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Kinked and forked crack arrays in anisotropic elastic bimaterials

A. Vattréa,∗

aUniversité Paris-Saclay, ONERA, Matériaux et Structures, 92322, Châtillon, France

Abstract

The fracture problem of multiple branched crack arrays in anisotropic bimaterials is formulated by use of the Stroh formal-
ism to the linear elasticity theory of dislocations. The general full-field solutions are obtained from the standard technique of
distributed dislocations along finite-sized cracks of arbitrary shapes, which are embedded in dissimilar anisotropic half-spaces
under far-field stress loading conditions. The bimaterial boundary-value problem leads to a set of coupled integral equations of
Cauchy-type that is numerically solved by using the Gauss-Chebyshev quadrature scheme with appropriate boundary conditions
for kinked and forked crack arrays. The path-independent Jk-integrals as crack propagation criterion are therefore evaluated for
equally-spaced cracks, while the limiting configuration of individual cracks is theoretically described by means of explicit expres-
sions of the local stress intensity factorsK for validation and comparison purposes on several crack geometries. The short-range
interactions resulting from the idealized configurations of infinitely periodic cracks are investigated as well as various size- and
heterogeneity- effects on the mixed-mode cracks in complex stress-state environments. The influences of anisotropic elasticity,
elastic mismatch, applied stress direction, inter-crack spacings and crack length ratios on the predictions from the Jk- and K-
based fracture criteria are examined in the light of different configurations from the single kinked crack case in a homogeneous
medium to the network of closely-spaced forked cracks in presence of bimaterial interfaces.

Keywords: Continuous distributions of dislocations, anisotropic elasticity theory, heterogeneity, crack arrays, kinked and
branched cracks, mixed-mode configurations

1. Introduction

The problem of cracks and fracture mechanics is an important wide-ranging research field of engineering science and math-
ematical physics since the pioneering theory developed by Griffith (1921), which forms the foundation of the modern continuum
fracture mechanics. The cracks of various types and scales are found in many manufactured components, while their effects on
the mechanical strength of solids are of continued concern. In many problems, failures and progressive damages are often related
to interactions of multiple cracks in brittle or quasi-brittle materials such as concrete, rocks, ceramics and interface-dominated
composite materials in bonded structures. In particular, the interaction effect among cracks has received considerable attention
in the past decades, mainly because the disastrous failure events are preceded by the interaction and coalescence of those cracks.
The theoretical analysis of the energetically favorable conditions for branched cracks to merge is therefore of importance in
assessing structural integrity in many situations, including stress corrosion cracking, corrosion fatigue and thermal fatigue. The
present work is part of the long-standing problems in fracture mechanics, namely 1) the determination of the stress fields pro-
duced by an infinite array of finite-length kinked and forked cracks of arbitrary geometry in anisotropic bimaterials, as well as
2) the corresponding configurational driving forces acting at the crack singularities. The bimaterials are subjected to arbitrary
far-field stress state, and the arrays of branched cracks are represented as suitable continuous distributions of regularly-spaced
dislocations, which are determined by a Cauchy-type singular integral equation and solved using series of Chebyshev polyno-
mials. The isolated straight crack in an isotropic and homogeneous elastic medium is therefore a special limiting case, and is
considered for validation purposes.

In many fracture mechanics problems in infinite isotropic solids, a large class of analytical solutions under plane stress and
strain conditions in two dimensions is based on the fundamental work of complex potentials of Muskhelishvili (1953). This
mathematical theory of plane elasticity has been used to treat the finite-length branched cracks (Chatterjee, 1975, Kitagawa et
al., 1975, Lo, 1978) as well as the doubly-periodic array of straight cracks in an infinite isotropic medium (Fil’shtinskii, 1974,
Ioakimidis and Theocaris, 1978, Panasyuk et al., 1977), within which the complex potential functions are taken as the unknown
functions, and the Cauchy-type singular integral equations are established by obtaining these functions subjected to appropriate
boundary conditions. For most of these solutions, the analysis is such that the limit for infinitesimally small kinks cannot be
obtained readily from the analysis for finite kinks, leading to asymptotic expansions for stress intensity factors at the tips of
infinitesimally small kinks (Amestoy and Leblond, 1992, Bilby and Cardew, 1975, Cotterell and Rice, 1980, Lo, 1978, Wu,
1978). Due to mathematical difficulties in many complicated branched-crack situations under non-uniform loading conditions,
however, the Muskhelishvili complex potentials can not be readily applicable, while the alternative dislocation-based formalism
(Bilby and Eshelby, 1968, Delameter et al., 1975, Stroh, 1958) can be used for more practical boundary value problems of
structural materials containing branched cracks.
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Dislocations and the corresponding elasticity of extrinsic and intrinsic dislocations are introduced into the theory of fracture
mechanics in two directions. First, the nucleation and plastic flow of dislocations from the stressed crack tips are of great impor-
tance to determine the growth resistance of ductile metals (Kelly et al., 1967, Rice and Thomson, 1974), exhibiting the physical
competition between Griffith cleavage and dislocation-mediated plastic shear at crack tips. Secondly, planar dislocations are
viewed as mathematical elements to describe the displacement discontinuities along faults within the Earth’s crust (Chinnery
and Petrak, 1967, Weertman, 1964), semicoherent interfaces (Bilby et al., 1955, Bullough and Bilby, 1956, Vattré and Demkow-
icz, 2013) as well as crack surfaces (Bilby and Eshelby, 1968, Bilby and Cardew, 1975, Weertman, 1964) in classical elasticity
theory. From the crystallographical picture, the crack plane dislocations of a mode I crack are climb edge dislocations, while the
glide edge dislocations and screw dislocations are related to the mode II and III cracks, respectively. In practice, a complex crack
problem leads also to a combinaison of continuum distribution of infinitesimal edge- and screw-type dislocations, such that the
proper stress field produced by the cracks are calculated as a convolution of the multiple stress fields of dislocations with un-
known distribution functions of dislocation densities. These densities are determined by satisfying the crack surface traction-free
conditions, while the mixed-mode stress intensity factors are then written with respect to the local dislocation densities (Hills et
al., 1996).

Since the seminal work of Volterra (1907) that lays out the theory of dislocation fields generated by a discontinuity of
displacement in linear elastic bodies, much attention has been paid to the determination of the elastic interaction between single
arbitrary-oriented dislocations and traction-free surfaces or internal interfaces, which is one the most important part of the
elasticity theory of dislocations (Hirth and Lothe, 1992). Extensions of the single dislocation problems to periodic arrays of
equally-spaced extrinsic and intrinsic dislocations have been addressed in both isotropic (Chou and Lin, 1975, Grekov and
Sergeeva, 2020, Gutkin et al., 1989, Lubarda, 1997) and anisotropic (Chou, 1975, Chu and Pan, 2014, Gosling and Willis, 1994,
Vattré and Pan, 2018) bimaterial solids, and this is the latter that is explored in the present two-dimensional analysis. Although
the numerous discrete dislocation dynamics codes in the current literature are capable of exploring the collective evolution of
random-oriented forest dislocations, lattice- and nodal-based simulations are essentially resorted to using the isotropic elastic
solutions. In comparison with results from the full anisotropic elasticity, the elastic field solutions for dislocations (Asaro et al.,
1973), the corresponding elastic energy and driving forces (Aubry et al., 2011, Barnett and Swasger, 1971), the reactions between
glide dislocations and forest dislocations (Püschl, 1985) as well as the local relaxations between coplanar dislocations (Vattré,
2017a,b) can be altered by the isotropic elastic approximation. These significant consequences on the fundamental behavior of
such elementary defects in solids suggest unequivocally that similar important effects due to elastic anisotropy are also prevalent
and transferable in fracture mechanics.

In dislocation mechanics, the analysis of periodic dislocation arrays is of importance in modeling grain boundaries and
heterophase interfaces as well as in understanding persistent slip bands that have dislocation cell structures. On the other
hand, examination of periodic arrays of cracks is important in investigating the fracture processes of crack accumulation and
coalescence (Kachanov, 1987, 2003), specially with specific collinear and straight cracks, for which the solutions based on the
Muskhelishvili theory have been obtained by Koiter (1959), and more recently, in predicting the propagation of segmented crack
fronts in mode I+III fracture (Lazarus et al., 2020, Leblond et al., 2014, 2015). The crack front segmentation in mixed mode
I+III and I+II+III is therefore an illustrative example, for which the crack kinking and forking processes cannot be ignored when
understanding the experimental crack front profiles and trajectories. Changes in crack path are generally induced by multi-axial
stresses and/or the presence of microstructural inhomogeneities close to the crack tips, which can have a beneficial effect in
the sense that crack kinking and forking improve the fracture toughness as well as the resistance to crack growth (Suresh and
Shih, 1986). Furthermore, non-straight cracks with zig-zag growth of crack and the crack branching are also often be found in
materials subjected to stress corrosion cracking and corrosion fatigue under mixed-mode loading conditions (Kitagawa et al.,
1975). Such features have motivated and still motivate the development of various failure stress- and energy-based criteria for
predicting the direction of crack propagation (Amestoy and Leblond, 1992, Azhdari and Nemat-Nasser, 1996, Cotterell and Rice,
1980, Erdogan and Sih, 1963, Gao and Chiu, 1992, Goldstein and Salganik, 1974, Ichikawa and Tanaka, 1982, Leguillon, 2002,
Leguillon and Murer, 2008, Lin et al., 2010, Sih, 1974), importantly designed to investigate the configurational bifurcation and
stability of cracks loaded under mixed-mode conditions.

By use of the linear elasticity theory of dislocations, a general singular integral equation formalism for two-dimensional
fracture analysis of equally-spaced configurations of multiple branched cracks in bimaterials is proposed. The bimaterials are
composed of two dissimilar orthotropic half-spaces under arbitrary far-field stress loading conditions. The content of the paper
is organized as follows. Section 2 describes the boundary-value problem, within which the continuously distributed dislocations
along the crack segments lead to a set of coupled integral equations of Cauchy-type that is numerically solved by the Gauss-
Chebyshev quadrature scheme with appropriate boundary conditions for kinked and forked cracks. The full-field solutions are
therefore used to evaluate the path-independent Jk-integrals as crack propagation criterion. The limiting case of individual cracks
in homogeneous and isotropic materials is formulated in section 3, while the corresponding stress intensity factors are provided
for validation purposes and further analyzed to investigate the interaction effects resulting from the idealized arrangements of
infinitely periodic cracks. More advanced application examples are investigated to illustrate various size- and heterogeneity-
effects on the elastic properties of mixed-mode cracks with arbitrarily branched geometries in anisotropic bimaterials.

2. Problem formulation

In the two-dimensional Cartesian coordinate system, the elastic field solutions due a network of periodically spaced dislo-
cations with a inter-dislocation distance L are used to solve the boundary value problems of finite kinked and branched cracks
in anisotropic bimaterials. For a single dislocation in bimaterials, which is not strictly located at the interfaces, the derivation
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Figure 1: (a) An infinite periodically spaced network of branched cracks with three segments is embedded in the upper half space of an anisotropic bimaterial
in presence of a perfectly bounded internal interface. The mismatch between both anisotropic elastic constants is taken into account, such that discontinuous
stress components can be obtained by the present field solutions. (b) Definition of integration contours around a crack tip for evaluation of the path-independent
Jk-integrals.

of the Green’s functions has been presented by Barnett and Lothe (1974), Belov et al. (1983) and Ting (1992, 1996), while the
dislocation arrays have been formulated by Chou et al. (1975), Hirth et al. (1979) and more recently by Chu and Pan (2014).
Using the Green’s functions for a dislocation array with arbitrary characters, the crack arrays are therefore considered as the
continuous distributions of dislocations, for which the density of defects must fulfill the traction-free boundary conditions at the
crack faces. The singular integral equations of Cauchy-type are obtained, and finally solved by the Gauss-Chebyshev quadrature
scheme developed by Erdogan et al. (1973). From the field solutions, the contour Jk-integrals as crack propagation criterion are
consistently evaluated along the crack tips of branched cracks. Although the present general formalism is dedicated to multiple
straight crack segments with arbitrary geometries, such that the curved cracks can be suitably represented through a series of
straight cracks, a particular attention is paid to kinked and forked cracks.

2.1. Stroh formalism and Green’s functions for dislocation arrays in anisotropic bimaterials

As pictured in Fig. (1a), the bicrystals are formed by joining two linear anisotropic elastic materials A (upper material)
and B (lower), which are defined by means of specific orientation relations along fixed crystal directions. The global and fixed
coordinate system is conveniently defined by (O, x1, x2, x3), the perfectly matched interface is located at x2 = 0, with x2 > 0 for
material A, and x2 < 0 for material B. Without loss of generality, the individual dislocations are embedded in the upper material
A, and are aligned with the x3-axis. The prescribed Burgers vector bA is the same in magnitude and direction for all dislocations,
and is defined in two dimensions without screw dislocation components, such that bA =

[
bx1 , bx2 , 0

]t, in accordance with the
present mixed-mode loading at long distances. The field stresses σ(x1,x2) = σij(x1,x2) and the displacements u(x1,x2) =
ui(x1,x2) that are produced by the internal displacement jump in both half-spaces A and B are related by the full anisotropic
Hooke law for constitutive relations, as follows

σij (x1,x2) = cijkl(x2) uk,l (x1,x2) , (1)

where a comma stands for differentiation, with repeated indices denoting summation convention ranging from 1 to 3, unless
stipulated otherwise. The anisotropic elastic constants of the fourth-order stiffness tensor are fully symmetric, i.e., cijkl =
cjikl = cijlk = cklij , and the partial differential equation of mechanical equilibrium without body forces that is fulfilled in both
crystals A and B in terms of the elastic displacement fields is given by{

Acijkl Auk,jl (x1,x2) = 0

Bcijkl Buk,jl (x1,x2) = 0 ,
(2)

where the elastic constants Acijkl and Bcijkl are both defined by the local coordinates relative to the local crystal orientation and
crystallography of each misoriented material. In the following, the pre-subscripts A and B in the elastic properties and also the
field expressions will be omitted for clarity if no distinction between the dissimilar materials is required.

The displacement field in the upper material A produced by n extrinsic dislocations from −∞ to ∞ is obtained by using the
standard anisotropic elastic solution for a single dislocation and changing the dislocation location at (xD1 ,x

D
2 ) by (xD1 +nL,xD2 ),

as already formulated (Chou et al., 1975, Chu and Pan, 2014, Hirth et al., 1979, Vattré and Pan, 2018). Thus, the summation of
the displacement fields of the individual dislocations in A leads to the displacement fields due to an infinite dislocation network
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parallel to the interface, Au
array dis
k (x1,x2), with k = {1,2,3}, as follows

Au
array dis(x1,x2; xD1 ,x

D
2 ) =

1
π

∞

∑
n=−∞

Im
[

AA
〈
ln(x1− (xD1 +nL)+Ap

†(x2−xD2 ))
〉

Aq
∞

]
+

1
π

∞

∑
n=−∞

Im
[ 3

∑
α=1

AA
〈
ln(x1− (xD1 +nL)+Ap

†x2−Ap
α
∗ x

D
2 )
〉

Aq
α
]
,

(3)

where ∗ indicates complex conjugation. The complex matrices
〈
f(z†)

〉
with a logarithmic form are introduced, i.e.

〈
f(z†)

〉
= diag

[
f(z1), f(z2), f(z3)

]
=

[
f(z1)

f(z2)
f(z3)

]
, (4)

for which the symbol † is used to identify the element in the diagonal matrix. The first term in eq. (3) corresponds to the full-plane
dislocation Green’s functions in A, and both unknown constant vectors Aq

∞ and Aq
α are determined by the perfectly matched

interface conditions (Ting, 1996), as defined by

Aq
∞ = AHt bA

Aq
α = AA−1 (AM+BM∗)

−1 (BM∗−AM∗)AA∗
=AAN

IαAq
∞
∗ = AAN IαAHt

∗ bA , (5)

where the diagonal matrices Iα are defined by

I1 = diag
[
1, 0, 0

]
, I2 = diag

[
0, 1, 0

]
, and, I3 = diag

[
0, 0, 1

]
, (6)

so that α = {1, 2, 3}. In eqs. (3) and (5), the complex non-singular eigenmatrices AA =
[

Aa
1, Aa

2, Aa
3
]

are associated with
the Stroh eigenvectors Aa

α as columns and the corresponding Stroh eigenvalues Ap
α are obtained by solving the following

eigensystem of equations, i.e.[
Q+p

(
R+Rt)+p2 T

]
a= Πa= 0 , (7)

by virtue of the standard eigenvalue problem in anisotropic elasticity theory (Stroh, 1958, 1962). In eq. (7), the superscript t

denotes the matrix transpose, while Qik = ci1k1, Rik = ci1k2, and, Tik = ci2k2, which are properly rotated with respect to the
coordinate systems spanned by the x1- and x2- axes. A non-trivial solution can be found only if the determinant of Π is zero,
i.e.

det Π = 0 , (8)

leading to a polynomial equation in p of degree six, with real coefficients. Due to the positive definiteness of elastic strain
energy, the solutions of eq. (8) have six imaginary roots, which occur in complex conjugates (Eshelby et al., 1953). In particular,
the roots are conveniently arranged such that the three first eigenvalue solutions pα have positive imaginary parts, indexed by
superscripts α = {1, 2, 3}. The remaining three solutions have negative imaginary parts, so that pα+3 = pα∗ . The eigenvectors
aα = aαk are also complex conjugates with aα+3 = aα∗ = aαk∗ , so that AA∗ in eq. (5) is defined by AA∗ =

[
Aa

1
∗, Aa

2
∗, Aa

3
∗
]
.

Furthermore, the complex vectors hα of the subsidiary complex matrices AH =
[

Ah1, Ah2, Ah3] in eq. (5) are related to the
vectors aα by

pαhα = pα
(
Rt +pαT

)
aα =−(Q+pαR)aα , (9)

while the eigenvectors aα and hβ satisfy the central normalization relations in the Stroh formalism, as follows

(hβ)taα+(aβ)thα = δαβ , (10)

with δαβ the 3×3 Kronecker delta. Futhermore, the displacement field in material B is given by

Bu
array dis(x1,x2; xD1 ,x

D
2 ) =

1
π

∞

∑
n=−∞

Im
3

∑
α=1

BA
〈
ln(x1− (xD1 +nL)+Bp

†x2−Ap
αxD2 )

〉
Bq

α , (11)

within which the eigenmatrix BA is accordingly associated with the Stroh eigenvalues Bp
α, while the unknown vectors Bq

α for
perfect interfaces are given by

Bq
α = BA−1 (AM∗+BM)−1 (AM+AM∗)AA

=BAN

IαAq
∞ = BAN IαAHt bA , (12)

where the positive-definite Hermitian impedance tensors χM in eqs. (5) and (12) are defined by

χM =− iχHχA−1 , (13)
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with χ= {A, B}, while χhα = iχMχaα,which offers a second relation between the displacement with χaα and the traction with
χhα. Using index notation, the derivative of the displacement field components in A, given by eq. (3), with respect to the space
coordinates is written as

Auarray dis
k,l (x1,x2; xD1 ,x

D
2 ) =

1
π

∞

∑
n=−∞

Im
3

∑
m=1

[
AAkm Aq∞

m (x1− (xD1 +nL)+Ap
m(x2−xD2 ))−1 (δl1 +Apm δl2)

]
=+

1
π

∞

∑
n=−∞

Im
3

∑
m=1

[ 3

∑
α=1

AAkm Aqαm (x1− (xD1 +nL)+Ap
mx2−Ap

α
∗ x

D
2 )−1 (δl1 +Apm δl2)

]
,

(14)

which can be summed to give strains. The sum in eq. (14) over n from −∞ to ∞ has an explicit solution (Hirth et al., 1979,
Morse and Feshbach, 1953), i.e.,

∞

∑
n=−∞

(z+nL)−1 =
π

L
ctg

π

L
z , (15)

so that eq. (14) can be expressed in a closed form as

Auarray dis
k,l (x1,x2; xD1 ,x

D
2 ) =

1
L

Im
[

AAkm Aq∞
m ctg

(π
L

(
x1−xD1 +Ap

m(x2−xD2 )
))

(δl1 +Apm δl2)
]

=+
1
L

Im
3

∑
α=1

[
AAkm Aqαm ctg

(π
L

(
x1−xD1 +Ap

mx2−Ap
α
∗ x

D
2
))

(δl1 +Apm δl2)
]
,

(16)

where summation over the repeated index m is applied from 1 to 3, while the displacement gradients in B are analogously given
by

Buarray dis
k,l (x1,x2; xD1 ,x

D
2 ) =

1
L

Im
3

∑
α=1

[
BAkm Bqαm ctg

(π
L

(
x1−xD1 +Bp

mx2−Ap
αxD2

))
(δl1 +Bpm δl2)

]
, (17)

by differentiating eq. (11) with respect to the space coordinates. By virtue of the constitutive Hooke law in eq. (1), the stress
state in material A can also determined, as follows

Aσ
array dis
ij (x1,x2; xD1 ,x

D
2 ) =

1
L

Im
[(

Acijk1 +Ap
m

Acijk2
)

AAkm Aq∞
m ctg

(π
L

(
x1−xD1 +Ap

m(x2−xD2 )
))]

=+
1
L

Im
3

∑
α=1

[(
Acijk1 +Ap

m
Acijk2

)
AAkm Aqαm ctg

(π
L

(
x1−xD1 +Ap

mx2−Ap
α
∗ x

D
2
))]

,
(18)

using eq. (1), while the stress fields in B are given by

Bσ
array dis
ij (x1,x2; xD1 ,x

D
2 ) =

1
L

Im
3

∑
α=1

[(
Bcijk1 +Bp

m
Bcijk2

)
BAkm Bqαm ctg

(π
L

(
x1−xD1 +Bp

mx2−Ap
αxD2

))]
, (19)

which result from the presence of an infinite periodically spaced arrays of lattice dislocations with inter-dislocation spacings L
embedded in the upper material A.

2.2. The singular integral equations for a network of kinked and forked cracks
The two-dimensional boundary-value problem for kinked and forked cracks in anisotropic bimaterials is treated by use of

continuous distribution of dislocations with specific Burgers vectors along each crack segment to be determined by the traction-
free surface conditions (Bilby et al., 1955, Bilby and Eshelby, 1968, Bilby and Cardew, 1975, Hills et al., 1996). As illustrated
in Fig. (1a), the elementary branched crack, which is composed of NMax crack segments, with NMax = 2, and NMax > 2 for the
kinked, and forked crack problem, respectively, and is also part of the infinite array of cracks is arbitrary oriented in the upper
material A. Each rectilinear segment N , with N = 1, . . . ,NMax, of the elementary branched crack is arbitrarily defined by θN the
oriented angle between the horizontal x1-axis of the global coordinate system (x1, x2) and the local x̂N1 -axis, which is collinear
with the crack segment. A local Cartesian coordinate system (x̂N1 , x̂

N
2 ) is also introduced and attached to each crack segment,

centered at the point of coordinate
{
cN1 , c

N
2
}

with half crack-length aN , subjected to an externally and uniformly applied stress
field. These displacements are represented by unknown distributions of dislocation densities along each crack segment, which
are determined by requiring that the traction-free surface conditions along the crack segments are fulfilled under plane strain
conditions.

On the crack surfaces, the applied stress fields are therefore removed by the equivalent and opposite stresses produced by the
sliding and opening displacement components from the crack arrays. The uniform load components σ∞

ij applied at infinity are
given by

σ∞
ij =

σ∞
11 σ∞

12 0
σ∞

12 σ∞
22 0

0 0 0

 , (20)
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without loss of generality. The non-zero stress field components are conveniently expressed in the local axis of each crack
segment N to

σ̂∞N
11 = σ∞

11 cos2θN +σ∞
22 sin2θN +2σ∞

12 sinθN cosθN ,

σ̂∞N
22 = σ∞

11 sin2θN +σ∞
22 cos2θN −2σ∞

12 sinθN cosθN ,

σ̂∞N
12 = (σ∞

22−σ∞
11)sinθN cosθN +σ∞

12 cos2θN ,

(21)

for which the superimposed symbol ˆ represents any quantities transformed into the local coordinate system of the N th crack of
interest. On the other hand, the corresponding stress field components produced by an array of extrinsic dislocations are given
by introducing the vector Aτ

array dis(x1,x2; xD1 ,x
D
2 ), as follows

Aτ
array dis(x1,x2; xD1 ,x

D
2 ) =

[
Aσ

array dis
11 (x1,x2; xD1 ,x

D
2 ), Aσ

array dis
22 (x1,x2; xD1 ,x

D
2 ), Aσ

array dis
12 (x1,x2; xD1 ,x

D
2 )
]t
, (22)

which, according to eqs. (18) and (5), is written in matrix notation as

Aτ
array dis(x1,x2; xD1 ,x

D
2 ) =

1
L

Im
[

AΛt
AA
〈

ctg
(π
L

(
x1−xD1 +Ap

†(x2−xD2 )
))〉

AHt bA

]
=+

1
L

Im
3

∑
α=1

[
AΛt

AA
〈

ctg
(π
L

(
x1−xD1 +Ap

†x2−Ap
α
∗ x

D
2
))〉

AAN IαAHt
∗ bA

]
,

(23)

where the elasticity-based matrix AΛ3×3 is given by

AΛ =
[

AQ1k+Ap
k

AR1k, ARk2 +Ap
k

AT2k, ARk1 +Ap
k

AT1k
]
, (24)

with k = {1,2,3}. Similarly to eq. (21), the shear and normal stress components produced by the dislocation networks are
transformed from the global coordinate system to the local coordinate system dedicated to the specific N th crack segment, by
use of the Mohr transformation matrix PN , i.e.[

Aσ̂
array disN
12 (x̂N1 , x̂

N
2 ; xD1 ,x

D
2 )

Aσ̂
array disN
22 (x̂N1 , x̂

N
2 ; xD1 ,x

D
2 )

]
=A

˜
τ̂ array disN (x̂N1 ,x̂

N
2 ;xD1 ,x

D
2 )

=

[
−sinθN cosθN sinθN cosθN cos2θN

sin2θN cos2θN −2sinθN cosθN

]
=PN

Aσ
array dis
11 (x1,x2; xD1 ,x

D
2 )

Aσ
array dis
22 (x1,x2; xD1 ,x

D
2 )

Aσ
array dis
12 (x1,x2; xD1 ,x

D
2 )


=Aτ array dis(x1,x2;xD1 ,x

D
2 )

,
(25)

which are the only two components required to solve the branched crack problem. Here and in the following, the tilde symbol
in subscripts represents the non-zero shear 12 and normal 22 components of the local traction stresses only, thus without the 11
component. Combining eq. (24) with eq. (25), the local traction stresses at (x̂N1 , x̂

N
2 ) become

A ˜
τ̂ array disN (x̂N1 , x̂

N
2 ; xD1 ,x

D
2 ) =

1
L

Im
[
PNAΛt

AA
〈

ctg
(π
L

(
x1−xD1 +Ap

†(x2−xD2 )
))〉

AHt bA

]
=+

1
L

Im
3

∑
α=1

[
PNAΛt

AA
〈

ctg
(π
L

(
x1−xD1 +Ap

†x2−Ap
α
∗ x

D
2
))〉

AAN IαAHt
∗ bA

]
,

(26)

for which the discrete Burgers vectors bA are located at (xD1 +nL,xD2 ) in the upper material A.
Following the concept of continuously distributed infinitesimal dislocations to analyze crack problems, the non-uniform

displacements across surfaces are described in terms of continuous infinitesimal dislocations. The continuous distribution of
dislocations is specified by a single-valued density function B(η̂) situated at point η̂, such that B(η̂)dη̂ represents the total
length of the Burgers vectors of the infinitesimal dislocations lying between the points η̂ and η̂+dη̂ on the crack plane. These
artificial and mathematical dislocations with infinitesimal Burgers vectors dbA =BA(η̂)dη̂ are also conveniently used in eq. (23)
to picture the present branched cracks. For any particular point located along the N th crack segment among an arbitrary total
number of segments NMax, the shear and normal traction across the crack segment N in the local system is also obtained
by superposing the self-interaction of all infinitesimal dislocations along the segment as well as the contribution from other
segments M , N . In other words, these stress components at any point (x̂N1 , x̂

N
2 = 0) on the N th crack segment are therefore

due to the integrated effect from all distributed dislocation densities and can be expressed in the form of Fredholm integral
equations, as follows

A ˜
τ̂ crackN (x̂N1 , x̂

N
2 = 0) =

1
L

ˆ aN

−aN

{
Im
[
PNAΛt

AA
〈

ctg
(π
L

(
xN1 −x

DN

1 +Ap
†(xN2 −x

DN

2 )
))〉

AHt BA(η̂N )
]

=+ Im
3

∑
α=1

[
PNAΛt

AA
〈

ctg
(π
L

(
xN1 −x

DN

1 +Ap
†xN2 −Ap

α
∗ x

DN

2

))〉
AAN IαAHt

∗ BA(η̂N )
]}

dη̂N

=+
1
L

NMax

∑
M=1
M,N

ˆ aM

−aM

{
1
L

Im
[
PNAΛt

AA
〈

ctg
(π
L

(
xN1 −x

DM

1 +Ap
†(xN2 −x

DM

2 )
))〉

AHt BA(η̂M )
]

=+ Im
3

∑
α=1

[
PNAΛt

AA
〈

ctg
(π
L

(
xN1 −x

DM

1 +Ap
†xN2 −Ap

α
∗ x

DM

2

))〉
AAN IαAHt

∗ BA(η̂M )
]}

dη̂M ,
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(27)

with respect to the local coordinates, where the parameters needed to compute the components of the diagonal matrices with
cotangent terms are written with respect to coordinates of the crack segments, i.e.

{
xN1 = cN1 + x̂N1 cosθN
xN2 = cN2 + x̂N1 sinθN

, and,


xDN

1 = cN1 + η̂N cosθN
xDN

2 = cN2 + η̂N sinθN
xDM

1 = cM1 + η̂M cosθM
xDM

2 = cM2 + η̂M sinθM ,

(28)

merely derived from geometrical characteristics. By virtue of the superposition principle, the applied remote stresses are com-
bined with the traction solutions produced by the continuously distributed dislocation densities to determine the resultant stress
state, and the essential corresponding traction-free condition along all crack segment N , with N = 1, . . . , NMax, reads

∀ |x̂N1 |< aN :



0 = σ̂∞N=1
12 +Aσ̂

arrayN=1
12 (x̂N=1

1 ,0)

0 = σ̂∞N=1
22 +Aσ̂

arrayN=1
22 (x̂N=1

1 ,0)

=
...

0 = σ̂∞N=NMax
12 +Aσ̂

arrayN=NMax
12 (x̂N=NMax

1 ,0)

0 = σ̂∞N=NMax
22 +Aσ̂

arrayN=NMax
22 (x̂N=NMax

1 ,0) ,

(29)

where the components 12 and 22 induced by the dislocation densities on the right-hand side are given by the integral relations
in eq. (27). The absence of traction vector components along all cracks leads to 2NMax equations, for 2NMax unknowns, for
which the system of integral equations that cannot be analytically solved by inversion. Before applying the numerical integration
treatment in the next section 2.3 to solve complex crack configurations, the following scaling rules for the continuous variables
are conveniently introduced as follows
t̂=

x̂N1
aN

ŝ=
η̂N
aN

=
η̂M
aM

,

(30)

where t̂ ∈ [−1,1] and ŝ ∈ [−1,1] are dimensionless curvilinear coordinates along the crack segments. Furthermore, anticipating
the inverse square root singularities at each end of each crack N , with N = 1, . . . , NMax, the unknowns Burgers vectorsBA(η̂N )
in eq. (27) are also rewritten asBN

A (ŝ), and subsequently replaced by choosing the following interpolation functions, i.e.

BA(η̂N ) =BA(η̂N (ŝ)) =BN
A (ŝ) = ω(ŝ)φN (ŝ) =

(
1− ŝ2)−1/2

φN (ŝ) , (31)

where ω(ŝ) is the fundamental function that is continuously differentiable with one-sided derivative at the end points, while
φN (ŝ) are nonsingular unknown functions that reflect the strength of singularities. In accordance with the Gauss-Chebyshev
quadrature method, the interpolation functions are therefore related to the Chebyshev polynomials, such that eqs. (27−31)
are also discretized by a series of algebraic relations to determine the suitable strength functions φN (ŝ) of the dislocation
distributions for every crack segment N , as formulated in the following section.

2.3. Numerical solutions based on the Gauss-Chebyshev collocation method
The local displacements that are represented by the unknown distributions of dislocation densities BN

A (ŝ) along each crack
segment, the unknown functions φN (ŝ) are determined by requiring that the traction-free state along the crack segments is
fulfilled at a given and appropriate set of collocation points. These collocation points are are placed in between the integration
points where the values of the sliding and opening displacement components are numerically computed. The total number
of NInt integration points imposed on the N th crack branch and of NInt− 1 collocation points are denoted by ŝi and t̂k, with
i= 1, . . . ,NInt, and k = 1, . . . ,NInt−1, as defined by{
ŝi = cos((i−1/2)π/NInt)

t̂k = cos(kπ/NInt) ,
(32)

respectively. The discrete collocation relations of the Fredholm-type integral equation with Cauchy kernel for the shear and
normal traction across the crack segment N in eq. (27) are given in series form, ∀k = 1, . . . ,NInt−1, by

A ˜
τ̂ crackN (t̂k,0)'

aN
L

NInt

∑
i=1

Wi(ŝi)

{
Im
[
PNAΛt

AA
〈

ctg
(π
L

(
aN (t̂k− ŝi)cosθN +Ap

†aN (t̂k− ŝi)sinθN
))〉

AHt φN (ŝi)
]

=+ Im
3

∑
α=1

[
PNAΛt

AA
〈

ctg
(π
L

(
aN (t̂k− ŝi)cosθN +Ap

†(cN2 +aN t̂k sinθN )−Ap
α
∗ (c

N
2 +aN ŝi sinθN )

))〉
AAN IαAHt

∗ φ
N (ŝi)

]}
=+

NMax

∑
M=1
M,N

aM
L

NInt

∑
i=1

Wi(ŝi)

{
Im
[
PNAΛt

AA
〈

ctg
(π
L

(
(cN1 − cM1 +aN t̂k cosθN −aM ŝi cosθM )+Ap

†(cN2 − cM2 +aN t̂k sinθN −aM ŝi sinθM )
))〉

AHt φM (ŝi)
]

=+ Im
3

∑
α=1

[
PNAΛt

AA
〈

ctg
(π
L

(
(cN1 − cM1 +aN t̂k cosθN −aM ŝi cosθM )+Ap

†(cN2 +aN t̂k sinθN )−Ap
α
∗ (c

M
2 +aM ŝi sinθM )

))〉
AAN IαAHt

∗ φ
M (ŝi)

]}
,
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(33)

by use of eqs. (28) and (30−32), where Wi(ŝi) = π/NInt is the appropriate weight function with respect to the fundamental
function ω(ŝi), as described by Erdogan et al. (1973). Furthermore, the corresponding net stress state on each segment N in
eq. (33) is also reduced to a standard matrix equation, i.e.

∀k = 1, . . . ,NInt−1 :



0 = σ̂∞N=1
12 +Aσ̂

crackN=1
12 (t̂k,0)

0 = σ̂∞N=1
22 +Aσ̂

crackN=1
22 (t̂k,0)

=
...

0 = σ̂∞N=NMax
12 +Aσ̂

crackN=NMax
12 (t̂k,0)

0 = σ̂∞N=NMax
22 +Aσ̂

crackN=NMax
22 (t̂k,0) ,

(34)

where the relevant external and crack-induced stress contributions are given by eqs. (21) and (33), respectively. The latter
includes the dislocation density strengths φN (ŝi) that are also evaluated at the NInt zeros of the Chebyshev polynomials of the
first kind, while the crack tractions are specified at theNInt zeros of the Chebyshev polynomials of the second kind. The traction-
free boundary conditions provided by eq. (34) leads to an incomplete system of 2NMax(NInt − 1) equations, for 2NMaxNInt
unknowns, so that 2NMax additional relations are needed to solve the system of equations. For a crack configuration with N
segments, the specific unknowns are defined in the index notation by

∀ i= 1, . . . ,NInt :
{
φ1
x̂1
(ŝi), φ

1
x̂2
(ŝi), . . . ,φ

NMax
x̂1

(ŝi), φ
NMax
x̂2

(ŝi)
}
, (35)

such that φN (ŝi) =
[
φNx̂1

(ŝi), φ
N
x̂2
(ŝi), 0

]t, where φNx̂1
(ŝi) and φNx̂2

(ŝi) are equivalent to the sliding and opening of the material
across the local coordinate axis x̂1 and x̂2, respectively.

A consistent closure condition is used to prevent any perturbation of the external applied stress state at long range by the
completely embedded cracks, formulated in the integral form as follows

NMax

∑
N=1

ˆ aN

−aN
BA(η̂N )dη̂N = 0 , (36)

so that the total Burgers vector content along the branched cracks is zero, i.e. no net displacement occurs. In the discretized
scheme, eq. (36) reads
NMax

∑
N=1

aN
NInt

∑
i=1

Wi(ŝi)φ
N
x̂1
(ŝi) = 0

NMax

∑
N=1

aN
NInt

∑
i=1

Wi(ŝi)φ
N
x̂2
(ŝi) = 0 ,

(37)

leading to two additional equations, after projection on the local coordinate axis x̂1 and x̂2, respectively. For problems dedicated
to periodically spaced arrays of single cracks, thus without branched segments, the system that combines together eqs. (34) with
(37) contains enough linearly dependent equations to solve the unknown dislocation density distributions defined by eq. (31) with
eq. (35). For NInt ≥ 2, however, extra equations are needed, and two types of continuity constraints that have to be fulfilled at
crack kinking and branching are defined, respectively, such that the collocation integral equations and the additional constraints
close the system of equations.

For the specific configuration of kinked cracks, with NInt = 2, the sliding and opening displacements are continuous at the
kinking nodes between two adjacent crack segments, e.g., the principal segment indexed by N = 1 and the finite kinked segment
by N = 2, for which the continuity condition is expressed as

lim
η̂1→a1

BA(η̂1) = lim
η̂2→−a2

BA(η̂2) ⇒ lim
ŝ→1

B1
A(ŝ) = lim

ŝ→−1
B2

A(ŝ) , (38)

where the sign in η̂N → ±aN and ŝ→ ±1 depends on the left- and right- hand sides of the specific crack segment that is
connected to the kink node. By virtue of the interpolation functions given by in eq. (31) in the normalized and discretized form,
the equality of the dislocation densities at the kink locations from eq. (38) reads

lim
ŝ1→1

φ1
x̂1
(ŝ1) = lim

ŝNInt→−1
φ2
x̂1
(ŝNInt)

lim
ŝ1→1

φ1
x̂2
(ŝ1) = lim

ŝNInt→−1
φ2
x̂2
(ŝNInt) ,

(39)

which yields two extra boundary conditions after projection. From the square-root asymptotic field analysis near the crack tips,
the unknown functions {φNx̂1

, φNx̂2
} remain finite at the end-points ŝ→±1, as follows

lim
ŝ1→1

φ1
x̂j
(ŝ1) =

1
NInt

NInt

∑
i=1

sin(π (2NInt−1)(2i−1)/(4NInt))

sin(π (2i−1)/(4NInt))
φ1
x̂j
(si) ,

lim
ŝNInt→−1

φ2
x̂j
(ŝNInt) =

1
NInt

NInt

∑
i=1

sin(π (2NInt−1)(2i−1)/(4NInt))

sin(π (2i−1)/(4NInt))
φ2
x̂j
(sNInt+1−i) ,

(40)
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concisely obtained by the Krenk interpolation formulae (Hills et al., 1996, Krenk, 1975).
On the other hand, a stronger continuity constraint than the relations in eq. (39) is imposed at the branched nodes with

multiple intersecting crack segments, when N > 2, by ensuring the amplitude of the singular dislocation density of the branch
crack equal to zero at the point where all main and branched segments intersect, as suggested by Cleary and co-authors (Barr
and Cleary, 1981, Narendran and Cleary, 1984) for application problems to rock fracture mechanics. Thus, eq. (39), for which
the net opening and sliding displacements cancel out at crack barchning, becomes

lim
ŝ1→1

φ1
x̂1
(ŝ1) = lim

ŝNInt→−1
φ2
x̂1
(ŝNInt) = . . .= lim

ŝNInt→−1
φNMax−1
x̂1

(ŝNInt) = 0

lim
ŝ1→1

φ1
x̂2
(ŝ1) = lim

ŝNInt→−1
φ2
x̂2
(ŝNInt) = . . .= lim

ŝNInt→−1
φNMax−1
x̂2

(ŝNInt) = 0 ,
(41)

leading to (2NMax− 2) extra equations for the branched crack configurations. Combining the latter equations with the two
relations in eq. (37) that guarantee the zero net Burgers vector condition as well as the 2NMax(NInt−1) relations from eqs. (34),
the complete system that is composed of 2NMax linear equations can be solved and the corresponding unknowns in eq. (35)
consistently be determined. Once the dislocation density distributions are known, the resultant stress fields σarray crack

ij (x1,x2) at
any point in the upper material A is obtained as follows

Aσ
array crack(x1,x2)' σ∞ +

π

LNInt

NMax

∑
N=1

aN
NInt

∑
i=1

{
Im
[

AΛt
AA
〈

ctg
(π
L

(
x1− (cN1 +aN ŝi cosθN )+Ap

†(x2− (cN2 +aN ŝi sinθN ))
))〉

AHt φN (ŝi)
]

+ Im
3

∑
α=1

[
AΛt

AA
〈

ctg
(π
L

(
x1− (cN1 +aN ŝi cosθN )+Ap

†x2−Ap
α
∗ (c

N
2 +aN ŝi sinθN )

))〉
AAN IαAHt

∗ φ
N (ŝi)

]}
,

(42)

including the Aσ
array crack
33 (x1,x2) component, where AAN and AΛ are defined in eqs. (5) and (24), respectively. Furthermore, the

corresponding stress state in material B is given by

Bσ
array crack(x1,x2)' σ∞ +

π

LNInt

NMax

∑
N=1

aN
NInt

∑
i=1

{
Im

3

∑
α=1

[
BΛt

BA
〈

ctg
(π
L

(
x1− (cN1 +aN ŝi cosθN )+Bp

†x2−Ap
α(cN2 +aN ŝi sinθN )

))〉
BAN IαAHt φN (ŝi)

]}
,

(43)

where BAN is defined in eq. (12), and the elasticity-based matrix BΛ by

BΛ =
[

BQ1k+Bp
k

BR1k, BRk2 +Bp
k

BT2k, BRk1 +Bp
k

BT1k
]
, (44)

while BQik = Bci1k1, BRik = Bci1k2, and, BTik = Bci2k2. In particular, eq. (42) is of vital importance for computing the
Jk-integrals (Budiansky and Rice, 1973, Rice, 1968) and also predicting the crack growth of the different crack branches in
anisotropic bimaterials.

2.4. Calculation of Jk-integrals for branched crack arrays in anisotropic bimaterials

Path-independent relations are widely used to determine the two-dimensional Jk-integral (Budiansky and Rice, 1973, Rice,
1968) as a criteria to predict crack growth direction (Hellen and Blackburn, 1975), where J1 is the standard path-independent
J-integral introduced by Rice (1968) that is related to the energy release rate per unit crack advance (Gurtin and Podio-Guidugli,
1996). On the other hand, J2 is path-independent only by adding an extra nontrivial contribution on the crack faces (Herrmann
and Herrmann, 1981), and is also required to the mechanical fields near the crack tips. Basically, for a two-dimensional elastic
body containing a crack that lies in the direction of x1-axis, the expression of the Jk-integral components in the global coordinate
system are

JΓ→0
k = lim

Γ→0

˛
Γ

(
AW (x1,x2)δkj−Aσ

array crack
ij (x1,x2)Au

array crack
i,k (x1,x2)

=AL

)
nj dΓ

= lim
Γ→0

˛
Γ

( 1
2 Aσ

array crack
mn (x1,x2)Au

array crack
m,n (x1,x2)nk−Aσ

array crack
ij (x1,x2)nj Au

array crack
i,k (x1,x2)

)
dΓ ,

(45)

where AL is the Eshelby energy-momentum tensor (Eshelby, 1951), AW (x1,x2) is the strain energy density that is determined
with respect of the Cartesian components of the stress and displacement gradient tensors from the previous section 2.3, and Γ
is a contour in the (x1,x2) plane that encloses the crack tips, while nj denotes the corresponding unit outward normal to Γ at
(x1,x2). The equality in eq. (45) holds only when the contour Γ shrinks onto the crack tips Γ → 0. However, if the contour ΓN

for the N th crack segment does not tend to the tips, the integral relation in eq. (45) becomes

JΓNk =

ˆ
ΓN

{
( 1

2 Aσ
array crack
mn (x1,x2)Au

array crack
m,n (x1,x2) n̂k−Aσ

array crack
ij (x1,x2)nj ∂xkAu

array crack
i (x1,x2)

=Au
array crack
i,k (x1,x2)

}
dΓ −

ˆ
Γ̄N

JAW (x1,x2)K
+

− nk dΓ ,

(46)
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where JAW (x1,x2)K
+

− stands for the jump in the strain energy density across the crack faces Γ̄N , while the superscripts {−,+}
refer to the two half-space subdomains connected to the negative and positive crack faces with respect to the x2-axis. The
additional integral energy-based term on the right-hand side must be taken into account on the crack faces, which vanishes for
J1, and also influences J2 only. For kinked and forked cracks, eq. (46) is consistently transformed into the local coordinate
system, as follows

ĴΓNk =

ˆ
ΓN

{ 1
2 Aσ

array crack
mn (x1,x2)Au

array crack
m,n (x1,x2) n̂k−Aσ

array crack
ij (x1,x2)nj ∂x̂kAu

array crack
i (x1,x2)

}
dΓ −

ˆ
Γ̄N

JAW (x1,x2)K
+

− n̂k dΓ

=−Ĵ2 ex

,

(47)

where n̂k = cos〈nj , x̂k〉 is the projection of nj on the x̂k-axes. Furthermore, the gradient terms in eq. (47) are given by[
∂x̂1 Au

array crack
i (x1,x2)

∂x̂2 Au
array crack
i (x1,x2)

]
=

[
cosθN sinθN
−sinθN cosθN

][
∂x1 Au

array crack
i (x1,x2)

∂x2 Au
array crack
i (x1,x2)

]
, (48)

with positive θN , so that both JΓN1 - and JΓN2 - integrals are defined by

ĴΓN1 =

ˆ
ΓN

{
1
2 cos〈nj , x̂1 〉Aσ

array crack
mn (x1,x2)Au

array crack
m,n (x1,x2)

−Aσ
array crack
ij (x1,x2)nj

(
cosθN ∂x1 Au

array crack
i (x1,x2)+ sinθN ∂x2 Au

array crack
i (x1,x2)

)}
dΓ

ĴΓN2 =

ˆ
ΓN

{
1
2 cos〈nj , x̂2 〉Aσ

array crack
mn (x1,x2)Au

array crack
m,n (x1,x2)

−Aσ
array crack
ij (x1,x2)nj

(
− sinθN ∂x1 Au

array crack
i (x1,x2)+ cosθN ∂x2 Au

array crack
i (x1,x2)

)}
dΓ + Ĵ2ex ,

(49)

where ΓN is a circular path with suitable polar coordinates centered at crack tips of the N th segment, while Γ̄N in the integral
term Ĵ2ex from eq. (47) is a convenient rectangular contour along the crack lips of width r0, as schematically shown in Fig. (1b).
The latter is introduced in the calculation of ĴΓN2 only, and corresponds to the vicinity of dislocation cores for which the present
linear elasticity theory fails.

3. Numerical examples

Various application examples from the single kinked crack in isotropic homogeneous materials to the closely-spaced network
of forked cracks in anisotropic bimaterials as well as some effects from the inter-crack spacings to the elastic heterogeneity are
investigated. The former limiting case of single branched cracks is theoretically formulated and the corresponding asymptotic
solutions are compared to existing results reported in the literature. The present solutions are numerically evaluated in terms
of stress intensity factors K̂ and the path-independent Ĵk-integrals using NInt = 256 integration points, which give excellent
results compared to the mathematical crack solutions from Kitagawa et al. (1975). The numerical accuracy of the the shear and
normal tractions with the Gauss-Chebyshev quadrature scheme ranges from ten to twelve significant digits for both pure tensile
and shear conditions at long range. Application examples are performed on Copper, which is moderately anisotropic, where the
elastic constants are c11 = 168.4 GPa, c12 = 121.4 GPa, and c44 = 75.4 GPa, indexed in Voigt notation, while the dislocation
core width is arbitrary given by the lattice parameter of Copper as r0 = 0.3615 nm. Unless mentioned otherwise, the K̂- and
Ĵk-based quantities are normalized by KI = σ∞

0
√
πa1 and JI = K2

I (1− ν2
iso)/Eiso, where σ∞

0 is the constant tensile or shear
stress applied at infinity, νiso is the Poisson ratio and Eiso is Young modulus, obtained using the Voigt averaging procedure.

3.1. The limiting problem of single kinked and forked cracks
Several theoretical studies have investigated the implications of crack kinking and forking to the fracture behavior of en-

gineering materials, specially examined on the basis of elastic stress intensity factors. However, considerable discrepancies of
the stress intensity factor solutions have been recognized in the literature, as stipulated by as mentioned by Bilby et al. (1977),
Suresh and Shih (1986), and He and Hutchinson (1989), for instance. The results for a single crack in an isotropic and infinite
medium from Bilby et al. (1977), using a plane theory of elasticity derived by Khrapkov (1971), are widely referenced by the
fracture community.

Without completely repeating the entire derivation of the equations from the previous section 2, the unknown functions in
eq. (35) are reduced to 4NInt (to 6NInt) for the kinked ∗ (forked ∗∗) crack problems, which can also be determined by solving
4NInt−4 (6NInt−6) linear equations from eq. (34), respectively, as follows

∀k = 1, . . . ,NInt−1 : ∗∗



∗


0 = σ̂∞N=1

12 +Aσ̂
crackN=1
12 (t̂k,0)

0 = σ̂∞N=1
22 +Aσ̂

crackN=1
22 (t̂k,0)

0 = σ̂∞N=2
12 +Aσ̂

crackN=2
12 (t̂k,0)

0 = σ̂∞N=2
22 +Aσ̂

crackN=2
22 (t̂k,0) ,{

0 = σ̂∞N=3
12 +Aσ̂

crackN=3
12 (t̂k,0)

0 = σ̂∞N=3
22 +Aσ̂

crackN=3
22 (t̂k,0) ,

(50)
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combined with 2 additional equations given by eq. (37), plus 2 (4) more relations by eqs. (39) and (41) with the aid of eq. (40)
to complete the system ∗ (∗∗). The limiting problem of single kinked and forked cracks is also analyzed by use of the standard
limit when L→ ∞, i.e.

lim
L→∞

1
L

ctg
π

L
z = (πz)−1 , (51)

such that the crack-induced stress fields in eq. (50) are obtained by reducing eq. (33) to

A ˜
τ̂ single crackN (t̂k,0)'

aN
NInt

NInt

∑
i=1

{
Im
[
PNAΛt

AA
〈(
aN (t̂k− ŝi)cosθN +Ap

†aN (t̂k− ŝi)sinθN
)−1
〉

AHt φN (ŝi)
]

=+ Im
3

∑
α=1

[
PNAΛt

AA
〈(
aN (t̂k− ŝi)cosθN +Ap

†(cN2 +aN t̂k sinθN )−Ap
α
∗ (c

N
2 +aN ŝi sinθN )

)−1
〉

AAN IαAHt
∗ φ

N (ŝi)
]}

=+
1
NInt

NMax

∑
M=1
M,N

aM
NInt

∑
i=1

{
Im
[
PNAΛt

AA
〈(

(cN1 − cM1 +aN t̂k cosθN −aM ŝi cosθM )+Ap
†(cN2 − cM2 +aN t̂k sinθN −aM ŝi sinθM )

)−1
〉

AHt φM (ŝi)
]

=+ Im
3

∑
α=1

[
PNAΛt

AA
〈(

(cN1 − cM1 +aN t̂k cosθN −aM ŝi cosθM )+Ap
†(cN2 +aN t̂k sinθN )−Ap

α
∗ (c

M
2 +aM ŝi sinθM )

)−1
〉

AAN IαAHt
∗ φ

M (ŝi)
]}

,

(52)

with NMax = 2 (∗) or = 3 (∗∗), respectively, for which the associated stress components 12 and 22 are arranged as the term on the
left-hand side of eq. (25). Once the system is solved and the corresponding vectorial unknowns {φN (ŝi)}, with i= 1, . . . ,NInt,
are determined, eq. (42) is used to calculate the mixed-mode stress intensity factors AK̂

N in the suitable local coordinate system
affiliated to the tips of the N th crack, as follows

AK̂
N =

AK̂
N
2

AK̂
N
1

AK̂
N
3

= lim
x̂1→±aN

√
2π (±aN − x̂1)

 cosθN sinθN 0
−sinθN cosθN 0

0 0 1


=ΩN

3×3

Aσ
single crackN
12 (x̂N1 ,0)

Aσ
single crackN
22 (x̂N1 ,0)

Aσ
single crackN
32 (x̂N1 ,0) = 0


=Aτ single arrayN (t̂,0)

=±
√

2πaN ΩN
3×3

{
lim
t̂→±1

√
1∓ t̂ Aτ

single arrayN (t̂,0)
}
,

(53)

thus AK̂
N
3 = 0, in the present work. By applying eq. (51) to eq. (18), the shear and normal stress components produced by a

single dislocation are also given by

Aσ
array dis
i2 (x1,x2; xD1 ,x

D
2 ) =

1
π

Im
[(
x1−xD1 +Ap

m(x2−xD2 )
)−1

(ARki+Ap
m

ATik)AAkm Aq∞
m

]
=+

1
π

Im
3

∑
α=1

[(
x1−xD1 +Ap

mx2−Ap
α
∗ x

D
2
)−1

(AQik+Ap
m

ATik)AAkm Aqαm
]
,

(54)

so that the curly bracketed part in eq. (53) is obtained by considering the integrated effect from all distributed dislocation
densities, and also including eqs. (5), (9) and (31) into eq. (54). For the crack tip on the right-hand side of the N th segment, i.e.
for positive t̂, the bracketed term in eq. (53) reads

lim
t̂→1

√
1− t̂ Aτ

single crackN (t̂) =
1
π

Im
[

AH AHt
{

lim
t̂→1

√
1− t̂

ˆ 1

−1

BN
A (ŝ)

t̂− ŝ
dŝ
}]

=+
1
π

Im
3

∑
α=1

[
AH AAN IαAHt

∗

{
lim
t̂→1

√
1− t̂

ˆ 1

−1

BN
A (ŝ)

t̂− ŝ
dŝ
}]]

,

(55)

within which the limits of the integral fonctions with Cauchy kernels can be explicitly evaluated (Hills et al., 1996, Huang and
Kardomateas, 2001, Yang and Yang, 2000), as follows

lim
t̂→1

√
1− t̂

ˆ 1

−1

BN
A (ŝ)

t̂− ŝ
dŝ=

π√
2
φN (+1) , (56)

with φN (+1) =
[
φNx̂1

(+1), φNx̂2
(+1), 0

]t. Similar expression for the left-hand side of the tips are similarly derived for negative
t̂, so that eq. (53) reads

AK̂
N =

AK̂
N
2

AK̂
N
1

AK̂
N
3 = 0

=±
√
πaN ΩN

3×3

{
Im
[

AH AHt φN (±1)+
3

∑
α=1

[
AH AAN IαAHt

∗ φ
N (±1)

]]}
, (57)

where the finite values at the end-points, i.e.

φN (±1) =
[
φNx̂1

(±1), φNx̂2
(±1), 0

]t
, (58)

are obtained by the Krenk interpolation formulas in eq. (40).
11
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2 with the induced (a) kinked and (b) forked angle θ2 under uniform tension, and comparison with the

results from Kitagawa et al. (1975) for a2/a1 = 0.1, while KI is the nominal stress intensity factor.

3.2. Validation with existing results reported in the literature

The limiting case for single kinked and branched cracks in two-dimensional elastically homogeneous and isotropic materials
is investigated for validation purposes, for which the isotropic elastic constants are obtained using the Voigt averaging procedure.
Under uniaxial uniform traction, the mixed-mode stress intensity factors are normalized by the corresponding nominal stress
intensity factor KI = σ∞

22

√
π` for a straight crack, where the crack length ` is projected in the direction perpendicular to the

tensile x2-axis, so that `= a1 +a2cosθ2, with θ1 = 0◦ and a2/a1 = 0.1. The variations of the normalized stress intensity factors
AK̂

N=2
1 and AK̂

N=2
2 with respect to the kinked and forked angle θ2 are shown in Fig. (2a) and (b), respectively. The present

solutions are in excellent agreement with the results introduced by Kitagawa et al. (1975), also presented by Suresh and Shih
(1986). In particular, the maximum value of AK̂

N=2
1 for the kinked cracks is found using isotropic elasticity at θ2 = 60.1◦, while

the in-plane shear mode vanishes at 2θ2 = 28.4◦, as similarly obtained by Bilby et al. (1977).

3.3. Effect of the anisotropic elasticity under pure tensile and shear conditions

The previous configuration of kinked cracks, with θ1 = 0◦ and a2/a1 = 0.1, is used to analyze the effect of anisotropic
elasticity in the field solutions, as focused in Fig. (3). Here and in the following, the superscripts N and subscripts A in the K̂-
and Ĵk-based quantities will be omitted for clarity in the figure legends since the schematics explicitly illustrate where these tip
quantities are evaluated. The solid (dotted) lines represent the K̂- and Ĵk-based results obtained by the anisotropic (isotropic)
elasticity theory under pure traction and shear loadings at long range.

The differences between isotropic and anisotropic elasticity under traction occur for large values of θ2, i.e., θ2 > 40◦ and θ2 >
25◦ for K̂1 and K̂2, respectively, as illustrated in Fig. (3a). The maximum value of K̂2 using anisotropic elasticity corresponds
to θ2 = 69.1◦, which also differs from the isotropic calculation with θ2 = 60.1◦. On the other hand, Fig. (3b) shows that the
stress intensity factor K̂2 for pure shear possesses two maximum values in magnitude with opposite sign, which reveal the crack-
opening stress state under tension for negative values of θ2. The anisotropic elasticity tends to decrease the magnitudes of K̂1
and K̂2 for the kinked cracks under shear loads, especially for the large kinked angles, when |θ2|> 30◦.

The Ĵk-integrals in Fig. (3c) and (d) exhibit more significant quantitative and qualitative differences between isotropic and
anisotropic results than the stress intensity factors K̂. For instance, the maximum magnitude in the J1-integrals for pure shear
occurs at Ĵ1max = ±59.4◦ (= ±58.9◦) using anisotropic (isotropic) elasticity, which differs from the commonly used zero-K̂2
criterion for finite kinked cracks since K̂2 = 0 occurs at θ2 = ±66.9◦ (±70.3◦). Interestingly, Ĵ ′1(θ2 = 0◦) = 0 and Ĵ ′′1 (θ2 =
0◦)< 0, for the anisotropic case, where ′ denotes the derivative with respect to θ2, while Ĵ ′1(θ2 = 0◦) = 0 and Ĵ ′′1 (θ2 = 0◦)> 0,
for the isotropic case under shear loads.

Overall, the extra Ĵ2ex terms in the Ĵk-integrals, as developped in section 2.4, are non-zero for all presented crack configura-
tions. The Ĵ2-integrals also play a critical role in the Ĵ-integral evaluations (Lee, 1986), as defined by Ĵ = (Ĵ2

1 + Ĵ
2
2 )
−1/2, while

the corresponding maximum magnitude of Ĵmax is found to occur when θ2 = 21.6◦ (= 16.9◦) using the anisotropic (isotropic)
elasticity calculation under traction, as pictured by ∗ in Fig. (3c), while Ĵ1max occurs at θ2 = 0◦. The criterion based on the
Ĵ-integrals also means that the actual path is not a pure mode-I path, which may also have significant consequences in predicting
of the crack stability as well as the directions of crack propagation as the compared with the well-know Ĵ1-integrals in relation
with the corresponding maximum energy-release rates for cracks in anisotropic solids. Under shear loads, Ĵmax = ±42.6◦ and
±37.4◦ using anisotropic and isotropic solutions, respectively, exhibiting further discrepancies performed by use of the isotropic
approximation in the elastic material properties.

According to the aforementioned fracture criteria, the most significant dissimilarity among the predictions occurs when the
loading is related to pure shears, for which the zero-K̂2 criterion as a fracture criterion for finite kinked cracks in anisotropic
solids is very questionable.

3.4. Effect of the crack length ratios

Figure (4) illustrates the influence of the a2/a1 ratio on the stress intensity factors K̂ as well as the Ĵk-integral calculations.
The previous results with a2/a1 = 0.1 are pictured with dotted lines for comparison, while the field solutions for a2/a1 = 1 are
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Figure 3: Effect of the anisotropic elasticity on the stress intensity factors K̂ and Ĵk-integrals for kinked cracks under pure tensile and shear conditions.

depicted with solid lines. When θ2 < 79.5◦, K̂1 becomes negative for the pure traction case with a2/a1 = 1, as pictured by ∗
in Fig. (4a), meaning that the kinked crack tip closes and values of K̂1 for greater values of θ2 > 79.5◦ are invalid. The shear
loading case in Fig. (4b) shows that the zero-K̂2 criterion is satisfied for θ2 = ±50.4◦, which can also be compared to ±66.9◦

for a2/a1 = 0.1. Such significant difference demonstrates the great importance in considering the finite size of kinked cracks in
appropriate crack problems as well as the possible hazards that can emerge when comparing the present results with solutions
from asymptotic and perturbation analysis.

According to Fig. (4c) and (d), the maximum Ĵ1-integral magnitudes are reached when θ2 = 0◦ for both external loads using
anisotropic elasticity theory, which also dramatically differ from the previous prediction based on the zero-K̂2 evaluation for the
pure shear case. Clearly, such further discrepancy indicates that the K̂-based criteria are debatable as the fracture criteria for
finite-length branched cracks. On the other hand, the previous comment on the discrepancies resulting from the Ĵ- versus Ĵ1-
integral criteria is even more evident for the case with equal lengths in both traction or shear loads, mainly due to the effect of
Ĵ2-terms that exhibit more oscillating characteristics for a2/a1 = 1 with respect to θ2 than the solutions with a2/a1 = 0.1.

3.5. Effect of the inter-crack spacings

The second size effect in Fig. (5a) and (b) is related to the influence on the Ĵk-integrals of the inter-crack spacings L of
the kinked crack arrays with a2/a1 = 0.1, under pure tensile and shear conditions, respectively. The dotted lines represent the
calculations for single kinked cracks in anisotropic materials, thus for L→ ∞, while the corresponding arrays of closely-spaced
cracks with L= 5a1/2 and θ1 = 0◦ are depicted by solid lines. For information, the particular crack configuration with L= 2a1
and θ2 , 0◦, corresponds to a crack network that cuts horizontally the entire solids. The amplitude of both Ĵ1- and Ĵ2-integrals
increases with decreasing L for both loading conditions. While the trends of the variations are qualitatively unchanged for the
pure traction case in Fig. (5a), the influence of L is more noticeable for the shear loads. For instance, Ĵ1max and Ĵmax occur at
θ2± 48.0◦ and ±36.9◦ for the network of cracks, compared to ±59.4◦ and ±42.6◦ for the single kinked cracks in anisotropic
material, respectively. Without of need for extensive statistical aspects, this significant difference shows that the present ideal
elastic interactions between the cracks at short range are also relevant to take into account for applications to crack coalescence
and more generally, to the problem of effective elastic properties of anisotropic solids containing specific crack arrangements
and densities with mixed-mode interactions. Furthermore, Ĵ ′1(θ2 = 0◦) = 0 and Ĵ ′′1 (θ2 = 0◦)> 0 for the network of cracks under
shear loads, which exhibits a change of sign of Ĵ ′′1 compared with the corresponding single crack case.

3.6. Effect of heterogeneity on the elastic properties

Figure (6) illustrates the influence of elastic interaction that arises from the mismatch of the elastic properties on the Ĵk-
integrals for both the single kinked crack configuration as well as the infinite arrays of kinked cracks under pure shear loads. As
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Figure 4: Effect of of the crack length ratio on the stress intensity factors K̂ and Ĵk-integrals for kinked cracks under pure tensile and shear conditions.

illustrated in Fig. (1a), the elastic mismatch leads to a discontinuity in the in-plane stresses, for which the magnitude increases
by increasing material mismatch of the anisotropic bimaterials. The results are presented for θ1 = 0◦ and a2/a1 = 0.1, as
previously, while cN=2

2 = a1/5, for which the tip of the kinked segment is therefore close to the interface when θ2 =−90◦. The
elastic properties in the upper material A are fixed, while the elastic constants of the lower material B are fictitiously multiplied
or divided by three. In comparison with the previous solutions using homogeneous elasticity, as pictured by dotted lines, the
Ĵk profiles are asymmetrical with respect to θ2 = 0◦, as shown by solid lines, especially for the Ĵ1-integrals. In accordance
with Fig. (4b), for which the valid tensile opening mode with K̂1 > 0 is related to θ2 < 0◦, thus with a kinked segment taken
downward towards material B, the driving force by evaluating Ĵ1 at the kinked tips for the single crack is larger for the case
where material B is softer, thus in turn, when material A is stiffer, by comparing Fig. (6a) and (b). The kinked crack part is also
attracted to the soft materials. For elastically soft material B, the Ĵ1 and Ĵ components reach maximum values in Fig. (6b) when
the kinked segment is located at θ2 =−73.3◦ and −56.8◦, respectively, while Ĵ1max and Ĵmax occur at θ2 =−58.6◦ and −46.1◦

for an infinity network with closely spaced cracks, as shown in Fig. (6c).

3.7. The linear elastic problem of single and closely-spaced forked cracks

As illustrated by the schematics in Fig. (7), the single forked crack in the homogeneous anisotropic material is composed
of three finite-length segments, for which two segments are fixed, i.e., crack 1 and crack 3, arbitrarily oriented with θ1 = 0◦

and θ3 = 60◦, while θ2 varies from −120◦ to 20◦. Furthermore, a1 and a2 are fixed as well, with a2/a1 = 0.1, and different
configurations with three lengths for a3 are investigated, i.e., a3 = a2/2 (case 1), a3 = a2 (case 2), and a3 = 2a2 (case 3).

Figure (7a) shows that K̂1 cancels at θ2 = −92.4◦ for crack 2 and becomes negative below for the three cases. When
θ2 > −60◦, K̂1 becomes increasingly sensitive as crack 2 approaches crack 3, while the magnitude is larger as the length a3
is smaller. Furthermore, K̂2 varies quadratically with θ2 for crack 2, until a change of sign for larger angles. From all results
in terms of the stress intensity factors on crack 3, K̂1 becomes negative for case 3 of the smallest a3 when θ2 > −8.4◦, while
the other K̂-based quantities vary more monotonically, as illustrated Fig. (7b). Figure (7c) shows that the closer crack 2 is to
crack 3, the larger the magnitude of Ĵ1, while Ĵ2 reaches a maximum magnitude at θ2 =−30.9◦, −35.5◦, and −39.6◦, for case
1, 2, and 3, respectively, before becoming negative for θ2 = 1.7◦, −1.5◦, −9.3◦, respectively. Interestingly, both Ĵ1- and Ĵ2-
integrals for crack 3 behave oppositely in sign until the magnitudes converge to almost zero for the largest of θ2, for instance
when θ2 >−14.1◦ for case 1, as depicted by Fig. (7d).

The most advanced application example of the present formalism is introduced in Fig. (8), illustrating the effects of both inter-
crack spacings and elastic mismatch on the Ĵk-integrals at two extreme tips of forked crack 2 and crack 3 in homogeneous and
heterogeneous materials under traction. The specific case 2 from Fig. (7) is treated, thus with a2/a1 = a2/a3 and θ2 = 60◦, while
θ2 varies from −120◦ to 20◦. For comparison, the dotted lines are associated with simplified crack configurations. According
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to Fig. (8a), the closer crack 2 is to crack 3, the higher the Ĵ1 amplitude of the former crack 2, so that crack 3 enhances the
propagation of crack 2 for the largest values of θ2. This situation is more pronounced in the case of crack network. In particular,
the Ĵk-based quantities for crack 2 are small in magnitude when crack 2 is diametrically opposed to the former crack 3. On
the contrary, Fig. (8b) shows that the Ĵk-based quantities for crack 3 tend towards zero when the crack 2 is closest to the fixed
crack 3, which corresponds to a stress state of crack 3 that is partly shielded by the elastic stress field produced by the crack
2. Figures (8c) and (d) demonstrate that the elastic heterogeneity only plays a role on crack 2, while the elastic mismatch has
also no effect on the behavior of the crack 3. Interestingly, the elastic mismatch leads to the presence of a zero derivative for Ĵ1,
resulting in the maximum value of Ĵ1max at θ2 = −18.9◦ for crack 2, as pictured by ∗ in Fig. (8c). This specific state does not
exist in the homogeneous elasticity context, and the corresponding non-zero and dimensionless stress components, defined by
σarray crack
ij (x1,x2)/σ

∞
22, are plotted in Fig. (9a), for illustration. Figure (9b) shows the corresponding variation of stresses along

the vertical dotted lines displayed in Fig. (9a). In particular, Fig. (9a) and (b) depict the large discontinuities of the in-plane stress
component 11 across both crack and interface planes as well as the traction-free conditions for 22 and 12 along the main crack
plane that are therefore fully satisfied, as required.

4. Concluding remarks

Using the Stroh formalism to the anisotropic elasticity theory of extrinsic dislocations, the two-dimensional fracture prob-
lem of multiple branched crack arrays in anisotropic bimaterials is formulated by means of coupled integral equations. These
equations are related to the arbitrarily-oriented configurations of infinitely periodic cracks in dissimilar orthotropic half-spaces
under arbitrary far-field stress loading conditions, combined with appropriate boundary conditions in terms of dislocation den-
sity distributions along the crack segments. The full-field solutions for kinked and forked crack arrays are solved by employing
the Gauss-Chebyshev quadrature and collocation formulae on Chebyshev nodes, while the limiting case of individual cracks
in homogeneous and isotropic materials is theoretically derived for validation and comparison purposes. Explicit expressions
of the local stress intensity factors for the single branched cracks in anisotropic bimaterials are obtained by interpolation, for
which the results of the asymptotic limiting case are in excellent agreement with existing solutions reported in the literature. The
path-independent Jk-integrals as crack propagation criterion are subsequently evaluated for mixed-mode crack configurations

15



 J case 1
 J1 case 2
 
J2 case 1

 

 J1 case 1

 J case 2
 
 
J2 case 2

 

-0.625

θ2  (degrees)
-120

1.25

θ2  (degrees)

St
re

ss
 in

te
ns

ity
 fa

ct
or

s  
K/

 K
I

a)

St
re

ss
 in

te
ns

ity
 fa

ct
or

s  
K/

 K
I

b)

θ2  (degrees) θ2  (degrees)

In
te

gr
al

s  
J k

 /  
J I

c)

In
te

gr
al

s  
J k

 /  
J I

d)

crack 2 crack 3

crack 2 crack 3

-80 -40 0 20 -120 -80 -40 0 20

-120 -80 -40 0 20-120 -80 -40 0 20
-0.75

1.5

0

0.625

-0.625

1.25

0

0.625

0

0.75

-0.75

1.5

0

0.75

 K2 case 1
 K1 case 2
 

 K1 case 1
 

 K2 case 2  
 K1 case 3
 K2 case 3  

 

 J1 case 3

J case 3
J2 case 3

σ22
∞

crack 1

σ22
∞

θ3 = 60° (fixed)2a1
2a3

θ2
2a2

crack 3

θ3 = 60° (fixed)2a1
2a3

θ2
2a2

K1 K2

K2
K1

crack 2

crack 1

^
^

^

^

^

^

^

^

^

^

^

^

^

^

^

^

^

^
^

Figure 7: Variation of the stress intensity factors K̂ and Ĵk-integrals for various configurations of single forked cracks. Three cases with different crack lengths
are investigated, while θ2 is the varying angle of crack 2, as pictured in the schematics.

and discussed with respect to the predictions indicated by the crack-tip K-based criteria for anisotropic solids. The influence
played by the short-range interactions, anisotropic elasticity, elastic mismatch, applied stress direction, inter-crack spacings and
crack length ratios of various kinked and forked crack geometries are investigated in the view to revealing significant differences
between both classical Jk- andK- based predictions in facture mechanics.

Extensions of the present work to the fundamental case of interfacial cracks interacting with free surfaces using appropriate
field solutions of intrinsic dislocation networks (Vattré, 2015, 2016) is left to follow-on analyses.
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Vattré, A., Demkowicz, M.J., 2013. Determining the Burgers vectors and elastic strain energies of interface dislocation arrays using anisotropic elasticity theory.

Acta Materialia, 14, 5172-5187.
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Figure 9: Dimensionless stress field solutions produced by a network of equally- and closely- spaced forked cracks in an anisotropic bimaterial under traction
that corresponds to the particular configuration ∗ in Fig. (8c). (a) Contours of non-zero and dimensionless stress components. (b) Stress profiles along the vertical
x2-axis, as depicted by the dotted lines in (a). The traction-free conditions on the crack planes are also satisfied.
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