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Summary

The evaporation of drops in a sound field has been the subject of numerous studies aimed at determining its
role in combustion instability. The models generally assume local equilibrium evaporation at the interface. We
determine here the conditions of validity of this assumption, without calling into question other a priori
assumptions of the classical model, in particular spherically symmetric quasi-steady evolution in the gas phase
and liquid phase thermal unsteadiness with pure heat conduction.

Another possible phenomenon concerns the differential recoil of the vapor. In the case of rapid evaporation a
pressure difference appears between both sides of the interface, even if the latter is plane. This pressure
difference, usually neglected, is proportional to the square of speed and the resulting force is oriented toward the
denser fluid, i.e. the liquid. A very fast evaporation may even cause local deformation, i.e. Hickman instability.
The stability condition concerning this phenomenon has also been determined.

This study was co-funded by CNES (French Space Agency) and ONERA and was performed in the
framework of CNES-ONERA French Research &Technology activities on the high frequency combustion
stability of liquid propellant rocket engines.
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List of symbols

a,b,c constant coefficients

A B thermodynamic coefficients in the transfer function
B,, . B, Spalding parameters for mass and temperature
c specific heat at constant pressure

C combustion chamber level

d droplet diameter

Da Damkdhler parameter

function E(u,0)=1-(L+i)/30/26 cothl(1+i),/3u/20 ]
thermodynamic potential per unit mass, gravitational acceleration
gas phase

liquid height

container height

Hickman number

heat conductivity

latent heat per unit mass

liquid phase; phenomenological coefficient for near-equilibrium evaporation-condensation
mass

molar mass

unit mass flow rate

mass flow rate for an evaporating droplet

response factor N =& R(Z)

&
)
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unit normal at a point of an interface; quantity V - N being the average normal curvature
thermodynamic pressure

saturation pressure
coefficient equal to 77 /67 77
gas constant per unit mass r = R/¢
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mean radius of the fed droplet

universal gas constant

interface level; cross section area
temperature in K

reduced pulsation: u = 3w,
speed

fluid velocity

interfacial velocity

Weber number: We = p (Vg -V, )? /o
XY, 2 Cartesian coordinates
z transfer function of the fed oscillating droplet

si<< = dwvxo g
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a,a,,a, evaporation-condensation, vaporization, condensation coefficients respectively

a coefficient of the transfer function of the fed oscillating droplet

-BL thermal gradient in a liquid boundary layer

o thickness of a boundary layer (& for the vapor side, 6, for the liquid one)

A heat conductivity

n(x,y,t) function describing a disturbed surface z =7(x, y,t), the reference value being zero

K heat diffusivity
Y7 dynamic viscosity; thermodynamic potential per mole =M g
i

chemical potential of species j

v quantity equal to: (1+i),/3u/260



1 tensor of viscous pressures

0 ratio 7, /77

® reduced temperature

£ PL gas and liquid densities

o surface tension

T characteristic time; z,,, for evaporation-condensation; z .. mechanical time

Toxcit period of an oscillating disturbance

r1, 77  Ccharacteristic times for heat diffusion respectively in the gas, -t =s%/x, and in the liquid,
EI’ = rs2 /KL

Ty mean residence time of the injected liquid for a fed drop; equal to the lifetime |, Of the free droplet

10} pulsation of an oscillating wave

£ reduced radius & = r/T,

& reduced variable £ =M Cp/47rk r

* reference conditions

- the liquid side of the interface

+ the vapor side of the interface

I tangentially to the interface

i normally to the interface

1. Introduction

The evaporation of drops in an acoustic field has been the subject of many studies aimed at determining its
role in combustion instability. The models generally assume local evaporation equilibrium at the interface. We
want to determine here the conditions of validity of this assumption, without questioning the other a priori
assumptions of the classical model, in particular: spherical symmetry, quasi-stationary evolution in the gas phase
and thermal unsteadiness of the liquid phase with pure heat conduction [1, 2].

The local evaporation equilibrium is characterized by the equality of chemical potentials of the constituent of
the drop in liquid and vapor phases,

HeL = Hey - (M
In the case of local evaporation non-equilibrium, the equality of chemical potentials is no more guaranteed

and the mass flow rate of vaporization is a function of their difference. According to Bond and Struchtrup [3], in
the case of a pure substance, the rate of evaporation can be written

% v
no_ ﬂ Psat _ p
m_(ZH'R] a, (TS)}/Z a, (T+)% , 2

with two different coefficients «r,,, &, , respectively for evaporation and condensation, 9 the molar mass, R
the universal gas constant, p., the saturation vapor pressure at the temperature T~ =T of the liquid surface,
T*,p" corresponding to the gas. Coefficient values «,, @, become equal when one tends towards
equilibrium: o, =, = .

Another phenomenon can occur during very fast evaporation, changing the shape of the liquid-vapor

interface. It is called the vapor recoil (see Appendix A.1). It can be explained by the momentum balance at the
interface and results in a force acting towards the densest fluid, i.e. the liquid.



The case of vacuum evaporation, which results in surface deformation, has been particularly studied by
Palmer [4], who found the stability limit of the phenomenon. This is the Hickman instability [5] (see Appendix
A2).

We study here the evaporation of drops in a combustion chamber that is disturbed by high frequency acoustic
fluctuations (at frequencies from 250 Hz to 20000 Hz). Indeed, it is important to characterize the regime of
evaporation in order to properly model the evaporation and combustion instability phenomena.

Our goal is to predict the existence of an evaporation out of equilibrium. We do not intend to introduce
immediately this disequilibrium into the equations to solve them. Indeed, the local evaporation disequilibrium
may considerably complicate the numerical resolution. It is however important to find a criterion of occurence.
For this purpose, we will compare the characteristic times and length scales.

The relaxation of evaporation from a non-equilibrium state depends on the mechanical and thermodynamic
evolution of the fluids. One has to compare a characteristic time of this evolution to the characteristic time of
evaporation; the resulting comparison will lead to a near-equilibrium criterion through a Damkéhler number. So
the local evaporation non-equilibrium can be characterized, in quasi-stationary mode, by the Damkdohler

parameter of local evaporation defined by the ratio of a mechanical time 7

mec [0 @ Vaporization time Zygp .

The instability of recoil involves also the previous characteristic times, but the resulting expression of the
Hickman number also depends on a reference flow rate and on its temporal derivative. We will study this
instability assuming local evaporation equilibrium and will assume that the Palmer’s results remain valid with
this hypothesis and also for spherical drops in the reference state.

In order to determine evaporation quantities of a flat layer, we will use on the one hand a specific simple
model and on the other hand quantities related to the evaporation of a drop, and put to good use our knowledge
of the Heidmann model concerning a droplet fed by a steady flow [1] (see Appendix A.3).

2. Condition of evaporation equilibrium

2.1. Characteristic time of the evaporation process

So as to determine first the characteristic time of the evaporation process at constant volume, we imagine a
cylindrical container of height H . The liquid height is h and the cross section area S (Figure 1)
In the case of a single coefficient « for evaporation and condensation, the flow rate per unit area is

% .
o M P P
m_“(anJ (Ts)% (T+)%2 ' )

Writing p* = p, T =T and assuming a uniform temperature,

M=—2 (psar— P) With 7 = R/M . If p < pes. evaporation occurs,

Ne2rrT

Another relationship characterizes the total mass: M =Mg + M, = p, hS+ p (H —h)S =Cte .
Sufficiently far below the critical point p << p,, S0 M =S(p,_h+ ps H). On the other hand, assuming an

ideal gas: p; = p/rT .
At evaporation-condensation equilibrium, we have: p = psat(T), h=h,, and:M ~S(p_h, + p, H/rT),

from what we deduce h = h, _ P P H.

pLIT
To study the near equilibrium evolution, p| = Cst is assumed. Thus we can write
; dM h . . . . .
Sm=- pm L=—p. S o Given the conservation of the total mass we obtain the evolution equation of the

! We assume the ratio S/H 2 to be sufficiently small so as to make negligible any internal fluid motions as vortices, and thus
to keep the one-dimensional behavior of the system.



liquid level, % + % ;l (h—=hg)=0, which provides h = h, +(h, —h, )eft/ " with a relaxation time of phase
7T
change (evaporation or condensation)
Tyap =H \/Zn/(a T ) 4)
H
Mg
h
M
0
S

Figure 1. Closed and constant volume isothermal evaporation vessel.

To represent the case of drop evaporation, one has to replace H by a characteristic length. Assuming T = Cte, the

equation of the variable h is verified also by the variable p — p, , so that: p = Pgat +(p0 - psat)e_t/Tvap :

2.2. Diffusion characteristic time

Some “mechanical time” has to be compared to the previous evaporation time, in order to characterize the
evolution of the system from an evaporation disequilibrium. The time of thermal diffusion plays this role; we
have 7pge =77 :52//< (where & is a diffusion thickness and « is the thermal diffusivity).

For the flat layer at rest, the thickness of thermal diffusion in the gas is: & = H, if one assumes that the heat
input comes from the top of the container.

In the case of an evaporating droplet (Appendix A.3) of diameterd_, supplied by a steady flow, we will
estimate the thickness of thermal diffusion in the gas, using the temperature gradient at the interface. Thermal
gradients that are external to the drop are considered as being reduced to those of the steady state. In quasi-

stationary regime with constant physical properties, and assuming spherical symmetry, the temperature T of the
gas phase is a function of the radius r only. With & = r/F , We obtain

_Tl+B)-T, 148
S 5 (- 7)o+ B, )

Details of the proof: The QS thermal profile in the gas phase is of the form (see Appendix A.3 and
_ N L _ 1 —
ref. 2]):T =a, +b, e, & =M cp/47rk r,withM = 4ﬁ£l’5 In(+B; ). s0¢; =gln(1+ B, ),
c

p

2 small high frequency perturbations change only a little these gradients; changes become important only in unstable
frequency domain correspondingto 0 < U < U, (see Annex A.3), and if disturbances are not small. In this case we go
into the nonlinear domain, which is not studied here.



— 1 _ - =
ie, T =a; +b; (1+ BT) ¢ . The boundary conditions T =T, at the surface of the drop and T =T at infinity
provide values of the constants a;,b; , hence the expression of T above.

We have:
_ _ — -1
_@:{c__: =( + )[(1+BT)%—1 ,the_n: (d_g ):(1+BT)I§T (Ifnz(1+BT)
At the droplet surface, I =T, & =1, so d(d§®)= In(lgTBT)

Figure 2 shows the evolution of the reduced temperature © as a function of & =r/, for different values of

the Spalding parameter® §T =c, (T_w —T_S)/f. The same study could be made about the concentrations. One

observes that the temperature changes considerably in a region at the periphery of the droplet, which thickness
has been characterized.

Q|

08
06
0.4 Increasing B

02

10 20 30 40 a0

Figure 2. Evolution of the reduced temperature ® = ('FOO —'F)/('ITOO —'ITS ) as a function of the reduced radius & =r/r for

increasing values of the Spalding parameter B = §T from 0.1 to 100.

2.3. Damkohler number of evaporation and condition of equilibrium

To build a global criterion for evaporation equilibrium, we define first the Damkéhler number of evaporation
as the ratio or the diffusion time in the gas to the characteristic evaporation time,

Da= 171 [7yqp =(a8/x)JT/27 and the corresponding condition of equilibrium is Da>>1. The quantities to
be known are: the coefficient of evaporation « , the thermal diffusivity of the gas «, the gas temperature T, the
diffusion thickness ¢ in the gas.

However, this condition ignores the disequilibrium caused by possible disturbances from the engine,
assuming that the equilibrium be satisfied in the non-disturbed situation. So as not to affect this equilibrium, the

3 Calculated at stabilized regime.



period of disturbance ¢

excit

=27/ has to be much larger than the time of evaporation (7o,.s >> 7,,,). We will

excit
write this equilibrium condition w7, /27 << Da .

Moreover, we have to consider a third condition, taking into account the characteristic lifetime of the drop,

which is equal to the residence time 7, of the liquid injected into an equivalent fed drop. Indeed, reaching the
equilibrium of evaporation during the major part of droplet lifetime implies that the vaporizing time be much

shorter than the lifetime (fv/rvap >>1). This equilibrium condition may be written z7 /7, << Da.

All conditions of evaporation equilibrium will thus be ensured by the following global criterion?, linking the
. . . T
four dimensionless ratios Da, u, ¢ and §; = ——:
T Ty

u 6rx
Da sup 1,0, —,0 — 6
>> P( Or 0 Or 0) (6)

3. Condition of Hickman instability

Hickman instability can occur for high evaporation flow rates, e.g. for a plane layer of liquid under vacuum
(see Palmer, 1976 [4], see also [6]). It is caused by local fluctuations of the recoil force. We introduce the
Hickman number

N\NY L 2
Hi:(d_mj " fy 5L*ﬂ[£_LJ o
dT PLKLO P PL

which represents “the ratio of the destabilizing forces of differential vapour recoil and vapour viscosity to the
stabilizing action of surface tension and thermal diffusivity” [4], with the following variables: &, the thickness

of the liquid thermal boundary layer, (— /3,_) the thermal gradient in the same layer, m" the evaporation unit flow

rate in the reference situation, 4 the dynamic viscosity of the gas, x| the thermal diffusivity of the liquid, o
the surface tension reference, T the temperature, p the density of the gas (the evaporated liquid), p| the liquid
d(InT)

density. To estimate the Hickman number, we will assume a constant thermal time 7 defined byl = T
T

. L i ~ H
and consider the situation® of Figure 1. We have m~ = %(LT —1] , because
T \r

ML:M—p%FtH, m =—dM, /dt=(H/r)d(p,/T)/dt and for an ideal gas, assuming
r

dPe | Pea

L. >> pg , the Clapeyron relation writes —— = .
Lo e dT — rT?
* Using the notations 7. =F,*/x, , U=38w7, , =7, /71 (See Annex A3)and g, = iz , we have on the
67 7;
onehand: g Y =7 © _ T So Da>> gr — means r,, >>r,,,. On the other hand, q 87 _ palen, so
9 27[ Z-excit 9 T 9 zT\/

that Da >> gy 67” means 7, >> 7, .

® As the cause of the instability of Hickman depends on the situation (here the situation described by Figure 3), it will be
necessary to re-consider the expression of the time 7 to treat the case of a drop.
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Figure 3. Configuration studied by Palmer.
* 2
: . brT2 _(dm) H | beT
Using the expression of the latent heat | = ———[1], we find (—) D Psat)f 1 g _BCT
(T—c)2 dT rr 72 (\rT (T—C)2

Remarks: One may think to compare the former expression of m” with the expression of m presented in
annex Al.2, equation (21). The latter results from the evidence of fluxes and generalized forces in the expression
of the entropy production rate and from a linearization, in the framework of classical thermodynamics of
irreversible processes applied to a pure species. Studying evaporation in vacuum condition, Palmer (see annex

0

P°  ps

) )

To evaluate the evaporation rate m we proceed here in a different way. Indeed, the assumed local

evaporation equilibrium at the interface concerns the species constituting the liquid drop, which vapor is mixed
with combustion products, as explained in annex A.3.

However, we take into account the recoil force, as Palmer does. This force results in our case from the high
evaporation velocities encountered at high temperatures in rocket engine combustion chambers. The recoil force
intervenes here in the expression of the Hickmann number given by Palmer, through the product
m’ (3—?) which depends from this force.

A.2, equation (24)) uses a different but analogous expression of m, with a generalized force

Substituting in the expression of the Hickman number, we obtain

Hi:(H psath(L_l] g[L_lJz_b(ﬂc) ﬂ&ﬁg(i_i} ®
rTe ) (rT TUrT T-cf |pLrLo Ay PL

We will remove the index (V) denoting the vapor and take H =&, the thickness of thermal diffusion layer in
the gas. Considering that the acoustic disturbance is the cause of the possible Hickman instability, we evaluate
1 (d(InT
the characteristic time 7 of the thermal fluctuation at the droplet surface defined by — = ‘%
T

, using

. T.-T. ST
T, === Hence, setting T, =T_€'’" and assuming
S -I- S S
S

TS

<<1 (which is verified in our application case),




1 -I: eiwt .
we get — = @|—=——|=®(T;|. Moreover, as can be shown from the results presented in Annex A3,
T 1+T, e
5 1 ~ 1 A+B
f P A+B  thenZzp pc|=— :
*" b B-0E(,0) T b B-6E(u,0)

The thickness of the liquid thermal boundary layer & and the temperature gradient £, =|dT| /dr| in the

liquid are calculated as follows in the case of a propellant droplet®.

Thermal gradients in the liquid are caused by high frequency disturbances from the combustion chamber that are
transmitted by the gas to the whole drop or part of it. Indeed, the reference configuration is that of the steady
state in which the temperature of the drop is uniform, unlike the gas temperature. Ideally, the thermal field is
spherically symmetrical (Fig. 4) and produces density variations which cause convective motions.

Hypothesizing that we legitimately neglect the thermal convection due to the feeding of the droplet, we show

nreater that 6 /15 <Y€ with £(u,0)=1-(1+i)[ % coth{(1+i)\/g}

Indeed, settingT',=T,(r)e’', we can demonstrate from the results presented in Annex A3 that

T = b T = A+B  sh(v¢) , where v =(1+i)/3u/26 , £ =r/fs . The modulus of the temperature
* p. ' B-6E(u,0) &shv

0.39
u =1500
0.2

01
27z/u

tred :t/;v 4 é::r/FS !
A=10, B=100 =15

57z'/u
01

0] 37r/u

0.3

Figure 4. Two examples of the oscillating reduced temperature field inside the drop, resulting from a pressure perturbation
in the chamber. They are depending of & = I’/FS for different values of dimensionless time tred = t/fv . Increasing the
excitation frequency leads to reduction of the wave penetration depth.

® Remark : Note that in his calculation, Palmer studied the Hickmann instability starting from an evaporation configuration
out of local equilibrium, which is not our case here. On the other hand, the fact that he treated a vacuum evaporation led him
to consider only the boundary layer in the liquid (Figure 3). We chose to do like this author.
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perturbation |T'|| is thus proportional to the quantity ©, = sh(vg)/efshv. A limited expansion of ©, near the
surface gives @, =1+ (vcothv—1)A¢.
We find therefore ©=0 for |A&| =5, /T :|ZI/(1—VCOthV) =l1/E(u, H] . In Fig. 5 are shown the results

obtained with different values of 6.
Let us notice that |vcothv| must be large enough, so that|A&| be less than 1. In this case we will have

/(1 —vcothv) ~ [thv/v| = [1/v] and thus |A§| ~ |]/V| oc \JO/U Jie., 5 /rs «\[O/u .

204

Increasing 8

Figure 5. & /s as a function of u for different values of &.

‘dT,‘_-ITs Pe ‘ E(U,H) ‘ 9
ldr| bF, (A+B)\B—HE(U,9)\ )

Moreover, based on the foregoing, one obtains 3 =

A suitable expression of the Hickman number is then
— 2 2 — )
(P [ | 1( 1 b(T,+c) [ B 6 u(1 1
trg rTs T\ rTs (Ts —C) PLELO \Ps P

where pg represents the density of the vapor at the surface of the liquid.

4. Calculation results and conclusion

Four pairs of propellants were studied, corresponding to eight configurations for the species of both droplet
and gas: LOX-H, LH,-O,, LOX-CHy, LCH4-O,, LOX-CigHy,, LCigH2-02, LN,O4-MMH and LMMH-N,0,.
The first letter “L” means “liquid” and serves to designate the species of the droplet, “MMH” means mono-
methyl hydrazine, and the n-decane CioH,, represents here the kerosene (because the dynamic model of
evaporation treats only single-component drops up to now) [7].

The conditions of the study (10 bar pressure, 1000 K temperature) are typical of the environment of a
propellant droplet in a rocket engine. Moreover, we have considered diameters of plausibly existing droplets,
after the vibrational breakup owing to the shear at injection, i.e. such that the Weber number \y, _ PV V) be

o
less than 20 (for an initial velocity difference between the gas and the droplet of 25 m/s). These diameters range
from 1.5 micron for hydrogen to 185 microns for MMH (see figure 6). However, the conditions of evaporation
equilibrium are checked for a droplet at rest.
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Vibrational break-up criterion : Weber number
DeltaV =25 m/s

200
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Figure 6. Droplet radii as a consequence of the vibrational break-up criterion applied in typical rocket engine conditions.

4.1. Assumption of liquid / vapor equilibrium at the drop / gas interface.

We have identified three necessary conditions for the liquid-vapor equilibrium at the gas-drop interface, from
the consideration of the law of non-equilibrium evaporation, envisaged for a planar interface (see 8§ 1.3).

The first one is related to a Damkdhler number of evaporation / condensation, defined as the ratio of the
characteristic time of diffusion in the gas and the characteristic time of return to evaporation equilibrium:

T o |IT
Da=—"T-=ag— |— (11)
Tyap K\ 27
. 52 5 2 T - . T
withz; =—and 7,,, = ———=" The conditionis Da=——>>1.
K Aiow N rm Tvap

Assessment of liquid-vapor equilibrium -
Damkdéhler number for diffusion and complementary criteria

1.0E+06 o Da'
1.0E+05 B Criterion concerning the life
time
1.0E+04 1 O Criterion concerning the
excitation period (at 5000Hz)
1.0E+03 A
1.0E+02 A
1.0E+01 A
1.0E+00 -
UL N L USIN  e
KY; { W N Ny K
) oS N XY oY \20/ » )
v AN NG 4 RS X @‘2\
oY F S

Figure 7. Checking the vapor-liquid equilibrium for a drop at rest.

Two additional conditions appear to be verified in the case of a drop subjected to an acoustic environment,
regarding on the one hand the period of excitation, on the other hand the droplet lifetime:

Tlife/fvap >>1, Texcit/Tvap >>1 12)
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The estimates that we have carried out show that under usual conditions, at the considered frequency of 5000
Hz (which is a typical mediane value of the frequeny range for the combustion instabilities in liquid propellant
rocket engines), these criteria are generaly properly satisfied with a difference of at least one order of magnitude
on the three criteria, the lifetime criterion being however hardly satisfied in the case of an hydrogen droplet (see
Figure 7).

This conclusion has nevertheless to be moderated, for three reasons.

1. We considered here the case of a drop at rest. It will be necessary to extend the analysis to the case of a
drop subjected to a flow.

2. Moreover, due to the lack of data, we have assumed a unit value of the coefficients of evaporation and
condensation for all species considered. These coefficients are actually neighbouring the unity for many studied
species, and the others are greater than 0.01, according to the compilation done by Pound [8], which includes
however none of the species of interest for us. A further literature search on the values of the coefficients of
evaporation and condensation of usual propellants would thus to be carried out.

3. Finally, the triple equilibrium condition was formulated for a plane interface; it should be transposed to the
case of spherical geometry.

4.2 Hickman instability

Hickman instability is related to differential vapor recoil, which is an inertial effect due to the difference
between the mass densities of vapor and ejected liquid. Instability can occur by deformation of the interface, in
case of strong evaporation non-equilibrium. One might fear that such instability occur in the case of intense
noise.

Assuming a planar interface, we established the criterion of non-occurence of this instability, as a condition
on the Hickman number. We determined its expression for our practical purpose (see equation (10)).

The condition of non-occurrence of instability, in the present case of a harmonic pertubation applied to a
system at evaporation equilibrium, is Hi << 1, whereas Palmer (see annex A.2) looked for the stability condition,
considering departure from a disequilibrium state, and obtained so a critical Hickmann number depending from
various dimensionless numbers.

To evaluate the expression, we estimated the parameter b,, which represents the temperature gradient in the
thermal diffusion layer of the liquid, and the characteristic time of thermal fluctuation 7, using a conservative
value of 10% for the relative level of pressure fluctuation (‘ pc‘ =0.1) in the chamber.

Assessment of the absence of Hickmann instability -
Hickman number

1.00E-07 : : : : : : :
v \g 14 v v Ll I
L A S| | o7 | S S
N Nal B Foulll I Pl B <l ) Il B S AN
1.00E-08M T S

1.00E-09 A — — —

1.00E-10 — —— —

1.00E-11 !

1.00E-12

Figure 8. Values of the Hickman number for a propellant drop at rest in an environment of combustion products.

We obtained very low orders of magnitude, less than 107, for the Hickman number, which may suggest the
absence of instability (see Figure 8). However, the results of Palmer presented in Annex A2 (figure 9) show that
the problem is complex and depends on the values of several dimensionless numbers to be determined. On the
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other hand, it would be useful to translate our expression of the Hickman number in the case of the spherical
interface geometry, and to take into account an external flow.

4.3. Conclusion

We have established criteria permitting to assess the hypothesis of local evaporation equilibrium and the
absence of Hickmann instability, for an evaporating droplet submitted to acoustic excitation.

Having applied these criteria to several propellant pairs in conditions which are typical of a rocket engine,
and having obtained positive results, justifies a posteriori these hypotheses, that were used to build the linear
analytical model presented by the authors in reference [1] and in annex A.3.

However, in the frame of the present study the droplet was supposed at rest and we have taken only in a
partial way the spherical character of the droplet geometry. The formulation of these criteria should so be
extended to a droplet in a flow, and considering a fully spherical geometry. Moreover, a further literature search
on the values of the coefficients of evaporation and condensation of usual propellants should be carried out.

The model presented in annex A.3 aims at evidencing the dynamic characteristics of an evaporating droplet
placed at a pressure anti-node. Such a model helps to physical understanding and is a useful mean of validation
for the implementation of more complex models into a fluid mechanics computer code. Moreover, the direct use
of this model to study the role of evaporation in combustion instabilities, by means of a simplified approach, is in
progress and will be the subject of a future publication.

Appendices

A.1 The vapor recoil

A.1.1 General Equations

The vapor recoil, which will be presented here for a species evaporating in his own vapour, results from the
presence of terms to the square of velocity in the equation of momentum at the interface. When they are not
negligible, they generate a pressure jump between both sides of the evaporation interface.

The equations of momentum balance at the interface without mass and without internal viscosity, projected
respectively on the normal and on the tangent plane, are (see [6]):

(v, —v_)-N+ p+—p_+(I:[+-N—I:I_-Nj-N:—aV-N

with Vi =V, (13)

m(\7+,,—\7,,)+(ﬁ .N_ﬁ.Nj
"

V.o

In these equations, the liquid side is designated by the index (-) and the vapor side by the index (+), N is the
unit normal directed from - to +, M is the mass flow rate through the interface unit area, V is the velocity

—

vector, P is the thermodynamic pressure, I is the tensor of viscous pressure and o the surface tension.
The equation of mass balance is written

m=p_(V_-W)-N=p, (V, -W)-N, (14)

where p is the density and W the interfacial velocity.

A.1.2 Planar interface

For a planar interface, the curvature V-N is equal to zero. So for inviscid fluids, equations (13) and (14)
result in:
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m(V, -V )-N+p,—p_=0
(v, -v.) PP ] (15)
m =p_ (\7— - a)N =P (\7+ _W)N
We deduce the pressure jump at the interface
L1 1
p_-p, :m{———) (16)
P P
As below the critical point we generally have p, << p_, equation (16) becomes
p_—-p, = p+(V+L _WL)Z' (17)

showing that the recoil force is exerted to the liquid.
Let us now consider the constitutive law of evaporation.
e At evaporation-condensation equilibrium:

- In the absence of recoil, there is equality of thermodynamic potentials of liquid and vapor,
which one translates for a pure substance as g, =g_, (18)

where we have g =g +(p7 - po)/pf, g, = g?+ +RTInp,/p, with p, standard pressure,
T.=T =T, p = pf(T) which is assumed to be constant;

- With recoil force, we get g, = Q_ —(V+L _WJ_)Z/2+(V—J_ —WL)Z/Z . (19)
¢ Near evaporation-condensation equilibrium (assuming T, =T_=T5 =T ):
- In the absence of recoil, we obtain the constitutive law m = —TL(g+ - g,), (20)

where L is a phenomenological coefficient;

- With recoil force, we should have: m = —_I_L(g+ -0 +(v+l —WL)Z/Z—(Vfl —WL)Z/Z). (21)

e Far from evaporation-condensation equilibrium, the unit rate is given by a relation of type (2) or

@3).

A.1.3 Curvature effect

For a curved interface, the effect of surface tension must be added:
p.—p,=m(v,, —v )+cV-N (22)

Assuming near-equilibrium, the evaporation rate writes

L 1 1
m=-tla.—g +1 w2 -w )] @)

A.2 The Hickman instability
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Palmer studied the instability resulting from the recoil of the wvapor in the case of a
pure liquid under reduced pressure by taking, as stable reference state, a horizontal flat evaporation surface [4].
This instability is called Hickman instability [5]. Palmer [4] shows that “rapidly evaporating liquid is unstable
for local variations of the evaporation rate, local depressions of the surface being produced by the force exerted
on the surface by vapor evaporation and rapid flow of liquid being caused by the resulting shear exerted on the
liquid surface by the vapor.”

Densities of both liquid and vapor are assumed to be constant and uniform. It is also supposed that, in the
absence of instabilities due to surface tension, a stationary thermal boundary layer thickness &, , through which

heat is transported by conduction only, exists in the liquid, in the vicinity of the interface. The temperature
profile in the thermal boundary layer is assumed to be linear and the temperature of the liquid outside of the
boundary layer is assumed to be constant. In addition, the cooling rate of the liquid surface by heat conduction in
the vapor phase is assumed to be negligible in comparison to the heat removed by the phase change (Figure 3).

We write first the balance equations for the reference state, denoted by (*), in which all quantities are
constant. The mass flow rate is given by the relation (3), which is written in the following way:

A 0 .
o M p Ps
= - 24
m “(MRJ (Ts)% (TG*)% @4

where « is a coefficient of evaporation, % the molar weight of the liquid, R the universal gas constant,
p® the equilibrium vapor pressure at the surface temperature T , which is equal to the temperature TL* of the

liquid, pG* and TG* the pressure and the temperature of the gaseous phase above the liquid. The interface is

devoid of mass and viscosity, but has a surface tension.
Balance equations of mass, momentum and energy write respectively:

m =p W =pcWe

pL - Pg = (m*)z(i—iJ (25)

PG PL

R R
2 PG~ PL 01

where | is the latent heat of vaporization at temperature TL* and W the vertical component of the velocity
vector.
For the perturbed state, we define the perturbation f' of f by setting f = f" + f', and we write the system

of equations of the linearized problem for small perturbations.
Writing the equation of the disturbed surface

2=l ) @0

we obtain successively the unit normal pointing from liquid to gas, the average normal curvature and the
normal velocity of the interface:

N=k-Vn, V-Nz=-VZp, w=an/ot (27)

where k is the unit vertical upward vector.
Equations for small perturbations of mass, momentum and energy write as follows:
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o+ 1 1l |- oW oW’
PG PL 0z 0z

. (11 oW,
pL'-Pg +2m M| ———|+2| g ~ g
PG AL 0z

W'
0z

28
aZW'GJ (28)

0z

j+ 9(pL —pe)n—o Vin=0
2 '

S2 o O°W <2000
V//O'=,UL[V//W L— aZZLJ—#G(V//W G~

Ml + AL aTL+§(m*)2m' 1l o #e W WL
oz 2 06 pg 01 p_ 02

In the first momentum equation, the first term is the pressure jump, whereas the second one corresponds to
the recoil force, the third one to the viscous forces, the fourth one to gravity; the last one is the surface tension.

For a local depression we have <0, and V27 > 0, then the fourth and fifth terms are both negative. Hence

when the interface is hollow, the sum of the first three terms is positive. These three combined forces are
responsible for the instability, leading to an increase of the surface depression.
Far from the interface all perturbations are assumed by Palmer to be nearly nil:

(29)
W', =0W';/0z2=0 as Z— 400

{W'L:aW'L/az:TL':o as PR
Palmer analyzes the problem of small perturbations of the form ¢' (x,y,z,t)=e”" f(x,y) ¢(z), where » is
the growth rate constant and f satisfies the wave equation

Vi f+K2f=0. (30)

K is the wave number. The neutral stability requires that the real part of the growth rate constant ) be zero

but if only the “stationary” (i.e., non-oscillatory) modes of instability are considered, as Palmer does, the
imaginary part of » is also equal to zero. The dispersion equation relates the Hickman number

NF L * 2
. m 1 .
Hi= d—m 'BL—L*ﬂG Lot , defined by equation (7), to the dimensionless wave number K and
dT PLKLO

PG PL
other dimensionless groups.
The latter are the Marangoni number Ma=(—da/dT)(,BL5L2/(KLyL)), the crispation number

Cr=u kL ca oL), the viscosity ratio 4 /ug, the density ratio p /pg, the Reynolds number
Re=m &,/ , the Prandtl number Pr= 1 (p k1), the Bond number Bo = 5.2 9(p. —pg)lo” and the

Brinkman number Br =m" ,uE /(ﬂL KL pE 5L2).
In these groups, (— ﬂL) refers to the thermal gradient in the thermal boundary layer thickness &, (Figure 3),
(dri/dT) is the rate of variation of the evaporation rate as a function of the interfacial temperature and « is the

thermal diffusivity.
The figure 9, redrawn from Palmer’s paper, shows respective influences of some of these dimensionless
numbers on the neutral stability curve, in case vapor recoil prevails.
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Figure 9: Critical Hickman number. a) Typical results. Zone I: mechanism of moving boundary, zone II: vapor recoil,
zone I11: viscous dissipation, dotted curve: neutral stability curve for Br=0. b) Dependency on the Reynolds number for

different values of the density ratio, Cr=10", Bo=1, Pr=10, x4, / ug =102, Br=0, Ma=0. c) Same for different Cr, Bo=1,
Pr=10, 4 / ug =102, Br=0, Ma=0. d) Dependence on the ratio of viscosities for various values of the Reynolds number of
the vapor, Cr=10", Bo=1, Pr=10, o1l pg =108, Br=0, Ma=0 (redrawn from Palmer [4]).

A.3 Linear approach of the evaporation dynamics of a drop submitted to acoustic excitation

We consider a droplet supplied with the flow M equal to the mean evaporation flow rate M (Figure 10),
considered as beeing representative of a mean droplet at a defined point of a combustion chamber’.

In Heidmann’s theory [9], the temperature of the drop is assumed to be uniform (assuming infinite
conductivity) and equal to the temperature T of its surface, which is in local evaporation equilibrium with the
external gas mixture. More recently, a continuous temperature field was considered (with a finite thermal
diffusivity <, ) [1].

The droplet is disturbed by high frequency waves coming from the combustion chamber; we characterize its
response by a response factor, neglecting the feed-back on incident disturbances.

We consider here what happens at an acoustic velocity node of the combustion chamber, which is also a
pressure antinode. This means that the incident disturbance concerns the pressure p,. The spherical drop

evaporates so in a medium that is at rest at infinity, and which imposed conditions are chamber ones.

A.3.1 Equations for the gaseous phase

The unperturbed state is a stable situation for which any thermodynamic variable f of droplet has a uniform

distribution f .

For small harmonic disturbances, we set f = f +Af, f'=Af/f and f'=f(x)e'®'. We show that the
evolution is governed by two equations:

" The model of supplied drop is due to Heidmann. It allows to represent a two-phase flow by a mean drop which feeding
corresponds to providing fresh drops at the same place of the considered combustion chamber. The mean diameter of this
average drop is considered to be invariant, as the liquid supply compensates the evaporation.
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M=a " (T, - pe) 31)

In these equations, M, Q.. T, p., ¢ are respectively the mass flow rate of evaporation, the heat flow

penetrating into the drop from the surrounding gas mixture®, the surface temperature, the pressure chamber and
the latent heat of evaporation. The coefficients used in these equations are:

= _ EM ?AC?FS Mg 3= -Fc y -1 4
= — =2 _ — —— A== )
(1+ By ) In (l+ Bu ) Yas (YFS _YFC) M Xgs +MpX g T-Ts 7 (32)
T, T, 2

b= b, =
('FS—C)Z # TC_TS TS_C

In these definitions, F designates the fuel, A represents the burnt gases, C the chamber and S the surface of
the drop, the quantities Y;, By, 9,y are respectively the mass fraction of species j, the Spalding parameter for

the mass, the molecular weight of species j and the isentropic coefficient (assumed to be constant®). The
coefficients b and C are derived from the expression of the latent heat given in the form:

¢ =bRTZ/M. (T, —c) . ¢ corresponds to the function =Y. Ves M /Yas (Tes —Vec ) (0 Xes +9a Xa)-

A.3.2. Equations of the liquid phase

The following equation for small perturbations concerns the temperature of the liquid.

It is written according to the classical irreversible thermodynamics, neglecting the thermal convection due to
injection, provided that the characteristic time of internal thermal conduction is small in comparison to the
residence time of the fluid in the droplet [1]:

T, x, °(rT))

ot r or?

=0 (33)

Setting T', =T,(r)e"", we find the relation i rT, —x, az(r'f, )/a r? =0, which characteristic equation
writes (7, )’ L)
7
We define here the reduced frequency u =3w7,, the residence time in the fed drop 7, =M /M (which is
proportional to the lifetime of the corresponding free drop) , the time of heat conduction 71 = fg 2 /x| ,and
0=7, 177 . The eigenvaluess' F, , s T, are such that s*F, =s, Fy, " T, =S, Iy, with s, Iy = (1+i)y/3u/26

and rT,=C*e® +C e ™".

The boundary conditions are respectively:
-T,'=T,"and AQ, =47Ts?k, T dT, '/dr]_at the surface of drop,

- dT, /dr|r:0 =0 at the center of drop, assuming adiabatic feeding.

For small harmonic disturbances, we finally find:

8 We have: QL L=0- M ¢ where Q is the heat flux form the gas to the drop, and 6L =0 in the reference unperturbed

state; the absolute perturbation of Q, isthus AQ, = Q, , but one cannot write Q_'=AQ, /Q, .
® Small perturbations are assumed to propagate in the gaseous phase in an isentropic way, at the sound velocity.
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Sof _ A=Sol
e € (34)

AQ =47Tik T, T, E(u.0) (35)
with E(u,8)=1-s, F, coth(s, F; ).

A.3.3 Transfer function and response factor

We define the complex transfer function by Z = M/& Pe -
The expression of this function,

_iu A+0E(u,0)
1+iu B-0E(,0)’ 36)

is obtained by eliminating AQ and 'fs between equations (31), (32) and (35) and setting A=c¢, Ts/?,

A=3(@b-p)4, and B=3p/a.

The response factor is defined by N =}, a'(v,t) p'(V,t)dth/HV’t(p'(vyt))2 dtdV, where p' is the
relative intensity of the incident disturbance (here that of the pressure chamber) and ' the relative intensity of
the response (here the rate of evaporation). We have: p'=p, '= (pC - P )/ P, 0= (I\)I - I\W)/I\W
We show that for harmonic disturbances,

N=aR(Zz). 37)

An amplification effect or a damping effect occurs, respectively when the response factor is positive or
negative. The cutoff reduced pulsation u, separates the two regimes (Figure 10).

Figure 10: a) The vaporizing droplet of Heidmann, continuously supplied by a steady flow rate. b) The reduced response
factor as a function of the reduced frequency (for arbitrary values A=10, B=100).
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