N

N

Focal-plane-assisted pyramid wavefront sensor: Enabling
frame-by-frame optical gain tracking
Vincent Chambouleyron, Olivier Fauvarque, Jean-Frangois Sauvage, Benoit

Neichel, Thierry Fusco

» To cite this version:

Vincent Chambouleyron, Olivier Fauvarque, Jean-Frangois Sauvage, Benoit Neichel, Thierry Fusco.
Focal-plane-assisted pyramid wavefront sensor: Enabling frame-by-frame optical gain tracking. As-
tronomy and Astrophysics - A&A, 2021, 649, pp.A70. 10.1051/0004-6361/202140354 . hal-03256256

HAL Id: hal-03256256
https://hal.science/hal-03256256

Submitted on 10 Jun 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License


https://hal.science/hal-03256256
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A&A 649, A70 (2021)
https://doi.org/10.1051/0004-6361/202140354
© V. Chambouleyron et al. 2021

tronomy
Astrophysics

Focal-plane-assisted pyramid wavefront sensor: Enabling
frame-by-frame optical gain tracking

V. Chambouleyron'-?

I Aix Marseille Univ, CNRS, CNES, LAM, Marseille, France
e-mail: vincent . chambouleyron@lam. fr

, O. Fauvarque3, J.-F. Sauvagez’l, B. Neichel', and T. Fusco®'!

2 DOTA, ONERA, Université Paris Saclay, 91123 Palaiseau, France
3 IFREMER, Laboratoire Detection, Capteurs et Mesures (LDCM), Centre Bretagne, ZI de la Pointe du Diable, CS 10070,

29280 Plouzane, France

Received 15 January 2021 / Accepted 1 March 2021

ABSTRACT

Aims. With its high sensitivity, the pyramid wavefront sensor (PyWFS) is becoming an advantageous sensor for astronomical adaptive
optics (AO) systems. However, this sensor exhibits significant non-linear behaviours leading to challenging AO control issues.
Methods. In order to mitigate these effects, we propose to use in addition to the classical pyramid sensor a focal plane image combined
with a convolutive description of the sensor to fast track the PyWFS non-linearities, the so-called optical gains (OG).

Results. We show that this additional focal plane imaging path only requires a small fraction of the total flux while representing
a robust solution to estimating the PyYWFES OG. Finally, we demonstrate the gain that our method brings with specific examples of

bootstrapping and handling non-common path aberrations.

Key words. instrumentation: adaptive optics — telescopes

1. Introduction

The pyramid wavefront sensor (PyWES), which was proposed
for the first time in 1996 by Ragazzoni (1996), is an opti-
cal device used to perform wavefront sensing. Inspired by the
Foucault knife test, the PyWFS is a pupil plane wavefront sen-
sor performing optical Fourier filtering with a glass pyramid
with four sides that is located at the focal plane. The pur-
pose of this glass pyramid is to split the electromagnetic (EM)
field into four beams producing four different filtered images
of the entrance pupil. This filtering operation allows the con-
version of phase information at the entrance pupil into ampli-
tude at the pupil plane, where a quadratic sensor is used to
record the signal (Vérinaud 2004, Guyon 2005). Recently, the
PyWES has gained the interest of the astronomical community
because it offers a higher sensitivity than the classical Shack-
Hartmann wave-front sensor (WFS) that is commonly used
in adaptive optics (AO) systems (Esposito & Riccardi 2001).
However, the PyWFS exhibits non-linearities that prevents a
simple relation between the incoming phase and the measure-
ments, leading to control issues in the AO loop. Previous studies
(Korkiakoski et al. 2008, Deo et al. 2019a) have demonstrated
that one of the most striking effect of this undesirable behaviour
is a time-averaged frequency-dependent loss of sensitivity when
the PyWFS is working in presence of non-zero phase. This detri-
mental effect can be mitigated by providing an estimation of
the so-called optical gains (OG), which are a set of scalar val-
ues encoding the loss of sensitivity with respect to each compo-
nent of the modal basis. The goal of this paper is to present a
novel way of measuring the OG. In the first section we introduce
the concept of the linear parameter-varying system (LPVS) to
describe the PyWFES, which opens the possibility of estimating
the OG frame by frame instead of considering a time-averaged

quantity. In the second section, we present a practical imple-
mentation of the method, enabling frame-by-frame OG tracking.
Finally, we illustrate this OG tracking strategy in the context of
closed-loop bootstrapping and handling non-common path aber-
rations (NCPAs).

2. PyYWFS seen as a linear parameter-varying
system

2.1. PyWFS non-linear behaviour and optical gains

In the following, we call s the output of the PyWFS. This out-
put can be defined in different ways. The two main definitions
are called ‘full frame’ or ‘slope maps’. In the first case, s is
obtained by recording the full image of the WFS camera, for
which a reference image corresponding to a reference phase has
been removed (Fauvarque et al. 2016). In the second case, the
WFES image is processed to reduce the useful information to two
pupil maps usually called ‘slope maps’ (Ragazzoni 1996). The
work presented here remains valid for full-frame or slope-map
computation, and we decided to use the full-frame definition
throughout.

When described with a linear model, the PyWFS outputs are
linked with the incoming phase ¢ through an interaction matrix
called M. This interaction matrix can be built with a calibration
process that consists of sending a set of phase maps (usually a
modal or a zonal basis) to the WFS with the deformable mir-
ror (DM) and then record the derivative ds(¢;) of the PyWFS
response for each component of the basis (Fig.1). This opera-
tion is most commonly performed with the so-called push-pull
method, consisting of successively sending each mode with a
positive and then negative amplitude a to compute the slope of

A70, page 1 of 7

Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


https://doi.org/10.1051/0004-6361/202140354
https://www.aanda.org
https://www.edpsciences.org
https://creativecommons.org/licenses/by/4.0

A&A 649, A70 (2021)

Fig. 1. Sketch of the PyWFS response curve for a given mode ¢;. The
push-pull method around a null-phase consists of computing the slope
of this curve at ¢; = 0.

the linear response,

5s(y) = W_ (1)

The interaction matrix (also called Jacobian matrix) is then
the collection of the slopes recorded for all modes,

M = (65($1), ..., 65(0), ..., Is(dN)). @)

In this linear framework, we can then link the measured
phase with the output of the PyWFS by the relation
s(¢) = M.¢. 3)

This matrix computation formalism has interesting prop-
erties that are required in the AO control loop. However, the
PyWES exhibits substantial non-linearities that make the equa-
tion above only partially true. Mathematically, the deviation
from linearity is expressed with the following inequality: s(a¢; +
@) # s(ag;) + s(¢), where ¢ is a non-null given phase. When
working around ¢, the slope of the linear response of the sensor
is therefore modified,

5S¢(¢,‘) _ sag; + ¢) . s(—ag; + ¢)
a
# 05(¢;). 4

During AO observation, the sensor is working around a non-
null phase ¢ corresponding to the residual phase of the system.
As a consequence of Eq. (4), the response of the system is mod-
ified. Previous studies suggested updating the response slopes to
mitigate this effect by relying on two main concepts. The first
concept is the stationarity of the residual phases (Rigaut et al.
1998). For a given system and fixed parameters (seeing, noise,
etc.), we can compute an averaged response slope for each mode.
It has been proven (Fauvarque et al. 2019) that under this sta-
tionarity hypothesis, the averaged response slope depends on the
behaviour of the statistical residual phases through their struc-
ture function (Dy), (6544, = I5p,(¢;). The second concept is the
diagonal approximation (Korkiakoski et al. 2008). This approx-
imation implies considering no cross-talk between the modes,
which means that the response slopes are only modified by a
scalar value for each mode. This value is known as the OG. We
then have 6sp, (¢;) = tiD¢ .05(¢;), where t"Dm is the OG associated
with the mode i for a given residual phase perturbation statistics
characterised by the structure function Dy. In this approxima-
tion, the shape of the response is left unchanged.

Finally, the interaction matrix is updated by multiplying by a
diagonal matrix Tp, called the OG matrix, whose diagonal com-
ponents are r

s(@) = (My).¢
= Mp,.¢
~ M.Tp,.¢. %)

A70, page 2 of 7

We used the scalar product presented in Chambouleyron
et al. (2020) to calculate the diagonal components of this matrix,

diag(M?, M)

diag(M'M) ©®

Tp, =
Several approaches to practically compute this matrix can
be found in the literature. They can be split into two categories:
those that are invasive for the science path, consisting of send-
ing some probe modes to the DM to return to the OG (Esposito
et al. 2015, Deo et al. 2019a), and those that rely on the knowl-
edge of the statistics of the residual phases through the telemetry
data to estimate the OG (Chambouleyron et al. 2020). In all the
proposed methods, the OG can be seen as an evaluation of a time-
averaged loss of sensitivity of the sensor. Being able to accurately
retrieve OG allows compensating for the sensitivity loss.

2.2. LPVS approach

As described by Eq. (4), the PyYWFS outputs are affected by the
incoming phase. The time-averaged definition of the interaction
matrix Mp,, is limited to a statistical behaviour of the PyWFS,
even though it has good properties. We propose a framework
that addresses the non-linearities in real time, with an interac-
tion matrix that is updated at every frame. To do so, we first
assumed that the diagonal hypothesis holds. Then, and inspired
by the automatic field domain, the PyWEFES is now considered as
an LPVS (Rugh & Shamma 2000): Its linear behaviour encoded
by the interaction matrix is modified at each frame according to
the incoming phase. Under this framework, the new expression
of the PyWFS output can be written as

where T, is the OG matrix for the given measured phase ¢.
Assuming the diagonal approximation holds, we can extract T
from the interaction matrix computed around ¢,

diag(M;M)

For a given system, repeating this operation on a set of dif-
ferent phases will eventually lead to the time-averaged definition
of the OG matrix,

(Ty) =T, &)

To illustrate the difference between the time-averaged
response and a single realisation, we performed the simula-
tion presented in Fig. 2. These simulations were made with
parameters consistent with an 8m telescope and for two seeing
conditions. All results showed in this paper rely on end-to-
end simulations performed with the OOMAO MATLAB toolbox
(Conan & Correia 2014). The exact conditions and parameters
are summarised in Table 1. In the simulation, we can compute
the exact PyWFS response by freezing the entrance phase and
performing a calibration process around this working point. We
therefore computed T; for 1000 residual phase realisations, and
show the OG variability for two seeing conditions in Fig. 2. This
represents an optimistic context where the Fried parameter r0
is fixed through the complete simulation. By estimating the T
with a time-averaging strategy, the errors on the OG correspond-
ing to a given residual phase can reach more than some dozen
percent (OG exhibiting a maximum deviation from the averaged
value are highlighted. This result illustrates the potential gain
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Fig. 2. Variability of closed-loop OG. For given system parameters we
compute T4 for 1000 phase realisations in two seeing configurations:
70 = 18cm and O = 12cm. The variability of the frame-by-frame
OG is shown in the histogram in the right panel and by the highlighted
extreme OG curves for each r0 case.

Table 1. Simulation parameters.

Resolution 80 pixels in telescope diameter
Telescope D = 8 m — no central obstruction
Atmosphere Von-Karman PSD - 3 layers

Deformable mirror  Generating atmospheric Karhunen-Loéve (KL) basis: 400 modes

A =550 nm — 40 subpupils in D

Sensing Path

of performing a frame-by-frame estimation of the OG instead
of a time-averaged one. In the next section, a practical means
for performing this frame-by-frame gain-scheduling operation is
presented.

3. Gain-scheduling camera
3.1. Principle

Obtaining an estimate of the OG values (the diagonal of Ty)
requires obtaining additional information describing the work-
ing point of the PyWFS at each moment, independently of the
PyWEFES measurements themselves. To this end, a specific sensor
called gain-scheduling camera (GSC) is implemented.

Empirically, it is well known that the PyWFS sensitivity
depends on the structure of the EM field when it reaches the
pyramid mask. For instance, the more this field is spread over
the pyramid mask, the less sensitive the PyWFS. In addition,
because sensitivity and dynamic range are opposing properties,
a well-known technique used to increase the PyWFS dynamic
range consists of modulating the EM field around the pyramid
apex. In order to keep track of the sensor regime, we therefore
suggest probing this EM field by acquiring a focal plane image
synchronously with the Pyramid WEFS data. This can be achieved
by placing a beam splitter before the pyramid mask and record-
ing the signal with a focal plane camera that has the same field
of view as the pyramid (Fig. 3).

In this configuration, the focal plane camera, hereafter called
the GSC, records the intensity of the modulated EM field seen
by the pyramid. By using the same exposure time and frame
rate as the WES camera, the signal observed is then an instanta-
neous AO-corrected point-spread function (PSF) convolved with

1 |

modulated
wavelront

Gain scheduling
camera

-

Fig. 3. Gain scheduling camera: A focal plane camera that records the
intensities of the modulated EM field with the same pyramid field of
view. This operation requires using part of the flux from the pyramid
path.

Fig. 4. Left: gain scheduling camera image for a flat wavefront. The
white circle is produced by the tip-tilt modulation of the pyramid signal.
Right: gain scheduling camera image for a given closed-loop residual
phase.

the circle of modulation. This is illustrated in Fig. 4, where the
modulation circle is shown on the left, and the replicas of this
modulation circle by the focal plane speckles are shown on the
right. By denoting €, the GSC signal, we can therefore write

Q¢ = PSF¢ * W, (10)

where w is the modulation weighting function. This function can
be thought of as a map of the incoherent positions reached by the
EM field on the pyramid during one integration time of the WFS
camera. This function is thus a circle for the circularly modu-
lated PyWFS (Fig. 5 right). £, has to be understood as the effec-
tive modulation weighting function: The phase to be measured
produces its own modulation, leading to PyWFS loss of sensi-
tivity, and the GSC is therefore a way to monitor this additional
modulation.

The next step is now to link this focal plane information
with the PyWEFES optical gains and merge the GSC and PyWFS
signal in one final set of WEFS outputs. In a previous work
(Chambouleyron et al. 2020), we demonstrated that the con-
volutive model of the PyWFS developed by Fauvarque et al.
(2019) can be used to predict the averaged OG if the statistical
behaviour of the residual phases (through the knowledge of their
structure function) is known. In Eq. (11) we recall the expression
of the PyWFS output in this convolutive framework,

s(¢) = IR x (I,¢), (11)

where IR is the impulse response of the sensor and the star
denotes the convolutive product. In the framework of the infinite
pupil approximation, the impulse response around a flat wave-
front can be expressed through two quantities, the mask complex
function m and the modulation function w (Fig. 5),

IR = 2Im(mi(7 * @)). (12)
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Fig. 5. Left: arg(m), the shape of the pyramid phase mask in the focal
plane. Right: w, the modulation weighting function: Different positions
reached by the EM field during one integration time.

We propose here to combine this model with the signal deliv-
ered by the GSC in order to compute the impulse response IR
of the PyWFS around each individual phase realisation. To do
this, we replaced w by the GSC data as described in Eq. (13),

13)

This new way to compute the impulse response can be con-
sidered as using the impulse response given for an infinite pupil
system (Eq. 12) for which we replaced the modulation weighting
function by the energy distribution at the focal plane, including
both the modulation and the residual phase.

Now that we are able to compute IR, at each frame, we can
estimate the OG matrix T, through the following computation

of its diagonal components as described in Chambouleyron et al.
(2020),

IR, = 2Im(m(m * Q).

i IRy * ¢i[ IR caiip, * ¢;)
Pe ™ (IRcatib * $ilIRcatib * ¢;)

(14)

where IR, is the impulse response computed for the calibra-
tion state, most commonly for ¢ = 0 (Fig. 4, left).

3.2. Accuracy of the estimation

It is now possible to test the accuracy of our estimator by com-
paring T and T. To do this, we computed the true T, through
end-to-end simulations by proceeding through the ideal way
described in section above: An interaction matrix was computed
around each given residual phase, from which the OG matrix
was derived (Eq. 8). This provides the ground truth to which the
gains estimated with the GSC are compared.

First results are shown in Fig. 6 for different seeing and
modulation conditions. As illustrated in Fig. 6, the real and esti-
mated OG agree well, demonstrating the accuracy of the pro-
posed method.

For the parameters used in our simulations, the estimation
remains accurate regardless of whether we are in open loop or
closed loop. The ripples seen in the ground-truth OG curves are
smoothed in the convolutive framework. The convolutive prod-
uct given in Eq. (11) tends to smooth the output of the PyWFS
even when the impulse response is computed around a non-
zero phase. Figure 6 also shows a slight deviation for low-order
modes for a low-modulation regime and a strong entrance phase
(open loop here).

3.3. Robustness to noise

The GSC has shown to be a reliable way to perform a fast
OG tracking, but it requires using a fraction of the photons
available in the sensing path. This inevitably competes with the
gain of sensitivity provided by the PyWFS. The goal of this
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Fig. 6. OG estimation for given residual phases thanks to the GSC are
compared with end-to-end simulation for different parameters (same
framework as in Fig. 2). OL: Open loop, and CL: closed-loop resid-
ual phases. Left: rO = 12.cm and riyoa = 34/D. Middle: rO = 12 cm and
Fmod = 3A/D. Right: rO = 18 cm and rpeq = 34/D.

section is then to demonstrate that our GSC approach is only
weakly affected by photon noise and therefore requires only a
small number of photons while performing an accurate frame-
by-frame OG estimation. To this end, we propose to inject noise
in the data delivered by the GSC and to probe the effect on the
OG estimation.

We ran simulations with the same parameters as described
above. The sensing path works around the central wavelength
Ae = 550 nm with the given bandwidth A4 = 90 nm and an ideal
transmission of 100%. The exposure time of the GSC is 2 mil-
liseconds (frame rate of the loop), and 10% of the photons are
used by the GSC camera. The GSC pixel size corresponds to
Shannon sampling of the diffraction-limited PSF. In this given
configuration, the data recorded by the GSC for a given closed-
loop residual phase (rO0 = 14cm, rmoq = 3 A/D) are presented
in Fig. 7 (top) for (a.) a noise-free system, (b.) a guide-star mag-
nitude equal to 8 (c.) a guide-star magnitude equal to 10, and
(d.) a guide-star magnitude equal to 12. For these three noise
configurations (mag = 8, 10, and 12), we estimated the OG for
500 realisations of the noise. The results are given Fig. 7 (bottom
part). The introduction of noise leads to an increased OG estima-
tion error, which logically scales with the signal-to-noise ratio
(S/N) according to +/np,. However, the GSC approach also still
performs a satisfactory OG estimation even for low-magnitude
guide stars. For even fainter guide stars, the noise effect might
be mitigated by integrating the GSC data over several frames. A
trade-off between noise propagation and OG error would then be
required.

These results are crucial because they demonstrate that the
GSC can be used with only a small fraction of WES photons,
leading to a limited repercussion on the S/N on the PyWFS. We
therefore have a way to estimate the OG, and to some extent
increase the linearity of the sensor while having a reduced effect
on its sensitivity.

3.4. GSC spatial sampling

Another aspect is the sampling of the GSC detector with
respect to the modulated PSE. If an under-sampling could be
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Fig. 7. Top: closed-loop GSC images for different entrance fluxes. In
the chosen configuration, the exposure time is 2 ms, and we collect
10% of the photons in the sensing path. a: infinite number of photons.
b: Guide-star magnitude =8 (np, = 55000 on the GSC). c: Guide-star
magnitude = 10 (n,, = 9000 on the GSC). d: Guide-star magnitude = 12
(npn = 1400 on the GSC). Bottom: OG estimate for the noise-free sys-
tem compared with the three noisy configurations.

considered, it would reduce the number of pixels required by
the GSC, and consequently reduce the practical implementation
complexity. To test this, we ran our algorithm for various sam-
plings of the GSC in order to see the effect on the OG estimation.
The results for a given closed-loop residual phase (r0 = 14 cm,
Fmod = 3) are given in Fig. 8. The sampling of the PSF can go
below the Shannon sampling (2 pixels per 4/D) without signif-
icant effect on the estimate. This result depends on the modula-
tion radius ryoq used, and we note that the OG estimate is not
affected as long as the pixel size dpx satisfies the Shannon crite-
rion for the modulation radius,

s)

When this criterion is not respected, the undersampled modula-
tion circle is seen as a disc (Fig. 8), which affects the OG esti-
mate for low-order modes.

As a concrete example, a PyYWFS for the Extremely Large
Telescope (ELT) working at A = 800 nm with a field of view of
2 arcsecs and with a sampling of Shannon/4 on the GSC would
require a GSC camera with no more than 250 x 250 px. This

dpx < Tmod/2.

Shannon/ 4

Shannon /16

|
Shannon /8

0.7 .
0.65 |
0.6

0.55

0.5 \,{r

e Shannon

Optical Gains

= Shannon/2
Shannon/4

e Shannon /8

s Shannon /16

0.45
100 200 300 100

KL modes

Fig. 8. Effect of the GSC sampling on OG estimate for a given closed-
loop residual phase (rO = 14 cm, rmoa = 3). Top: images delivered by
the GSC with different samplings. Bottom: effect on the OG estimate.

limited size allows for the use of low-readout noise cameras such
as GSC, and remaining in a photon-noise limited regime.

To conclude this section, we have shown that it is possible
to perform OG fast-tracking by using an image of the modu-
lated EM field at the focal plane. Our method uses a so-called
GSC providing non-biased information on the working point of
the PyWFS, and the subsequent OG estimate using a convolu-
tive model. We demonstrated that the GSC can work with a lim-
ited number of photons and pixels, which makes the practical
implementation fully feasible. The next section is dedicated to
quantifying the performance benefits of OG fast tracking with
the GSC.

4. Application to specific AO control issues:
Bootstrapping and NCPA handling

As shown in the previous sections, the GSC allows tracking the
PyWFS OG frame by frame and compensating for these non-
linearities. We illustrate here two possible situations in which the
GSC can significantly improve the performance: bootstrapping
and NCPA handling.

4.1. Bootstrapping

During the AO loop bootstrap, the PyWFS faces large ampli-
tude wavefronts (due to uncorrected turbulence), leading to
significant non-linearities that may prevent the loop from clos-
ing. Therefore this step is critical because it corresponds to the
moment at which the OGs are the most important. Monitoring
them frame by frame in order to update the reconstructor helps
closing the AO loop. Because of the timescales involved in the
AO loop bootstrap, this problem cannot be tackled by other OG
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True OG
—— GSC+-convolutive model
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Optical Gains
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Fig. 9. Bootstrapping with the help of the GSC. Top: images delivered
by the GSC at a time. t = 0 represents the beginning of the servo-
loop. The frame rate of the AO loop is still fixed at 2ms with r0 =
12 cm and ryoq = 34/D. Bottom: OG estimate during bootstrapping for
the corresponding images on the left. Lower OG corresponds to higher
residuals on the pyramid, hence to the first frames of loop closure.

handling techniques that were previously studied in the litera-
ture. The best solutions already proposed endures necessarily
delays of a few frames (Deo et al. 2019b). Here, we can estimate
the OG corresponding to the current measurement frame: This
is an unprecedented feature. We show different images deliv-
ered by the GSC during the bootstrap operation in Fig. 9. The
corresponding estimated OGs are also plotted, compared with
the end-to-end computation giving the true OG values. While
the loop is closing, the OG varies from low values to higher
values, indicating that the residual phases reaching the PyWFS
decrease: The loop is closing, and the DM is starting to correct
the atmospheric aberrations. Our technique performs a precise
OG follow-up during all the steps of the process, at the frame
rate of the loop.

We can use our frame by frame OG estimation to update the
reconstructor while the loop is closing. The reconstructor is the
pseudo-inverse of the interaction matrix. We can therefore relate
it to the OG matrix and the calibration interaction matrix through
the following formula:

Mt

calib®

T -1
M) =T,

(16)

By doing so, we show that it is possible to close the loop
faster. A simulation example is presented by comparing a loop
bootstrap with and without OG compensation by the GSC cam-
era (Fig. 10). This example, with a limited benefit in practice,
shows how a fast OG tracking combined with the corresponding
update of the reconstructor can be applied to mitigate all types
of short-timescale residual variations, such as seeing bursts.
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Fig. 10. OG-compensated bootstrap vs. OG-uncompensated bootstrap.

4.2. NCPA handling

Handling NCPA is emerging as one of the main issues due to
PyWES OG, as was demonstrated for instance on the Large
Binocular Telescope (Esposito et al. 2015). How to handle this
issue while having an accurate OG estimation was discussed
in a previous paper (Chambouleyron et al. 2020). We briefly
recall the main problem. The NCPA reference measurements
are recorded around a diffraction-limited PSF and need to be re-
scaled by the OG while working on sky: s(¢ncpa) < sg(dncpa)-
To compute s4(¢dncpa), we need to have estimate Ty ,

5¢(dncpa) = My.dncpa

= Mcaib.T.dNcPA - (17

We show here the results of a simulation in which we used
the GSC to handle NCPA in the AO loop. We retained the same
simulations parameters as before (caption of Fig. 2). The PyWFS
modulation radius was rnog = 34/D and ¥O = 14cm. The
interaction matrix was computed around a flat wavefront. We
injected 200 nm rms of NCPA into our system, distributed with
a f~2 power law on the first 25 KL modes (except for tip-tilt and
focus). In this configuration and for a flat wavefront in the sci-
ence path (H band), the PSF in the wavefront sensing path (V
band) is given in Fig. 11a and the signal Q_.,, seen by the GSC
is shown in Fig. 11b.

We then proceeded in the following way: We closed the loop
on the turbulence, and after 5s of closed-loop operation, the
NCPA was added to the system. These NCPAs were then han-
dled with different configurations, and the results were compared
with the NCPA-free case. Figure 12 illustrates the results. The
main conclusions from Fig. 12 are listed below.

1. When the NCPA is not compensated for (orange plot), the
loop converges toward a flat wavefront in the sensing path.
This induces a high loss of Strehl ratio (SR) in the science
path, corresponding to the NCPA.

2. When a reference map s(¢ncpa) in the PyWFS measure-
ment is used without updating it by the OG, this leads to
a divergence of the loop (so-called NCPA catastrophe, yel-
low plot). This can be explained by the fact that because of
the OG, the PyWFS introduces too much NCPA, creating
an even stronger aberrated wavefront. This aberrated wave-
front increases the OG in the next frame, which continues to
increase the aberration, and so on. This quickly causes the
loop to diverge.

3. When the reference map is compensated for by the time-
averaged OG computed in the first 5s of the loop by a
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Fig. 11. a: PSF on the pyramid apex when a flat wavefront is set in the
science path. b: GSC signal when there are no residual phases and for
a flat wavefront in the science path. ¢: GSC signal during closed-loop
around NCPA.
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Fig. 12. Strehl ratio for different cases of NCPA handling. In this sim-
ulation context, the case for which we compensate for NCPA without
scaling by the OG leads to a diverging loop.

long-exposure image of the GSC (purple plot), no NCPA
catastrophe appears, and the final performance reaches an
averaged SR of 82%.

4. When the reference map is compensated for by the OG com-
puted at each frame, using the GSC camera (green plot), the
final performance reaches an averaged SR of 86%. This solu-
tion is better than the previous one because we monitor the
OG at each frame, and we also take the effect of the NCPA
themselves on the OG into account. To illustrate this, we
show the GSC image for a given closed-loop residual when
the NCPA is compensated for in Fig. 11c.

This study is a clear demonstration that our strategy can solve

the AO control issue due to PyWFS OG. It also shows that

even if the OGs are compensated for on a frame-by-frame basis,
the ultimate performance (without NCPA) cannot be reached.

This limitation is mainly due to the LPVS approach, which is

characterized by a linear description of the whole sensing prob-

lem. Improving the performance further would probably mean

starting to consider other non-linear (second- or third-order
description) solutions, which goes beyond the computation
framework of a simple matrix.

5. Conclusion

The PyWES is a complex optical device exhibiting strong non-
linearities. One way to deal with this behaviour while keeping
a matrix computation formalism is to consider the PyWFS as
a LPVS. To probe the sensing regime of this system at each
measurement, a gain scheduling loop needs to be implemented
that gives information on the sensor regime at every moment.
With this perspective, the OG compensation can be deployed on
a frame-by-frame basis. We provided here an innovative solu-
tion to this end: the GSC combined with a convolutive model.
As such, the PyWFS data synchronously merged on a frame-
by-frame basis with GSC data can be thought of as a single
WES combining images from different light-propagation planes.
It therefore provides an efficient way to compensate for non-
linearities at each AO loop frame without any delay, and it signif-
icantly improves the final performance of the AO loop in terms
of sensitivity and dynamic range as well as robustness. It also
allows unambiguously disentangling the effect of OG from the
full AO loop gain, which is a fundamental advantage for NCPA
compensation. The GSC solution has now to be implemented on
the AO facility bench LOOPS at the LAM for an experimental
demonstration (Janin-Potiron et al. 2019).
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