
HAL Id: hal-02272135
https://onera.hal.science/hal-02272135

Submitted on 27 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal Modelling and Safety Analysis of an Avionic
Functional Architecture with Alloy

Julien Brunel, David Chemouil, Vincent Ibanez, Nicolas Meledo

To cite this version:
Julien Brunel, David Chemouil, Vincent Ibanez, Nicolas Meledo. Formal Modelling and Safety Anal-
ysis of an Avionic Functional Architecture with Alloy. Embedded real-time software and systems
(ERTS2 2014), Feb 2014, TOULOUSE, France. �hal-02272135�

https://onera.hal.science/hal-02272135
https://hal.archives-ouvertes.fr


Formal Modelling and Safety Analysis of an Avionic
Functional Architecture with Alloy

Julien Brunel1, David Chemouil1, Vincent Ibanez2, and Nicolas Meledo2

1Onera/DTIM , F-31055 Toulouse, France, firstname.lastname@onera.fr
2Thalès Avionics, F-33185 Le Haillan, France,
firstname.lastname@fr.thalesgroup.com

Abstract
We propose an approach based on Alloy to formally model and assess a system architec-

ture with respect to system-level safety requirements. The system on which we instantiate
our approach is a specific Required Navigation Performance system from a Thalès Avion-
ics named Localizer Performance with Vertical guidance Approach (LPV). In this article, we
describe how to define such a system architecture and how to verify safety objectives.

1 Introduction

This work has been produced in the context of the Artemis European project CESAR, ended in
2012. The aim of CESAR was to boost cost efficiency of embedded systems development and
safety and certification processes in the different domains: automotive, aerospace, rail and au-
tomation. To achieve this goal, CESAR promoted model-based techniques and formal methods.

In this context, Thales Avionics and Onera collaborated on applying formal methods in order
to assess avionic architectures. Indeed, in the avionic domain, the definition of the architecture
is one of the main activities in the development phase. The architecture must be defined very
early and must validate different constraints such as physical reuse, safety, security, etc. . .

To help avionics architects to define the final architecture, modelling facilities are currently
deployed and linked to early validation capabilities. The aim of this work is to study the benefit
of a formal method in order to assess models of avionic architectures with respect to some
specific high-level safety requirements. We will use the formal language (and its associated
tool) Alloy and apply our approach on a specific RNP approach called Localizer Performance
with Vertical guidance Approach (LPV approach).

2 LPV case study

An approach with vertical guidance (APV) uses lateral and vertical guidance, and does not
meet the requirements established for precision approach and landing operations. Depending
on the type of APV procedure, lateral guidance can be provided from either stand-alone Global
Navigation Satellite Systems (GNSS), or by RNAV derived positioning using multi-sensor posi-
tioning capability. Vertical guidance can be provided from GNSS augmentation system such as
SBAS (or possibly Galileo in the future) or a barometric reference.



Figure 1: LPV architecture

APV procedures are based on two different concepts, which allow to reduce minimums com-
pared to conventional Non-Precision Approaches. On the one hand, the APV-BARO (highly
developed in the mainline segment) relies on navigation systems with high integrity baro-
altimeter equipment with temperature compensation. On the other hand, the second concept
called APV-SBAS relies on a satellite based augmentation system that improves the navigation
system localization through the enhancement of GNSS localization precision and error correc-
tion.

LPV approach is characterized by a Final Approach Segment (FAS). FAS is the approach path
which is defined laterally by the Flight Path Alignment Point (FPAP) and landing Threshold
Point/Fictitious Threshold Point (LTP/FTP), and defined vertically by the Threshold Crossing
Height(TCH) and Glide Path Angle (GPA).

In this article, we consider the functional architecture of the LPV system and assess the two
following safety objectives:

• Loss of LPV capability. The architecture must have two independent ways to provide LPV
data.

• Misleading information integrity. The architecture must control the value of the LPV data
provided by each calculator and between each screen and find mitigation in case of erro-
neous data.

3 Evaluation of the case study with Alloy

Alloy [2] is a formal system-modelling language amenable to automatic analyses. Alloy is im-
plemented as a cost-less free-software tool, the Alloy Analyzer, which is programmed in Java
and hence runnable on the majority of platforms. With respect to the safety objectives we are go-
ing to assess, the AltaRica [1] language would have been another possible choice. However, we



decided to take benefit from the model-based aspect of Alloy and its expressiveness for the spec-
ification of the properties to check. Indeed, Alloy allows to define easily the metamodel of the
avionic architectures we will analyze instead of encoding them in terms of AltaRica concepts.
Moreover, the specification of the properties we want to check are expressed in (a relational
extension of) first-order logic with many features adapted to model-based reasoning.

To represent the functional architecture of LPV (see Fig 1) in Alloy, we identified the major
concepts at stake and defined an Alloy signature for each of them: Function, Port, IPort (input
port), OPort (output port). Each Function has a set input of IPorts and a set output of OPort as
attributes. An OPort of a function is related to a set of IPort of other functions through a flow
and to a set of IPorts of the very function through the relation dependsOn in order to express
which input ports can influence an output port (in term of failure propagation). Each function
and each port hold a dysfunctional status (OK, Lost, or Err). Moreover, each port has a value.
Notice that, in our model, the value will only be useful for certain ports, representing the pilot
selection, the discrepancy between both LPV processing, and the reset of displays. Concerning
the other ports, we only deal with their status and the value is just ignored (a finer modelling
would have been possible here but it would have led to a worthless, more complex model). The
following Alloy code corresponds to these concepts definitions (see also Fig. 2).

enum Status { OK, Err, Lost }
abstract sig Port {

status : Status,
value : Value

}
abstract sig Port {

status : Status,
value : Value

}
abstract sig IPort extends Port {}
abstract sig OPort extends Port {

flow : set IPort,
dependsOn : set IPort

}
abstract sig Function {

input : set IPort,
output : set OPort,
status : Status

}

We then define instances of these concepts corresponding to the LPV functional architecture.
The function instances take into account the selection of the source by the crew (SelectSource),
two occurrences of SBAS positioning (ComputeSBAS1, ComputeSBAS2), two occurrences of
LPV processing (ComputeLPV1, ComputeLPV2), three occurrences of displays (Acquirei, i ∈
{1..3}), three occurrences of display resetters (Crosschecki, i ∈ {1..3}) and of monitors in order
to launch an alarm, (Monitori, i ∈ {1..3}). We also define the different ports of each function,
and the way ports are related to each other via flows. For instance, the following Alloy code is
an excerpt of the flow definition, expressing that the output port oSBAS1 is related to the input
port iSBAS1 via a flow (idem for oSBAS2 and iSBAS2).

flow = oSBAS1→iSBAS1 +oSBAS2→iSBAS2 +...

We also define some global constraints the architecture must satisfy, such as the fact two
ports related by a flow share the same status and the same value:



Status

ErrLost OK

Port

status

IPort

OPortValue

value

dependsOnflow

v0 v1

Function

status

input

output

Figure 2: Case study metamodel (simplified)

all p1, p2 : Port | p1→p2 in flow implies p1.status = p2.status and p1.value = p2.value

We now define the relation between input and output ports inside each function in term
of failure propagation. For instance, the following code expresses that the status of the output
port oDeviation1 of function ComputeLPV1 is equal to the status of the input if the function
ComputeLPV1 is OK, is equal to Lost of the function ComputeLPV1 is lost, and is erroneous
(Err) otherwise.

let st = ComputeLPV1.status |
oDeviation1.status = {

st = OK implies iSBAS1.status
else st = Lost implies Lost
else Err

}

The following code defines the status of the output port oSelected1 of function Aquire1. If
this function is OK, oSelected1 the status is either equal to the status of its first input or to the
status of its second input, depending on the selection made by the pilot. If the function Aquire1
is lost, then the status of output oSelected1 is lost. Otherwise, it is erroneous.

let st = Acquire1.status |
let v = iSelection1.value |
oSelected1.status = {

st = OK and v = v0 implies iDeviation11.status
else st = OK and v = v1 implies iDeviation21.status
else st = Lost implies Lost
else Err

}

Similarly, we define, for each function, output ports status (and value in the case of pilot
selection, discrepancy, and display reset) from input ports status (and value).



oDeviation1

iDeviation11 iDeviation12iDeviation13

Acquire1 Acquire2Acquire3

oDeviation11

iMonitor11

Monitor1

oDeviation12

iMonitor12

Monitor2

oDeviation13

iMonitor13

Monitor3

oDeviation2

iDeviation21 iDeviation22iDeviation23

oDeviation21

iMonitor21

oDeviation22

iMonitor22

oDeviation23

iMonitor23

oSBAS1

iSBAS1

ComputeLPV1

oSBAS2

iSBAS2

ComputeLPV2

oSelected1

iSelected11iSelected12 iSelected13

Crosscheck1Crosscheck2 Crosscheck3

oSelected2

iSelected21iSelected22 iSelected23

oSelected3

iSelected31iSelected32 iSelected33

oSelection

iSelection1 iSelection2iSelection3

oReset1oReset2 oReset3oDiscrepancy1 oDiscrepancy2oDiscrepancy3

ComputeSBAS1 ComputeSBAS2

SelectSource

Figure 3: Visualization of LPV functional architecture in the Alloy Analyzer (excerpt)

Then, Alloy Analyzer proposes, with the command run to produce automatically an in-
stance that satisfies all the definitions we expressed, and the global constraints. Of course,
this is only possible if there is no inconsistency in the definitions. We can customize the way
the instance is graphically displayed. Fig. 3 shows an excerpt of an instance produced by the
Analyzer, where functions are represented by blue rectangles, output ports by red “inversed
houses”, and output ports by green inversed trapezoids. The status and values are not dis-
played.

We are now able to check formally various properties expressed in Alloy. A first kind of
properties we can check consists of structural properties about the model. For instance, the
fact that a port can only belong to one function, the fact that flows correspond to one-to-many
communication, and the fact that ports that are related by the dependsOn relation belongs to
the same function, is expressed by the following properties:

assertmodel_structure {
input in Function one→IPort
output in Function one→OPort
flow in OPort one→IPort
all op : OPort, ip : op.dependsOn | ip in (output.op).input

}

The command checkmodel_structure verifies that, up to a certain bound, all possible in-
stances of the model satisfy these properties. If it is not the case, it yields a counter-example
instance.

Now we want to validate the safety objectives expressed in Sect. 2. Concerning the Loss of
LPV capability constraint, we express the following property:

• If one (and only one) LPV processing is lost, and if the pilot does a correct selection, then the data sent
by the three displays are still correct. This corresponds to the following Alloy code (for the loss of
LPV1):



assert one_computer_lost {
(all f: Function | (f 6=ComputeLPV1 implies f.status=OK)

and ComputeLPV1.status=Lost and oSelection.value=v1)
implies oSelected1.status = OK

and oSelected2.status = OK
and oSelected3.status = OK

}

The command check one_computer_lost verifies that the model satisfies this property.

Concerning the Misleading information integrity constraint, we expressed two properties to be
satisfied by the functional architecture:
• If one LPV processing produces erroneous data, then an alarm (modeled by the variables oDiscrepancy)
is launched on the three displays. This corresponds to the following Alloy code (for the LPV1 in
erroneous failure mode):

assert one_computer_erroneous {
(all f: Function | (f 6=ComputeLPV1 implies f.status=OK)

and ComputeLPV1.status=Err)
implies oDiscrepancy1.value=v1

and oDiscrepancy2.value=v1
and oDiscrepancy3.value=v1

}

• If one display returns an erroneous data, it resets itself. This corresponds to the following Alloy
code (for display 1 (Acquire1) in erroneous failure mode:

assert one_display_erroneous {
(all f: Function | (f 6=Acquire1 implies f.status=OK)

and Acquire1.status=Err)
implies oReset1.value=v1

}

All the properties we have expressed in this section are validated by Alloy Analyzer.

A last aspect we verified concern the “functional chains”, used by Thales to support safety
analyses. A functional chain is sequence of functions and ports linked by flows that lead to a
given output port. If we know all the functional chains leading to a given output port viewed
as a target data, it gives information about all the functions whose failure could have an impact
on the integrity of the target data. It turns out from discussions that these functional chains are
specified by engineers by hand. We propose here a way to generate all the functional chains
leading to a given output port (this set of functional chains defines what we call a functional
tree). The following Alloy code defines what a functional tree is. It is defined by an inductive
relation next and a given output port target satisfying the following constraint:

abstract sig FTree {
next : Port→ Port,
target : OPort

}
fact {

all ft : FTree, p0, p1 : Port | p0→p1 in ft.next iff {
(p1 = ft.target and p0 in p1.dependsOn) or



iDeviation11

oSelected1

iDeviation21

iSBAS1

oDeviation1

iSBAS2

oDeviation2

iSelection1

oSBAS1oSBAS2

oSelection

Figure 4: Example of a functional tree

(some p2 : OPort | p1→p2 in ft.next and p1 in p0.flow) or
(some p2 : IPort | p1→p2 in ft.next and p0 in p1.dependsOn)

}
}

So that Alloy Analyzer generates a functional tree whose target is the output port oSelected1
(output of functionAquire from display 1), we have to specify a simple predicate expressing that
there is a functional tree whose target is oSelected1, and then to ask for an instance satisfying
this predicate, with the command run.

pred functional_tree_oSelected { some ft : FTree | ft.target = oSelected1 }
run functional_tree_oSelected

This command produces an instance displayed by Alloy analyzer as showed by Fig. 4

4 Conclusion

In this article, we modeled the LPV functional architecture in the Alloy language. We then
expressed different properties from the safety objectives in Alloy language. We checked with
Alloy analyzer that these properties are fulfilled by the model. We also proposed a definition
that allows to generate all the functional chains leading to a given data, in order to support
some safety analyses.



References
[1] A. Arnold, A. Griffault, G. Point, and A. Rauzy. The altarica formalism for describing concurrent

systems. Fundamenta Informaticae, 2-3:109–124, 2000.

[2] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT Press, 2006.


	Introduction
	LPV case study
	Evaluation of the case study with Alloy
	Conclusion

