applying a smooth
polynomial spline [19,20]. However, the advantage of using
MPC here is to be able to handle multiple constraints in an
automatic and generic way, e.g. to ensure that the optimized
f is compatible with other constraints. For example, by using
MPC, two contact forces can easily satisfy the following
three constraints simultaneously: 1) 0 ≤ f1 ≤ f1,max; 2)
0 ≤ f1 ≤ f2,max, and 3) f1 + f2 ≤ f3,max. However,
it is difficult for the polynomial to deal with this problem.
Moreover, the use of a polynomial approach requires manual
choose of the start and end points of the segment to be
smoothed and manual tuning of polynomial parameters and
may lead to oscillation problems [21].

B. Continuous Motion Constraint Generation

According to the obstacle avoidance constraint (8), hi can
be expressed as:

hi = dk(pr,po)+n
T (J(q)q̇−ṗo)δt+

δt2

2
nT (J̇(q)q̇−p̈o) .

(15)
hi is a function of the position, velocity and acceleration of
the obstacle. Considering the fact that the movement of the
obstacle along any axis in operational space is independent,
without loss of generality the position, velocity and accelera-
tion along the x−axis are formulated in the following part of



this paper. In this case, a linear discrete-time dynamic model
of the obstacle can be created in state space form: xo,k+1

ẋo,k+1

ẍo,k+1


︸ ︷︷ ︸
Xo,k+1

=

 1 T T 2

2
0 1 T
0 0 1


︸ ︷︷ ︸

A

 xo,k
ẋo,k
ẍo,k


︸ ︷︷ ︸
Xo,k

+

 T 3

6
T 2

2
T


︸ ︷︷ ︸

B

...
xo,k ,

(16)
where Xo,k and

...
xo,k are the state vector of the obstacle and

the control action at time k, respectively. Matrices A and B
implicitly describe the linearity of the system.

Using the dynamic model (16) recursively, at time k, the
relationships between the control action vector and state
vectors over a finite time horizon NT is given by:

X̂o = ÂXo,k + B̂Uo , (17)

where,

X̂o =


Xo,k+1|k
Xo,k+2|k

...
Xo,k+N |k

 , Uo =


...
xo,k|k...
xo,k+1|k

......
xo,k+N−1|k

 ,

Â =


A
A2

...
AN

 , B̂ =


B 0 · · · 0
AB B · · · 0

...
...

. . .
...

AN−1B AN−2B · · · B

 .
Over the time horizon, only the position of the obstacle

is measured by scenarios in advance, which is xm
o =[

xmo,k+1 . . . xmo,k+N

]T
. In order to take advantage of xm

o ,
the model predicted position information can be extracted
from X̂o: X̂o,x =

[
xo,k+1|k . . . xo,k+N |k

]T
. Consequently,

Âx and B̂x can be extracted from Â and B̂, respectively.
Therefore, the predicted position of the obstacle over the
horizon can be formulated as:

X̂o,x = ÂxXo,k + B̂xUo . (18)

Thus similarly to (14), the general form of the MPC problem
to be solved is formulated as

...
x∗o,k|k = min

U o

α
∥∥∥X̂o,x − xm

o

∥∥∥2 + β‖Uo‖2

subject to X̂o,x = ÂxXo,k + B̂xUo

X̂o,x ≤ xm
o

. (19)

Then, at time k,
...
x∗o,k|k can be calculated by a QP solver

and it is used to update X∗o,k+1 = AX∗o,k + B
...
x∗o,k|k.

Therefore, continuous evolution of X∗o = [x∗o ẋ
∗
o ẍ
∗
o]

T can
be generated (similarly for Y ∗o and Z∗o).

To illustrate this concept, a simple example is provided to
handle the discontinuities in xm

o . MPC (19) is used with time
step T = 0.01s, constant ratio α/β = 105 and time horizon
NT = 2.0s. In Figure 7(a), the generated x∗o is continuous
compared with the original position xm

o . Moreover MPC also
generates continuous ẋ∗o and ẍ∗o in Figure 7(b). With the
constant ratio of α/β, MPC minimizes the error between the
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Fig. 7: The optimized constraint with T = 0.01s, NT = 2.0s
and α/β = 105.
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Fig. 8: The resulting smooth constraint with T = 0.01s,
NT = 2.0s, α/β = 105 and a dynamic weighting matrix Q.

solution of x∗o and the original position as well as reduces
the instantaneous variation of ẍo.

It is shown in Figure 7 that there exist overshoots at t =
3.0s and t = 6.0s. These overshoots are mainly due to a
relatively large weight α associated to ‖X̂0−xref

o ‖2, which
minimises the distance to the original reference, with respect
to the weight β of the regulation term ‖Uo‖2, which reduces
the instantaneous variation of ẍo. Thus a dynamic weighting
matrix Q is added into (19):

...
x∗o,k|k = min

U o

α‖X̂o,x − xm
o ‖2Q + β‖Uo‖2

subject to X̂o,x = ÂxXo,k + B̂xUo

X̂o,x ≤ xm
o

, (20)

where Q = diag(aj , aj+1, . . . , aj+N ) is a diagonal matrix,
and aj ∈ (0, 1],∀j ∈ [k, k + N ] determines the weight
associated to each sample in the time horizon. Each aj is
computed with respect to the variation of xm

o :

aj =
max(xm

o )− xmo,j + λ

max(xm
o )−min(xm

o ) + λ
, (21)

where λ is a regulation term to avoid a division by zero. aj
is dynamically changing in the time horizon [k, k +N ]:

1) If max(xm
o ) = min(xm

o ), then aj = 1.0. The relation
between α and β is set to α ≥ β, which means the
approximation to the reference is always more important
than the minimization of Uo

2) If max(xm
o ) 6= min(xm

o ), discontinuities might occur
in the time horizon, then aj tends to 1.0 for large
variations of the reference value and aj tends to 0 for
small ones. In this case the approximation to the original
reference is sacrificed to reduce variations ofUo as soon
as the discontinuity is previewed in the time horizon.



The results using the dynamic weighting matrix Q are
shown in Figure 8, which shows that there is no overshoot
on x∗o and MPC begins to react to future discontinuity once
the change is detected in the horizon. In Figure 8(b) the max
values of ẋ∗o and ẍ∗o are much less than those in Figure 7(b).

Here, MPC works as a preprocessing of constraints before
they are incorporated into the control framework. Its advan-
tages of previewing future events and taking actions conse-
quently make it possible to reduce large constraint variations.
This can handle torque discontinuities due to discontinuous
evolutions of active constraints. However, it cannot solve the
problem caused by activation of the constraint (as shown in
Figure 4).

C. Continuous Activation of Constraints

The discrete linear approximation over the discrete time
step δt described in Section II leads to a truncation error.
Indeed, with the decrease of δt, the error of hi increases
dramatically. In [22] a constraint compliant control law is
proposed to solve this problem, but it is only applied in the
case of inverse kinematics. The approach in [23] increases
the discretization time step δt in the constraint (not in the
control time step) properly to diminish the error for dynamic
control problem. In this paper, the same method is adopted
to solve discontinuities in constraint activations.

IV. SIMULATION RESULTS & DISCUSSION

The proposed methods are applied to the control of a 7-
DOF Kuka LWR robot in simulation. The experiments are
carried out in the robotic simulation software XDE [24]. The
Kuka robot is actuated by joint torques to perform tasks
in operational space under discontinuous force constraints
and obstacle avoidance constraints. The constraint generation
approach presented in Section III is applied here to reduce
the instantaneous variations of τ .

A. Handling of Force Constraint

In this experiment, the end-effector force task is defined
to push against a fixed object with a constant force value.
Meanwhile, the force constraint on the maximum allowed
contact force evolves discontinuously. The results using the
proposed approach is compared with the baseline approach,
which is based on the QP control framework (10) with the
min jerk term ‖...q‖2W in the objective function to minimize
the changes of joint torques. W is the weight of the min jerk
term. In this experiment, Q is identity matrix, R = 10−6 and
W = 10−3.

In Figure 9, at the beginning the impact force results in
a big peak on the force, which is not considered in this
work. At t = 5.0s, the force constraint becomes suddenly
active, causing torque discontinuities. At t = 6.0s the
force constraint changes discontinuously, and discontinuous
torques and big torque derivative are observed. At t = 9.0s,
the constraint decreases to zero suddenly, which means the
contact is removed, leading to discontinuities of torques and
big torque derivatives. Although the term ‖...q‖2W can limit
changes of joint torques as a penalty, it cannot preview

sudden large changes of constraint in advance. Once the
sudden large changes of constraints occur, joint torques have
to change largely to respect the constraints in a reactive way.

In Figure 10(a), the new generated continuous force con-
straint is used instead of the original one. In Figure 10(b),
it is shown that the new continuous force constraint is fully
respected. With this continuous force constraint, the joint
torques evolve smoothly and significant decreases of torque
derivatives can be observed in 10(d).

B. Handling of Obstacle Avoidance Constraint

In this experiment, the end-effector is tracking a sinusoid
trajectory as shown in Figure 11 and the robot has to avoid
collision with a moving object. While the robot is performing
the tracking task, the obstacle moves suddenly towards the
robot and thus the tracking task has to be stopped to avoid
the obstacle. After a while, the object moves away from the
robot. During the whole process, the robot should respect the
discontinuous obstacle avoidance constraint and handle the
discontinuities due to its activation and deactivation.

Tracking Task

Moving Obstacle

Fig. 11: The end-effector avoids a moving obstacle while
performing the task.

TABLE I: Maximum of joint torques and torque derivatives

Experiment (i) (ii) (iii) (iv)
Maximum of τ [Nm] 308.6 19.4 16.3 10.2
Maximum of τ̇ [Nm/s] 32358 1244 531 339

In order to demonstrate the effectiveness of the proposed
methods, different experiments are carried out where:

(i) only the QP control framework (10) with the original
discontinuous obstacle avoidance constraint is used;

(ii) the new continuous obstacle avoidance constraint is
generated by the proposed approach (19) with time
horizon NT = 1.5s and α/β = 105 before being
incorporated into the QP control framework (10);

(iii) the new continuous constraint is calculated based on the
proposed approach (20) with the same time horizon and
ratio as the experiment (ii);

(iv) the control framework is the same as the experiment
(iii) but with a different ratio α/β = 103.

Figure 12 shows the resulting trajectory of the robot,
the position of the obstacle, evolution of joint torques and
evolution of torque derivatives. In Figure 12(a), at t = 3.8s
and t = 5.8s the obstacle moves suddenly and big peaks
of joint torques and torque derivatives are clearly observed.
The chattering of joint torques can be clearly observed
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Fig. 9: Simulation results of the discontinuous force constraint with the minimum jerk term. The large torque derivatives
are clearly observed in (d).
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Fig. 12: The resulting trajectory, joint torques and torque derivatives: the torque derivatives is greatly reduced in (c) compared
with in (a).

when the constraint is active. This chattering of torques is
caused by the truncation error. The results in Figure 12(b)-

(d) demonstrate that the proposed approach can smooth the
obstacle avoidance constraint and efficiently reduce torque



derivatives. The maximum observed joint torques and torque
derivatives in Table I illustrate quantitatively the effectiveness
of the proposed approach.

The weighting matrix Q is used to reduce the variation of
the constraint itself in order to lower the rate of change on
joint torques. Its effectiveness is demonstrated by the evolu-
tion of torque derivatives shown in Figure 12(c) compared
with that in 12(b).

The ratio α/β determines the relative importance of min-
imization of the error between the new constraint and the
original constraint over the minimization of instantaneous
variation of the new constraint. A relative large α/β means
that the new constraint is closer to the original one with
relative large variations. Conversely, the distance to the
original constraint is sacrificed to reduce variations with a
relative small α/β. The influences of the ratio α/β are
clearly shown in Figure 12(c) and 12(d): A larger α/β means
the new continuous constraint is much closer to the original
constraint with a much larger variation. This consequently
leads to much bigger torque derivatives by comparing the
maximal torques and torque derivatives in Table I with
experiment (i) and (ii).

V. CONCLUSION
In this paper, a MPC-based constraint smoothing approach

is proposed, which is applied to design a new constraint
trajectory that results in minimised changes in joint torques
compared with the original discontinuous constraints. Exper-
iments involving a force constraint and an obstacle avoidance
constraint show that the generated continuous constraints
can successfully minimise instantaneous variations of joint
torques caused by discontinuous constraints.

One key feature of this approach is that the constraints of
the reactive controller are modified rather than the objective
function. Therefore, the proposed method does not directly
modify the task trajectory but ensure that the worst case
torque derivative is minimised. As such, it is a very generic
approach which can be applied independently from the way
the control law and objective function is formulated.

Future work will focus on the application of this very
general approach to the case of humanoids making and
breaking contacts with their environment in simple activities
such as walking, sitting, standing or leaning over an object.

ACKNOWLEDGMENT

This work was partially supported by the China Schol-
arship Council, and by the RTE company through the
RTE/UPMC chair Robotics Systems for field intervention in
constrained environments held by Vincent Padois.

REFERENCES

[1] K. J. Kyriakopoulos and G. N. Saridis, “Minimum jerk path genera-
tion,” in IEEE International Conference on Robotics and Automation
(ICRA), 1988, pp. 364–369.

[2] R. Haschke, E. Weitnauer, and H. Ritter, “On-line planning of time-
optimal, jerk-limited trajectories,” in IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, 2008, pp. 3248–3253.

[3] S. Macfarlane and E. A. Croft, “Jerk-bounded manipulator trajectory
planning: design for real-time applications,” IEEE Transactions on
Robotics and Automation, vol. 19, no. 1, pp. 42–52, 2003.
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