
HAL Id: hal-02267708
https://hal.science/hal-02267708

Submitted on 19 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Guidance for Using Formal Methods in a Certification
Context

Duncan Brown, Hervé Delseny, Kelly Hayhurst, Virginie Wiels

To cite this version:
Duncan Brown, Hervé Delseny, Kelly Hayhurst, Virginie Wiels. Guidance for Using Formal Methods in
a Certification Context. ERTS2 2010, Embedded Real Time Software & Systems, May 2010, Toulouse,
France. �hal-02267708�

https://hal.science/hal-02267708
https://hal.archives-ouvertes.fr

ERTS 2010 – 19-21 May 2010 – Toulouse Page 1/7

Guidance for Using Formal Methods in a Certification Context
Duncan Brown1, Hervé Delseny2, Kelly Hayhurst3, Virginie Wiels4

1: Aero Engine Controls, SINC-4, PO Box 31, Derby, DE24 8BJ, England; email: duncan.brown.JVAEC@rolls-royce.com
2: AIRBUS Operation SAS, 316 route de Bayonne, 31060 Toulouse Cedex 9, France; email: herve.delseny@airbus.com

3: NASA Langley Research Center, 1 South Wright St, MS 130 Hampton VA 23681 USA; email: kelly.j.hayhurst@nasa.gov
4: ONERA/DTIM, 2 avenue Edouard Belin, BP 74025, Toulouse cedex 4, France; email: virginie.wiels@onera.fr

Abstract

This paper discusses some of the challenges to
using formal methods in a certification context and
describes the effort by the Formal Methods Sub-
group of RTCA SC-205/EUROCAE WG-71 to
propose guidance to make the use of formal
methods a recognized approach. This guidance,
expected to take the form of a Formal Methods
Technical Supplement to DO-178C/ED-12C, is
described, including the activities that are needed
when using formal methods, new or modified
objectives with respect to the core DO-178C/ED-12C
document, and evidence needed for meeting those
objectives.

Keywords

Certification, aeronautics, formal methods

1. Introduction

DO-178B/ED-12B, Software Considerations in
Airborne Systems and Equipment Certification [1], is
the current basis for software assurance in the civil
aeronautical domain. Formal methods can be
applied to many of the development and verification
activities required for software used in this domain.
When DO-178B/ED-12B was published in 1992,
formal methods were briefly mentioned as a possible
alternative method. Since that time, advances and
practical experience have been gained in techniques
and tools supporting formal methods, to the extent
that many formal methods have become sufficiently
mature for routine application on today’s avionics
products.

For the past four years, RTCA and EUROCAE have
sponsored a joint special committee/working group
(SC-205/WG-71) to update DO-178B/ED-12B to
take into account and facilitate the appropriate use
of new software engineering techniques that have
emerged since 1992. The committee is updating the
core document DO-178B/ED-12B, and four new
documents, called technical supplements, are being
developed to handle specific topics including tool
qualification, object-oriented approaches, model
based development, and formal methods. Sub-
groups have been created within the joint committee
to define these technical supplements. Sub-group 6
is in charge of formal methods. This paper reports

on sub-group 6 work and achievements to date
towards creating a technical supplement for formal
methods.

After briefly synthesizing the current content of DO-
178B/ED-12B, this paper first highlights the essential
characteristics of formal methods, then describes the
objectives proposed for the Formal Methods
Technical Supplement (FMTS). The main goal of
this supplement is to define how formal methods can
be used within a DO-178/ED-12 project.

2. DO-178B / ED-12B

Developing airborne avionics software in compliance
with the DO-178B/ED-12B standard is the primary
means of securing regulatory approval [2]. DO-
178B/ED-12B does not prescribe a specific
development process, but instead identifies
important activities and design considerations
throughout a development process and defines
objectives for each of these. DO-178B/ED-12B
distinguishes development processes from “integral”
processes that are meant to ensure correctness,
control, and confidence of the software life cycle
processes and their outputs. The verification process
is part of the integral processes along with
configuration management and quality assurance.
This section gives an overview of the development
and verification processes, since the use of formal
methods affects those processes.

2.1 Development processes
Four processes are identified as comprising the
software development processes in DO-178B/ED-
12B:
• The software requirements process develops

High Level Requirements (HLR) from the
outputs of the system process;

• The software design process develops Low
Level Requirements (LLR) and Software
Architecture from the HLR;

• The software coding process develops source
code from the software architecture and the
LLR;

• The software integration process loads
executable object code into the target hardware
for hardware/software integration.

ERTS 2010 – 19-21 May 2010 – Toulouse Page 2/7

Each of these processes is a step towards the actual
software product. Figure 1 presents the relationships
among life cycle data items from the development
processes.

System
Requirements

High-Level
Requirements

Source
Code

Executable
Object Code

Development activity

Note: Requirements include Derived Requirements

Software
Architecture

Low-Level
Requirements

Fig. 1. DO-178B/ED-12B development processes

2.2 Verification process
The results of the four development processes must
be verified. Detailed objectives are defined for each
step of the development, with some objectives
defined on the output of a development process
itself and some on the compliance of this output to
the input of the process that produced it. Figure 2
presents the verification objectives and activities in
relationship with the development artifacts. Each
verification activity is depicted by a dashed arrow
and the objectives which it satisfies are annotated on
the arrows. For example, LLR shall be accurate and
consistent, compatible with the target computer,
verifiable, conform to requirements standards, and
they shall ensure algorithm accuracy. On the other
hand, LLR shall be compliant and traceable to HLR.

DO-178B/ED-12B identifies reviews, analyses and
test as means of meeting these verification
objectives. Reviews provide a qualitative
assessment of correctness. Analyses provide
repeatable assessment of correctness. Reviews and
analyses are used for all the verification objectives
regarding HLR, LLR, software architecture and

source code. Test is used to verify that the
executable object is compliant with LLR and HLR.
Test is always based on the requirements (functional
test) and includes normal range and robustness
cases.

System
Requirements

High-Level
Requirements

Source
Code

Executable
Object Code

Accuracy & Consistency
Compatibility with the target
computer
Verifiability
Conformance to standards
Algorithm accuracy

Compliance
Traceability

Compliance
Traceability

Consistency
Compatibility with target

computer
Verifiability

Conformance to standards
Partitioning Integrity

Compliance

Verifiability
Conformance to standards

Accuracy & Consistency

Completeness
and Correctness

Compliance
Robustness

Compliance
TraceabilityCompatibility

Accuracy and Consistency
Compatibility with the target computer

Verifiability
Conformance to standards

Algorithm accuracy

Compliance
Robustness

Compatibility with the
target computer

Development activity

Review/Analysis activity
Test activity

Note: Requirements include Derived
Requirements

Software
Architecture

Low-Level
Requirements

Traceability

Fig. 2. Verification objectives and activities

In addition to these verification objectives in DO-
178B/ED-12B, there are also objectives defined for
verification of verification; that is, how to be sure the
software has been sufficiently verified. The
verification of verification objectives require that a
coverage analysis be done. A functional coverage
analysis is required to ensure that test cases have
been developed for each requirement. A structural
coverage analysis is required to ensure that the
software structure has been sufficiently exercised,
with different coverage criteria depending on the
criticality level of the software.

3. Characteristics of formal methods

The proposed guidance for the FMTS begins by
defining what formal methods are from the
perspective of DO-178B/ED-12B: that is, a formal
method is a formal analysis carried out on a formal
model. This perspective is important because it

ERTS 2010 – 19-21 May 2010 – Toulouse Page 3/7

permits discussion of formal methods according to
the major life cycle processes called out in DO-
178B/ED-12B, especially development and
verification processes. Development processes are
applicable to formal models, and verification
processes are applicable to formal analyses.

In general, a model is an abstract representation of a
given set of aspects of the software that is used for
analysis, simulation and/or code generation. In a
certification context, to be formal, a model must have
an unambiguous, mathematically defined syntax and
semantics. This makes it possible to use automated
means to obtain guarantees that the model has
certain specified properties.

Although there are important benefits in creating
formal models of life cycle artifacts, the most
powerful benefits of formal methods are in the formal
analysis of those models. Formal analysis can
provide guarantees or proofs of software properties
and compliance with requirements. Proof, or
guarantee, implies that all execution cases are taken
into account. For the purpose of the FMTS, an
analysis method can only be regarded as formal
analysis if its determination of a property is sound.
Sound analysis means that the method never
asserts a property to be true when it may not be
true.

There are many different kinds of formal analysis,
but they can typically be classified in three
categories: (1) deductive methods, such as theorem
proving, (2) model checking, and (3) abstract
interpretation.

Deductive methods involve mathematical
arguments, such as mathematical proofs, for
establishing a specified property of a formal model.
A correct proof of a property provides rigorous
evidence of that property for the formal model.
These proofs are typically constructed using an
automated or interactive theorem proving system.
Even with such assistance, constructing proofs can
be difficult, or impossible in some cases. However,
once a proof is completed, automatic checking of the
correctness of that proof is usually trivial.

Model checking explores all possible behaviors of a
formal model to determine whether a specified
property is satisfied. In cases where the property is
not satisfied, a counter-example is generated
automatically illustrating where and how the property
fails to hold. In some cases, a model checker may
not be able to determine if the given property holds;
for example, in cases where the complexity of the
model exceeds the capacity of the model checker.

Abstract Interpretation is a theory for formally
constructing conservative representations (i.e.
enforcing soundness) of the semantics of
programming languages. In practice, this method is

used for constructing semantics-based analysis
algorithms to determine dynamic properties of
infinite-state programs. With abstract interpretation,
a formal model is generated, usually within a tool
that is specific to the particular property under
analysis. It can be viewed as a partial execution of a
computer program which determines specific effects
of the program (e.g., control structure, flow of
information, stack size, number of clock cycles)
without actually performing all the calculations.

4. Development using formal methods

The development artifacts shown in Figure 1 can be
specified using a formal model. This is no different,
in effect, from using any other language to specify a
development artifact, except that using a formal
notation allows some of the verification objectives to
be satisfied by the use of formal analysis.
Formalizing requirements or design may increase
the effort required to specify them, compared with
using more conventional languages, but may result
in additional errors being found and removed earlier
during this process due to the additional scrutiny
inherent in applying a formal notation.

It is worth noting that not all of the requirements for
any given development artifact need to be defined
formally when using a formal method. For those
requirements which are not formally defined, DO-
178/ED-12 guidance should be used.

From the perspective of meeting the DO-178B/ED-
12B objectives for development, no special guidance
is needed when using formal methods. If the
applicant does not plan to use formal analysis in the
verification, then there is no need to comply with the
FMTS.

In cases where formal analysis is planned, the
development activities should ensure that there is
sufficient definition in the formal model to verify
properties about the artifacts being analyzed. The
software architecture can be analyzed independently
of low level requirements. In the same way low level
requirements can be analyzed independently of high
level and architectural requirements. Some methods
create a formal model at the source code level,
embedding information flow from the design into the
code, which is then checked by formal analysis. It
may even be possible to apply formal methods to
analyze properties of object code. In this case,
object code is a formal model whose semantics are
treated the same by the formal analysis as they are
by the target hardware.

ERTS 2010 – 19-21 May 2010 – Toulouse Page 4/7

5. Verification using formal methods

With formal analysis, the correctness of life cycle
data with respect to a formal model or property can
generally be proved or disproved; therefore, formal
analysis is able to replace the conventional methods
of review, analysis, and test, as specified in DO-
178B/ED-12B, for some verification objectives. The
guidance proposed for the FMTS details the
potential use of formal methods at each
development level and gives the conditions for the
use of a given formal analysis for a given verification
objective.

Meeting the DO-178B/ED-12B objectives for
verification of verification process results is more
complicated when formal analysis is used. In cases
where testing alone is used, verification of
verification is accomplished by a coverage analysis
to guarantee that software has been tested enough.
However, test coverage metrics, such as decision
coverage or modified condition/decision coverage,
are not meaningful for analyzing the sufficiency of a
formal analysis. For the FMTS, an alternative
approach to coverage is proposed when formal
analyses are used to replace some testing.

5.1 Reviews and analyses

For requirements (HLR and LLR), architecture and
source code, the use of formal methods is a
particular case of analysis. Thus the “only” guidance
needed for formal analysis in these cases is the
criteria and conditions for the use of formal methods
for each development process; the objectives have
not been modified. That is, formal analysis can be
used to satisfy the objectives for software reviews
and analysis, as shown in Figure 2, as follows:

a. Compliance: If the life cycle data items that
comprise the inputs and outputs of a software
development process are formally modeled, then
formal analysis can be used to verify
compliance. Compliance can be demonstrated
by showing that the output satisfies the input.
Formal methods cannot show that a derived
requirement is correctly defined and has a
reason for existing; this must be achieved by
review.

b. Accuracy: Formal notations are precise and
unambiguous, and can be used to demonstrate
accuracy of the representation of a life cycle
data item.

c. Consistency: Life cycle data items that are
formally expressed can be checked for
consistency (the absence of conflicts). If a set of
formal statements is found to be logically
inconsistent then the inconsistencies must be
addressed before any subsequent analysis is
conducted.

d. Compatibility with the target computer: Formal
analysis can be used to detect potential conflicts
between a formal description of the target
computer and the life cycle data item.

e. Verifiability: Being able to express a
requirement in the formal notation defined in the
software verification plan is evidence of
verifiability in the same way as being able to
define a test case. In some cases, formal
analysis is better able to verify a requirement
then testing. For example, requirements
involving “always/never” cannot in general be
verified by a finite set of test cases, but may be
verified by formal analysis.

f. Conformance to standards: Life cycle data
items that are formally expressed must be
compliant with any standards defining the
formalism. Invalid results will be obtained if ill-
formed requirements are allowed. Since formal
notations have a well-defined syntax, automated
syntax checkers are appropriate for verifying that
the formally stated requirements are well-formed
with respect to syntax. In addition, an automated
checker may enforce other restrictions on the
notation (e.g., complexity of notational
constructs and other design constructs that
would not comply with the system safety
objectives). Automated checking will need to be
supplemented by review for those standards not
amenable to automated checking.

g. Traceability: Traceability ensures that all input
requirements have been developed into lower
level requirements or source code. Traceability
from the inputs of a process to its outputs can be
demonstrated by verifying with a formal analysis
that the outputs of the process fully satisfy its
inputs. Traceability from the outputs of a
process to its inputs can be demonstrated by
verifying with a formal analysis that each output
data item is necessary to satisfy some input data
item.

h. Algorithm aspects: If life cycle data items are
formally modeled, then algorithmic aspects can
be checked using formal analysis.

i. Requirement formalization correctness: If a
requirement has been translated to a formal
notation as the basis for using a formal analysis,
then review or analysis should be used to
demonstrate that the formal statement is a
conservative representation of the informal
requirement. It is important to note that the
preciseness of formal notations is only an
advantage when they maintain fidelity to the
intent of the informal requirement. If the
semantic gap between an informal statement of
the requirement and its embodiment in a formal

ERTS 2010 – 19-21 May 2010 – Toulouse Page 5/7

notation is too large, then establishing that the
formal statement is conservative may be difficult.

5.2 Test

Using formal analysis to meet the verification
objectives for executable object code is the biggest
challenge for providing guidance because test is the
only means envisaged in DO-178B/ED-12B for
meeting those requirements. Replacing all testing at
this level by formal analysis is not possible at this
time; but formal methods can replace test for some
properties, such as worst case execution time or
stack usage. Formal methods can also be used to
verify the compliance of the executable object code
with respect to high level or low level requirements.
However, testing will always remain mandatory and
will be the primary means for verification of the
executable object code.

Because formal methods cannot replace all testing,
verification objectives for executable object code are
the same when using formal methods as for test in
DO-178B/ED-12B. However, an additional objective,
as follows, is needed when formal analysis is used
to verify properties of the executable object code:

• Analysis of property preservation between
source code and object code. For the formal
analysis of source code to be used as
verification evidence for the target system,
verification should be performed to establish
property preservation between source and
object code. By verifying the correctness of the
translation of source to object code, formal
analysis performed at the source code level
against high or low level requirements can be
used to infer correctness of the object code
against high or low level requirements. This is
similar to the way that coverage metrics gained
from source code can be used to establish the
adequacy of tests to verify the target system.

This allows for alternative verification paths for the
executable object code, as shown in Figure 3. For
example, compliance of object code to LLR can be
demonstrated using formal analysis on source code
and analysis of property preservation between
source code and object code.

5.3 Verification of verification

Coverage analysis in DO-178B/ED-12B is defined in
two steps:

- requirements-based coverage analysis, to
ensure that test cases exist for each
requirement;

- structural coverage analysis, to ensure that the
code structure has been sufficiently exercised by
test cases.

System
Requirements

High-Level
Requirements

Source
Code

Executable
Object Code

Compliance
Robustness

Development activity

Review/Analysis activity
Test activity
Formal Analysis

Note: Requirements include Derived Requirements

Software
Architecture

Low-Level
Requirements

Property Preservation

Compliance
Robustness

Compliance
Robustness

Compliance
Robustness

Fig 3. Alternative verification paths

Requirements-based coverage analysis can be done
directly when using formal methods by showing that
formal analysis cases exist for each requirement.

Structural coverage however is a notion strongly
connected with test and execution of code. To be
able to define an alternative to structural coverage
analysis, the objectives of structural coverage
analysis have to be examined. These objectives, as
given in DO-178B/ED-12B, are to detect:

- shortcomings in requirements-based cases or
procedures,

- inadequacies in software requirements,

ERTS 2010 – 19-21 May 2010 – Toulouse Page 6/7

- dead or deactivated code.
When a code structure is not covered by some test
cases, then either some test cases are missing for a
given requirement, a requirement is missing, or the
code structure is dead or deactivated.

When using formal methods, verification is
exhaustive, so a requirement that has been verified
formally has been completely covered. However,
there is no guarantee that a requirement has not
been forgotten. Thus, it is necessary to have a
means to ensure the completeness of the set of
requirements. Similarly, it is necessary to have a
means to ensure that there is no unidentified dead or
deactivated code.

Consequently, the solution proposed to provide
coverage when using formal analysis at the
executable object code level is meet the following
set of fours objectives:

Complete Coverage of Each Requirement

The most thorough verification would be where all
possible paths through the code with all possible
data values are considered. Formal methods ensure
this but sometimes the formal analysis requires
assumptions to be made about the software system.
All such assumptions should be verified.

Completeness of the Set of Requirements

Where requirements are formally modeled, it should
be demonstrated that the set of requirements is
complete with respect to the intended functions. That
is:

• For all input conditions the required output has
been specified.

• For all outputs the required input conditions have
been specified.

If the set of requirements is found to be incomplete
then additional requirements (generally not derived
requirements) should be added. If a demonstration
of completeness cannot be achieved, then structural
coverage analysis must be used.

Detection of Unintended Dataflow Relationships

Verifying that the information flow in the source code
complies with the requirements ensures that there
are no unintended dependencies between the inputs
and outputs of the code. If unintended dependencies
exist then these must be resolved either by adding
the missing requirements (generally not derived
requirements) or removing the erroneous code.

Detection of Dead Code and Deactivated Code

Guidance for dead and deactivated code is not
different when using formal analysis from using test.
In both cases, dead and deactivated code should be

identified by review or analysis and dealt with as per
the guidance in DO-178B/ED-12B.

6. Specific objectives

Previous sections have addressed how formal
methods can satisfy the objectives currently defined
in DO-178B/ED-12B. The proposed guidance for the
FMTS also includes some additional objectives
concerning the formal methods that are used.

When formal analysis is used to meet the verification
objectives of DO-178/ED-12, the formal method
should be correctly defined and justified as follows:

a. All notations used for formal analysis should be
verified to have precise, unambiguous,
mathematically defined syntax and semantics;
i.e., they are formal notations.

b. The soundness of each formal analysis method
should be justified. A sound method never
asserts that a property is true when it may not be
true.

c. All assumptions related to each formal analysis
should be described and justified (e.g., those
associated with the target computer; those about
the data range limits; etc.).

The first objective requires demonstration that the
method used is formal. The second one restricts the
use of formal methods to sound methods. (Not all
formal methods are sound.) The last one focuses on
assumptions because assumptions are often used
by formal analyses and it is important for the
correction of the analysis that they are all justified.

7. Benefits of using formal methods

Formal methods were developed as a branch of
computer science in order to reason more
scientifically about software. Initially the advantages
of formal methods were in analyzing the behavior of
source code to understand where this was incorrect.
Since those early applications of this approach in the
1970’s, the problem of error prone source code has
reduced and instead most of the errors in software
development are now generally accepted as being
attributable to requirement errors.

It has become apparent that creating formal
representations or models of requirements can help
to address this problem in the same way as it did
with source code. In that respect, formal methods
have the potential for both increasing safety and
decreasing the cost of certifying flight-critical
systems. Specific benefits include improving
requirements, reducing error introduction, improving
error detection, and reducing cost. Secondly, the
formality of the description allows us to carry out

ERTS 2010 – 19-21 May 2010 – Toulouse Page 7/7

rigorous analyses. Such analyses can verify useful
properties such as consistency, deadlock-freedom,
satisfaction of high level requirements, or
correctness of a proposed design.

7.1 Improve Requirements
Experience shows that the act of capturing
requirements using formal notations is of benefit: it
forces the writer to ask questions that would
otherwise be postponed until coding. Using a formal
notation to capture requirements provides a simple
validation check, as it forces a level of explicitness
far beyond that needed for informal representations.
Requirements expressed in a formal notation can
also be analyzed early to detect inconsistency and
incompleteness and therefore remove errors that
would normally not be found until later in the
development process.
7.2 Reduce Error Introduction
Writing high or low level requirements formally
improves the quality of the development artifacts.
Formalized requirements prevent misunderstandings
that lead to error introduction. As development
proceeds, compliance can be continually checked
using a formal analysis to ensure that errors have
not been introduced.
A further advantage of using formal methods at the
requirements level is the ability to derive or refine
from these requirements the code itself, thus
ensuring that no errors are introduced at this stage.
Alternatively their use at the requirements level
allows formal analysis to establish correctness
between requirements and code.

7.3 Improve Error Detection

Formal analysis can provide exhaustive verification
at whatever levels it is applied: high level
requirements, low level requirements, source code
or executable. Exhaustive verification means that all
of the structure is verified over all possible inputs
and states. This can detect errors that would be
difficult or impossible to find using only a test based
approach.

7.4 Reduce Cost
In general, software errors are less expensive to
correct the earlier in the development lifecycle they
are detected. The effort required to generate formal
models is generally more than offset by the early

identification of errors. That is, when formal
methods are used early in the lifecycle, they can
reduce the overall cost of the project. When
requirements have been formalized the costs of
downstream activities are reduced. Formal notations
also reduce cost by enabling the automation of
verification activities.

8. Conclusion

A primary motivation for developing guidance for
using formal methods in a certification context was
to better enable the routine use of mature formal
methods. That guidance, as proposed to date in a
FMTS to DO-178/ED-12, allows adoption of formal
methods into an established set of processes for
development and verification of an avionics system
to be an evolutionary refinement rather than an
abrupt change of methodology. Formal methods
might be used in a very selective manner to partially
address a small set of objectives, or might be the
primary source of evidence for the satisfaction of
many of the objectives concerned with development
and verification.

This paper has presented a synthesis of the effort of
the Formal Methods Sub-group of RTCA SC-
205/EUROCAE WG-71 in developing guidance for
using formal methods in these ways in a certification
context with DO-178/ED-12.

Ongoing work in the formal methods sub-group
concerns a discussion paper that is intended to give
several examples of the use of formal methods.

9. Acknowledgement

This paper presents the work of RTCA SC-205/
EUROCAE WG-71 sub-group 6, we thank all
members of SG6.

10. References

[1] RTCA/DO-178B, EUROCAE/ED-12B: Software
Considerations in Airborne Systems and Equipment
Certification, December 1, 1992.

[2] Advisory Circular # 20-115B. U. S. Department of
Transportation, Federal Aviation Administration,
issued January 11, 1993.

