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Convergent EKF-based control allocation: general formulation and
application to a Control Moment Gyro cluster.

Ervan Kassarian1, Mathieu Rognant2, Helene Evain3, Daniel Alazard1, Corentin Chauffaut1

Abstract— This paper addresses control allocation for re-
dundant systems with the Extended Kalman Filter formalism.
This method is compatible with the low computational power
available in space environment, and presents a flexible frame-
work to include constraints such as singularity avoidance. The
convergence domain of the allocator is derived from the con-
traction theory framework, depending on specific parameters
of the system. A general formulation is proposed to maximize
the convergence domain with regard to these parameters.
The method is applied to design a steering law of Control
Moment Gyroscopes. Experimental tests show that the control
allocation allows the actuators to work efficiently along nominal
trajectories while avoiding singularities when necessary.

Keywords: control allocation, redundant actuators, Extended
Kalman Filter, singularity, Control Moment Gyro

I. INTRODUCTION

The control architecture of an over-actuated system usually
consists of three levels [1] as shown in Fig.1. First, a high
level controller computes the control efforts that are needed
to perform the desired overall motion. Next, control alloca-
tion coordinates the set of actuators to generate the required
forces or torques on the system. Last, low-level control
algorithms ensure that each individual actuator follows a
desired closed-loop dynamic.

Fig. 1: A common control architecture for redundant systems

As presented in [1], the three levels of command can
be handled with a modular approach. While the high-level
controller usually adjusts the performances of the closed-
loop system, control allocation addresses specific constraints
such as saturation or power efficiency. Moreover, so-called
singular configurations exist for which the actuators locally
become unable to work in a given direction. Control alloca-
tion must address these singularities as well.

This paper focuses on the control allocation and its real-
time implementation in robotics system. For a wide range
of mechanical systems such as multi-degree-of-freedom ma-
nipulator arms, cable robots, submarines or satellites, the
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dynamic model is linear in the control input:{ .
x = f(x)+G(x)u
y = h(x)

(1)

with x ∈ Rn the state, u ∈ Rl the control input, y ∈ Rm the
controlled output with l >m, G∈Rn×l , f and h differentiable
functions (in this paper, vectors are written in bold small
letters and the matrices are in bold capital letters).

Then, as proposed in [2], the allocation problem can be
rewritten under the classic form addressed in [3]:

.
y = J(x)

.
x (2)

where J(x) = ∂h
∂x is the Jacobian matrix of the non-linear

function h depending on the configuration x.
Numerous allocation methods are proposed in the litera-

ture to perform the nonlinear dynamic inversion of (2), often
based on the Moore-Penrose pseudo-inversion:

.
x = JT (JJT )−1 .

y = J† .
y (3)

However, the matrix J† is undefined for singular configu-
rations, that is, when JJT is not invertible, and a Moore-
Penrose allocation leads to saturations of the system in the
vicinity of such singularities. To ensure the invertibility of
the system, [4] and [5] proposed the Singular Inverse Robust
method (SRI) which consists in inverting JJT +λ I instead of
JJT , with λ a tunable parameter. For example, [6] proposes
to adjust λ dynamically using the singular values of J but
this requires to perform a singular value decomposition.
Adjustments with smaller computational costs exist but they
may induce larger errors and slow convergence [7]. The
additional degrees of freedom provided by a redundant sys-
tem also motivate optimization-based solutions. For example,
quadratic programming [8] or fixed-point method [9] are
adequate to address the allocation problem. However, their
iterative nature leads to high computational costs.

An allocation method using the Extended Kalman Filter
(EKF) formalism was introduced in [2] as an interesting
alternative to the existing allocation algorithms. This EKF-
based allocator is compliant with real-time constraints while
addressing the singularity avoidance and saturation man-
agement. It also provides flexibility regarding additional
constraints that can be added as equations with the covari-
ance matrices sizing their relative weights. Furthermore, the
convergence of the allocator can be studied with the literature
results concerning the stability of the EKF in general.
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In this paper, the recent development on the contraction
framework [10] is investigated to derive a general formula-
tion of convergent EKF-based allocators. In a first part, con-
vergence proofs are briefly reminded to highlight the main
parameters that should be considered to ensure a suitable
convergence domain of the allocator. Then, in a second part,
a general formulation of a discrete EKF-based allocator is
presented. The proposed formulation aims at maximizing the
convergence domain while handling the system specifications
and the allocator implementation. Finally, in a third part, this
method is applied to a cluster of Control Moment Gyroscopes
(CMGs) and tests are carried out. Contributions regarding the
previous work [2] are essentially the new convergence proof
based on the contraction framework and the experimental
validation.

II. CONVERGENCE ANALYSIS

It is essential to ensure the convergence of the allocation
control toward an optimal solution. Proofs already exist for
allocation methods but most of them are closed-loop results
[11], [12]. The convergence of the EKF-based allocator
has the advantage that standard EKF stability results are
applicable, as stated in [2]. Thus convergence of the control
allocation can be assessed whatever the high-level motion
controller used (Fig.1).

The convergence proof as originally used in [2] relies
on a Lyapunov approach [13]. The recent work on the
contraction framework exploits a different approach of the
notion of stability, as described in [14]. While the Lyapunov
framework directly studies the evolution of the discrepancy
between the estimated state and the true state, the contraction
theory analyses whether nearby trajectories converge to one
another. As a consequence, the convergence criterion derived
in [10] is generally less conservative and is used in this paper.

A. Assumptions

Consider the estimation model:

v̂k = fk(vk−1)+ εεεv, mk = gk(v̂k)+ εεεm (4)

with vk the state estimate vector at step k, v̂k the predicted
state vector, mk the measurement vector, εεεv (resp. εεεm) the
prediction (resp. measurement) error characterized by the
covariance matrices Qk (resp. Rk). Let us note Pk the covari-
ance of the estimation error, Fk (resp. Ck) the Jacobian matrix
of fk (resp. gk), and D2fk (resp. D2gk) the corresponding
Hessian tensor.

Assuming that each of the EKF matrices is positive defi-
nite and bounded, let us define for any step k the following
bounds with the 2-norm:

f I≤ Fk ≤ f̄ I, cI≤ Ck ≤ c̄I
qI≤Qk ≤ q̄I, rI≤ Rk ≤ r̄I

(5)

Under these assumptions, P can be bounded, which is
necessary to apply the results of [10]. Furthermore, it is
assumed that the prediction is linear and the Hessian D2gk
is bounded:

||| D2fk |||= 0, ||| D2gk |||≤ κC (6)

The latter assumption is sufficient to derive the convergence
domain proposed in [10].

B. Bounding the covariance P
Let us write the EKF equations for the state covariance P

under their information form as in [15]:

Pk+1|k = FkPkFT
k +Q (7)

P−1
k+1 = P−1

k+1|k +CT
k R−1

k Ck (8)

Assuming that P is already bounded at a given step k, and
under assumption (5), then P is bounded at step k+1:

pI ≤ Pk ≤ p̄I⇒ 1
1

f 2 p+q
+ c̄2

r︸ ︷︷ ︸
p+(p)

I≤ Pk+1 ≤
1

1
f̄ 2 p̄+q̄ +

c2

r̄︸ ︷︷ ︸
p̄+(p̄)

I (9)

By induction, solving p0 = p+(p0) and p̄0 = p̄+(p̄0)
provides bounds p0 and p̄0 for P0 that will hold for any
k ≥ 0.

C. Domain of convergence

Under the aforementioned assumptions, [10] guarantees
the convergence of the EKF for an initial error inferior to:

|| e0 ||≤
√

p
p̄

√qr
√

2κC p̄
(10)

An adequate set of matrices bounds is essential to yield
non-conservative bounds of P in (9) and strong convergence
guarantee in (10).

The bounds of the Jacobian matrices F and C and covari-
ance matrices Q and R essentially derive from the choice of
the state vector as well as the prediction and measurement
equations. For the implementation in a given system, the
dynamic (2) has to be discretized and linearized. The risk
of divergence of the control allocation arises from this
linearization. In the current work, the linearization error is
taken into account with the bound κC of the Hessian D2gk.
The proposed formulation takes advantage of the explicit
expression of the convergence domain (10) to ensure its
compliance with the system specifications.

To conclude the convergence analysis, the contraction
theory provides a general framework to characterize the
stability of the EKF. Under a few assumptions, a general
expression of the convergence domain can be obtained. The
influence of the system specifications on this expression can
be explicitly derived within the proposed EKF formulation
to maximize the convergence of the allocation control.

III. A GENERAL FORMULATION OF THE EKF-BASED
ALLOCATOR

In this part, a general formulation of an EKF-based
allocator is proposed to perform the dynamic inversion of
(2) while verifying assumptions (5) and (6) and optimizing
the guaranteed convergence domain (10) with regard to the
system specific features.



Similarly to a Recursive Least-Squares approach [16], the
EKF minimizes the following criterion:

min
v

{
(m−g(v̂))T R−1(m−g(v̂))+(v̂−v)P−1(v̂−v)

}
(11)

Regarding (11), the proposed method is close to
optimization-based allocators such as in [8], yet requires
lower computational load due to its recursive nature. With
this in mind, the EKF equations can be seen as deterministic
constraints, and the covariance matrices as weights asso-
ciated to these constraints. In the following sections, we
propose to define the weight of each equation accordingly to
the specifications of the considered system. One weight will
depend on the current state of the system in order to allow
singularity avoidance. The other weights will be constant and
essentially aim at limiting the actuators’ efforts with regard
to their maximum capacities.

A. Normalized state variables

It is assumed that, when the control allocation function
is called at a given time t, the vectors x(t) and

.
x(t) are

measured and provided to the EKF. As presented in Fig.1,
allocation control computes the desired command

.
xd(t +Ts)

to be sent to the actuators, where t is the current time and
Ts is the sampling time of the allocator.

Let ẋn and ẏn be two normalization parameters that can
be adjusted to ensure a proper conditioning of the matrices,
and let us define the state vector as:

v =

[
v1
v2

]
=

[ .
xd(t+Ts)

ẋn.
y(t+Ts)

ẏn

]
∈ Rm+n (12)

B. Prediction phase

This phase consists in predicting the same solution as in
previous step:

v̂1(t +Ts) = v1(t)+ εεεv1

v̂2(t +Ts) = v2(t)+ εεεv2
(13)

Considering criterion (11), prediction phase formulates
a constraint on the accelerations

.
xd(t +Ts)−

.
x(t) and

.
y(t +Ts)−

.
y(t). More specifically, the prediction model

weights solutions with constant rate. This helps limiting
the actuators’ effort and preventing saturation. Thus, the
associated weights – the covariance of εεεv1 and εεεv2 – can
be defined with regard to the maximum capacities of the
system.

C. Correction phase

In this phase, the allocation dynamic (2) is formulated as
a measurement equation. Two other measurement equations
are formulated to produce the desired command

.
yd while

ensuring the avoidance of singularities and saturation.
The first measurement equation constrains the state vari-

ables to respect the dynamic (2):

0n×1 = m1 =
J(x(t +Ts))

.
x(t +Ts)−

.
y(t +Ts)

ẏn
+ εεεm1

(14)

This equation is not linear. The associated covariance can be
defined as an estimation of the maximum error ∆ẏerr when
linearizing the allocation problem (2).

The tracking of the reference
.
yd is constrained by the

second measurement equation:
.
yd

ẏn
= m2 = v2 + εεεm2 (15)

Its covariance mainly depends on the distance to singulari-
ties, which can be evaluated with the scalar det(JJT ) – it is a
continuous function that equals 0 for singular configurations.
Far from any singularity, the covariance value is set to
a minimum so as to precisely generate the desired task.
However, close to a singular configuration, the inversion of
the dynamic (2) becomes an ill-conditioned problem. In this
case, increasing the covariance loosens the constraint on the
reference tracking. In combination with next measurement
equation, this allows to avoid singularities.

The actuators constraint on
.
x is handled with the third

measurement equation:

0 = m3 = v1 + εεεm3 (16)

with a covariance sized with the maximum capacity in speed
of the system. With respect to the criterion (11), this equation
helps minimizing the actuators’ effort – represented by a
quadratic expression in

.
xd(t +Ts) – such as proposed in [8]

with a standard optimization approach. This is valuable not
only for power efficiency, but also for singularity avoidance.
Indeed, heading toward a singularity will require increasing
efforts from the actuators to compensate for their loss of ca-
pacity in the singular direction. This is prevented by limiting
the efforts of the actuators. In this formulation, singularity
avoidance essentially arises from the optimal solution of (11)
being balanced between the reference tracking (15) and the
actuators restriction (16).

D. Evaluation and maximization of the convergence domain
The equations formulated above cover the resolution of

the allocation problem with the EKF formalism. In this part,
the evaluation of the convergence domain is addressed as
well as its maximization using the normalization parameters
of the state vector.

With the notations of II-A, F is the Jacobian matrix of the
prediction equation (13) and Q is the related covariance:

F = Im+n, Q = diag

((
Tsẍmax

ẋn

)2

In,

(
Tsÿmax

ẏn

)2

Im

)
(17)

To derive the Jacobian matrix C, it is first necessary to
find ∂g1

∂
.
xd

– corresponding to the first measurement equation
(14). To do so, let us write the first order approximation of
the dynamic equation (2) between t and t +Ts:

∆
.
y≈ ∂J(x)

.
x

∂x
∆x+J(x)∆

.
x (18)

As shown in Fig.1, the actuators generating
.
x are generally

controlled in a low-level closed-loop. This controller is



typically tuned to impose a first-order or a damped second-
order dynamic. In this context, it can be assumed that:

∆
.
x = α

( .
xd(t +Ts)−

.
x(t)

)
∆x = Ts

.
x(t)+Ta

( .
xd(t +Ts)−

.
x(t)

) (19)

where α and Ta are parameters depending on the closed-loop
dynamic of the actuators and of the sampling time Ts.

From (14), (15), (16), (18) and (19), the measurement
matrix C can be written:

C =
∂g
∂v

=


(

αJ(x)+Ta
∂J(x)

.
x

∂x

)
ẋn
ẏn
−Im

0m×n Im
In 0n×m

 (20)

And the associated diagonal covariance matrix:

R = diag

((
∆ẏerr

ẏn

)2

Im, r2Im,

(
ẋmax

ẋn

)2

In

)
(21)

The bounds of R can be set by
(

∆ẏerr
ẏn

)2
and

(
ẋmax
ẋn

)2
. Then,

r2 can be chosen as a decreasing function of det(JJT ) as
long as it stays between these bounds.

Similarly, the Hessian matrix derives from the second-
order approximation of the dynamic equation (2) and its
bound κC can be computed for the considered application.
The proposed matrices verify assumptions (5) and (6). In
particular, the Jacobian matrices keep full rank even when
J(x) is rank deficient.

The bounds of the matrices, thus the convergence domain
(10), are functions of the normalization parameters ẋn and
ẏn. For given values of ẋn and ẏn, they can be numerically
evaluated given the system specifications: ẋmax, ẍmax, ẏmax,
ÿmax, ∆ẏerr, Ts, α , Ta, and matrices J(x) and derivatives of
J(x)

.
x. The values of ẋn and ẏn must be chosen such that

the convergence domain is greater than the maximum error
|| e0 || on the state vector v, that derives directly from the
system specifications Ts, ẍmax, ÿmax and from the parameters
ẋn and ẏn according to the expression of v in (12). It is also
important to ensure that the matrices’ bounds do not fall
below a threshold given by the numerical precision of the
on-board computer.

These two conditions may not be simultaneously verified.
In this case, two possible trade-offs arise regarding (10) to
guarantee the convergence. Increasing r, the lower bound
of the measurement covariance, improves the convergence
domain at the expense of the precision on the equations of the
dynamic (14) and of the reference command tracking (15).
Decreasing || e0 || by decreasing ẍmax and ÿmax constrains
the system capacities to ensure the numerical stability of the
allocation control.

IV. APPLICATION TO A CONTROL MOMENT GYRO
CLUSTER

In this section, the proposed procedure is applied to design
a steering law of a six Control Moment Gyro (CMG) cluster
in a pyramidal configuration. CMGs are used to perform

satellite attitude control and operate by kinetic momentum
transfer between the satellite frame and flywheels spinning
at a constant rate. More efficient than reaction wheels,
in particular with respect to their torque capabilities, the
drawbacks of these actuators lie in the complexity of their
steering law and mechanism. These points prevent their
use in low-cost nano-satellites with short design times. To
increase the technology readiness level of CMGs for the
nano-satellites market, an experimental setup with six CMGs
was designed and presented in [17]. This setup has been
successfully tested in micro-gravity conditions [18] during a
European Space Agency (ESA) parabolic flight campaign.
First, the modelling and the main characteristics of this
test bench are reminded. Next, the implementation of the
allocator is detailed. Last, experimental results are presented.

A. Description of the experimental setup

A Control Moment Gyro is composed of a flywheel that
spins at a constant rate, creating a fixed angular momentum
along an axis xxxi. Rotating the axis of rotation of the flywheel
along an axis zzzi, named gimbal axis, creates a gyroscopic
torque on the yyyi axis, as described in Fig 2a.

(a) CMG principle (b) Test bench

Fig. 2: Presentation of the experimental setup

The flywheels are actuated by small sensor-less brushless
motors regulated at a constant speed thanks to back Electro
Motive Force estimation. The gimbal axes are actuated
by servo module actuators including controller, driver and
network interfaces. These modules perform a speed control
by using absolute rotary encoders. After identification, the
closed loop dynamic of the gimbal axis could be approxi-
mated as a first order with a rising time of 200 ms. This
control is robust to the gyroscopic torques induced by the
angular velocity of the platform. The setup is autonomous
in energy and is equipped with an inertial measurement
unit and a monocular camera. The on-board computer is a
Raspberry Pi 3 which performs the estimation of the platform
state and computes the gimbal axis velocities references.
These functionalities are implemented as distinct software
components in a Robot Operating System (ROS) middle-
ware. The test bench is shown in Fig.2b.

B. Application of the proposed method

The system is a cluster of n = 6 Control Moment Gyro-
scopes. The angular position of the i-th gyroscope around
zzzi is noted σi. Let σσσ ∈ Rn be the vector composed of



the n angular positions. Let ht be the norm of the kinetic
momentum of a single flywheel (constant and identical for all
of them), along yyyi. The torque created by the i-th gyroscope
is: .

hi = ht σ̇iyyyi (22)

Let Y(σσσ) be the concatenation of the axes yyyi in the satellite
frame: Y(σσσ) = [yyy1(σ1) ... yyyn(σn)]. The torque created by
the CMG cluster is written:

.
h = htY(σσσ)σ̇σσ (23)

Therefore, this control allocation problem can be ad-
dressed using the proposed method with v1 =

σ̇σσ

σ̇n
and

v2 =
.
h
ḣn

. On the experimental test bench, the rotation speeds
σ̇i and the accelerations σ̈i cannot exceed ±5 rad/s and
±50 rad/s2 respectively. An analysis of the singular values
of Y(σσσ) showed that the maximum capacity in torque
was

.
hmax = 2.2ht σ̇max. The refreshing rate of the allocation

control is 1
Ts
= 16Hz.

The bounds of the matrices were evaluated according to
the matrix Y(σσσ) and the system parameters. With the values
σ̇n = 300 rad/s and ḣn = 660 ht , the convergence domain
was compliant with the maximum capacities in torque and
actuators speeds while all the numerical bounds were kept
above 10−7.

C. Experimental results

The test bench is maintained motionless. The total angular
momentum h created by the cluster of 6 CMGs is evaluated
using the vector of angular positions σσσ and controlled in
feedback with regard to a reference value hd reached after
a ramp of 2 s. The high-level controller is a single gain
kp =

1
5Ts

computing the allocator’s input torque
.
hd .

Two reference inputs hd are tested. The first one is close
to the maximum capacity of the CMGs cluster. The second
one is chosen so that the trajectory meets a singularity.
For the latter, the EKF-based allocation is compared with
a classical Moore-Penrose inversion to illustrate the capacity
of the method to avoid singularities.

1) Reference trajectory – without singularity: Fig.3 shows
the experimental results for a desired angular momentum:

hd =
[

0 0 0.025
]

N.m.s (24)

Top-down are plotted the angular momentum h of the
bench compared to the desired vector hd , the determinant
det(YYT ), the desired rotation speeds sent to the CMGs (the
output of the allocator), and the projection of these rotation
speeds onto the kernel space of J(x).

The determinant det(YYT ) is a measure of the distance
to singularities: it is a continuous function that equals 0 for
singular configurations. Here it decreases after 5s because
the configuration is approaching the maximum capacity of
the cluster in angular momentum, which is an external
singularity. However, there is no internal singularity along
the trajectory and the reference tracking is satisfying.

The kernel space of Y(σσσ) regroups the rotation speeds σ̇σσ

that do not produce any resulting torque :
.
h = Y(σσσ)σ̇σσ ker = 0.

Fig. 3: Reference trajectory with the EKF control allocation

Hence, the projection of the rotation speeds σ̇σσ onto the kernel
space of of Y(σσσ) represent efforts of the actuators that do
not contribute to any output torque. In this case, the vector
of the rotation speeds σ̇σσ stays orthogonal to the kernel space.
This means that the efforts are minimized – accordingly to
the third measurement equation (16).

2) Singularity avoidance: The following reference direc-
tion was chosen so as to meet a singular configuration:

hd =
[

0.0151 0 0.0144
]

N.m.s (25)

In order to bring out the presence of a singularity, the test
was first performed with a Moore-Penrose allocation. Results
are presented in Fig.4. Perturbations of large amplitude can
be observed in angular momentum, due to the configuration
staying for a long time in the vicinity of the singularity
as shown by the determinant plot. Because of Y(σσσ) being
poorly conditioned, the actuators are highly solicited with
set-points exceeding the saturation value of 5 rad/s. Moore-
Penrose trajectory is always orthogonal to the kernel space
of Y(σσσ) since it locally minimizes || σ̇σσ ||.

Fig.5 shows the same direction followed with the EKF
allocator. The presence of the singularity is indicated by the
determinant being almost null between 4s and 6s. However,
unlike the Moore-Penrose trajectory (Fig.4), the rotation
speeds have non-null components in the kernel space be-
tween 4s and 6s, which allowed the cluster to reconfigure in
order to escape the singularity. As a result, the rotation speeds
are acceptable and stay far enough from saturation, even if
they are higher than for the trajectory without singularity
(Fig.3).

V. CONCLUSIONS

A general formulation of the EKF-based allocator was
proposed, relying on the recent development of the con-
traction framework to maximize its convergence domain



Fig. 4: Moore-Penrose allocation in presence of a singularity

Fig. 5: Singularity avoidance with the EKF control allocation

with regard to the system specific parameters. While sim-
ilar to optimization-based methods, the EKF-based allocator
presents promising real-time capabilities, in particular for
space applications where the computational cost is restricted.
With this in mind, it was implemented on a test bench of
Control Moment Gyros. Experimental tests showed that the
actuators’ efforts were minimized when no singularity was
met, and that the singularity avoidance was performed by
allowing small errors on the controlled output.

However, the singularity avoidance is purely reactive,
based on balancing the increasing commands required by
the loss of capacity in a singular direction. Theoretically,
many of the singularities can be avoided without any error

by re-configuring the actuators early enough in the trajectory.
Future work will aim at including prior knowledge of the
system configurations in order to anticipate the singularities
before meeting them and thus ensuring avoidance without
any error or delay on the controlled output.
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