Probing structural and electronic properties of h-BN by HRTEM and STM - ONERA - Office national d'études et de recherches aérospatiales Accéder directement au contenu
Communication Dans Un Congrès Année : 2016

Probing structural and electronic properties of h-BN by HRTEM and STM

Résumé

After the discovery of graphene and its consequences in the field of nanoscience and nanomaterials, there has been a growing interest in 2D materials and also their vertical stacking due to unique properties and potential applications.[1] For instance, it was shown the transport properties of exfoliated graphene supported by hexagonal boron nitride (h-BN) could approach the intrinsic graphene limits.[2] Nevertheless, studying the structural properties of 2D materials and 2D heterostructures is crucial to understand their physical and chemical properties. Our motivations have been to exploit state of the art aberration-corrected high resolution transmission electron microscopy (HRTEM) and scanning tunneling microscopy (STM) to study the structure and electronic properties of graphene (G), h-BN and G/h-BN heterostructures. HRTEM analyses were conducted with a JEOL ARM microscope equipped together with a cold FEG, an aberration corrector for the objective lens and a One view camera (Gatan). Notably, we used high-speed atomic-scale imaging to study with unprecedented dynamics (up to 25 fps) the nucleation and growth mechanisms of triangular holes in h-BN under beam irradiation (Figure 1). The direct observation of B and N atom sputtering and surface reconstruction processes allow understanding how the triangular shape and orientation of holes are maintained during the growth. Interestingly, by studying the effects of the electron dose and the number of BN layers, we demonstrate that these atomic-scale processes are simultaneously driven by kinetic and thermodynamic effects. Further works are in progress to study the stability of h-BN/G stacking under electron-beam irradiation. STM analyses were carried out with low temperature STM at 4 K, on 2D heterostructures that consist in a few layers of graphene doped with nitrogen on thick exfoliated flakes of BN deposited on SiO 2. Remarkably, we show that STM allows identifying and characterizing ionization defects within the BN flakes below the graphene layers (Figure 2). This study opens new avenues to probe the electronic interactions between this two stacked materials.
Fichier principal
Vignette du fichier
EMC16-HRTEMBN.pdf (597.62 Ko) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-01779710 , version 1 (16-05-2018)

Identifiants

Citer

Ouafi Mouhoub, Christian Ricolleau, Guillaume Wang, Hakim Amara, Amandine Andrieux - Ledier, et al.. Probing structural and electronic properties of h-BN by HRTEM and STM. 16th European Microscopy Congress, 2016, Lyon, France. pp.439, ⟨10.1002/9783527808465.EMC2016.6944⟩. ⟨hal-01779710⟩
132 Consultations
105 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More